CS348n: Neural Representations and Generative Models for 3D Geometry

Leonidas Guibas Computer Science Department Stanford University

02-09_CONDGEN_SHP 1

Some Class Logistics

- Homework 2 is due today
- Homework 3 is out, due in two weeks
- Solutions to homework 1 will be sent out today
- Please take the questionnaire below to provide us with feedback on the class:
 - <u>https://forms.gle/igFFpmnWaWL11Tfw9</u>
- Project proposals (1 page) are due next Wed
- The class will continue on Zoom next week

Last Time: Equivariance and Invariance

The Effect of Transformations on 3D Data

(or **invariant**, depending on data representation)

equivariant encoder invariant decoder

[W. Sun, A. Tagliasacchi, B. Deng, S. Sabour, S. Yazdani, G. Hinton, K. M. Yi, arXiv:2012.04718 (2020)] [J. J. Park, P. Florence, J. Straub, R. Newcombe, S. Lovegrove, CVPR 2019] We say a neural network $f(\cdot; \theta)$ is rotation equivariant, if for any 3D rotation $R \in SO(3)$ applied to its input \mathbf{x} , it is explicitly related to a transformation D(R) on the network output satisfying

 $f(\mathbf{x}R;\theta) = f(\mathbf{x};\theta)D(R)$

- D(R) should be independent of ${f x}$
- Special case: when D(R) = R is the identity mapping, it is the common-sense "equivariance"
- Special case: when D(R) = I is the constant mapping, it is invariance

Last Time: Vector Neurons (VNs)

Classical (scalar) feature $\boldsymbol{z} = [z_1, z_2, \cdots, z_C]^{ op} \in \mathbb{R}^C$, with $z_i \in \mathbb{R}$

Vector-list feature $m{V} = [m{v}_1, m{v}_2, \cdots, m{v}_C]^ op \in \mathbb{R}^{C imes 3}$, with $\ m{v}_i \in \mathbb{R}^3$

• For pointcloud with N points $\mathcal{V} = \{ m{V}_1, m{V}_2, \cdots, m{V}_N \} \in \mathbb{R}^{N imes C imes 3}$

Mapping between network layers:

 $f(\cdot;\theta): \mathbb{R}^{N \times C^{(d)} \times 3} \to \mathbb{R}^{N \times C^{(d+1)} \times 3}$

? Equivariance to rotation $R \in SO(3)$:

 $f(\mathcal{V}R;\theta) = f(\mathcal{V};\theta)R$

) : (classical) scalar neurons vector neurons

VN Features (for Point Cloud)

 $N \times C \times 3$ feature

VN Linear Layer

Linear operator: left multiply by the learnable weight matrix

 $C' \times 3$ feature

Equivariance: right multiply by the SO(3) rotation matrix

VN Non-Linearity

ReLU Non-Linearity

Weights $\mathbf{W} \in \mathbb{R}^{1 imes C}$ and $\mathbf{U} \in \mathbb{R}^{1 imes C}$

Learn a feature $q = \mathbf{W} \mathbf{V} \in \mathbb{R}^{1 imes 3}$ Learn a direction $k = \mathbf{U} \mathbf{V} \in \mathbb{R}^{1 imes 3}$

For each output vector neuron $oldsymbol{v}'\inoldsymbol{V}'$

 $oldsymbol{v}' = egin{cases} oldsymbol{q} & ext{if } \langle oldsymbol{q}, oldsymbol{k}
angle & ext{if } \langle oldsymbol{q}, oldsymbol{k}
angle & ext{otherwise} \ oldsymbol{q} - \langle oldsymbol{q}, rac{oldsymbol{k}}{\|oldsymbol{k}\|} & ext{otherwise} \ egin{array}{c} ext{if } \langle oldsymbol{q}, oldsymbol{k}
angle \geqslant 0 \ oldsymbol{q} - \langle oldsymbol{q}, rac{oldsymbol{k}}{\|oldsymbol{k}\|} & ext{otherwise} \ egin{array}{c} ext{if } \langle oldsymbol{q}, oldsymbol{k}
angle \geqslant 0 \ oldsymbol{q} - \langle oldsymbol{q}, rac{oldsymbol{k}}{\|oldsymbol{k}\|} & ext{otherwise} \ egin{array}{c} ext{if } \langle oldsymbol{q}, oldsymbol{k}
angle \geqslant 0 \ oldsymbol{k} \ ellsymbol{k} \ ellsymb$

VN Pooling

✓ Mean pooling

? Max pooling

- (Similar to non-linearity)
- argmax alone learned directions

VN Normalizations

VN Normalizations

BatchNorm

VN Invariant Layer

(equivariant feature) \times (equivariant feature)^T = (invariant feature)

Build VN Networks: VN-DGCNN

Build VN Networks: VN-PointNet

PointNet

$$\operatorname{Pool}_{\boldsymbol{x}_n \in \mathcal{X}}(h(\operatorname{Pool}_1), h(\operatorname{Pool}_2) \cdots, h(\operatorname{Pool}_N))$$

VN-PointNet

$$' = \text{VN-Pool}_{V_n \in \mathcal{V}}(f(1), f(2), \cdots, f(N))$$

Last Time: Tensor Field Networks (TFNs)

SO(3) Equivariant Features

Examples of Type 0 Features

• Type 0 features are rotation invariant as $D^0(R) = 1$:

Examples of type 1 Features

 We have D¹(R) = R, thefore type 1 features are 3D vectors rotating with the pointcloud X.

Pointcloud normals are type 1 features.

Spherical Harmonics & Higher Degree Features

- Spherical harmonics are homogeneous polynomials on \mathbb{R}^3 , their restriction to \mathcal{S}_2 form an orthonormal basis of $L^2(\mathcal{S}_2)$.
- Just like type ℓ equivariant features the vector of degree ℓ spherical harmonics $Y^{\ell}(x) \in \mathbb{R}^{2\ell+1}$, satisfies $Y^{\ell}(Rx) = D^{\ell}(R)Y^{\ell}(x)$.

How does TFN work?

- TFN is a convolutional architecture.
- It inherits its equivariance properties from SH kernels.

TFN =

• A steerable kernel basis, is a kernel basis $(\kappa_k)_k$ such that, the rotation of any kernel κ_j linearly decomposes onto the basis by a rotation matrix D(R):

$$\kappa_j(Rx) = \sum_k D(R)_{jk} \kappa_k(x).$$

• Using a steerable basis we can relate convolutions on X and on XR^{\top} by a simple linear relation:

$$f *_{XR^{\top}} \kappa_j(x) = \sum_j D(R)_{jk} f *_X \kappa_k(x)$$

3D Steerable Basis

• For each ℓ we have a sterrable basis of the form:

$$\kappa_{rm}^{\ell}(x) := \varphi_r(\|x\|_2) Y_m^{\ell}\left(\frac{x}{\|x\|_2}\right)$$

• Where φ_r is any radial function e.g. a gaussian shell:

$$\varphi_r(y) := \exp\left(\frac{-(y-\rho_r)^2}{2\sigma^2}\right)$$

Conditional Shape Generation Based on 3D Data

Goal: Scan Completion

• Complete or re-generate shape from a single view scan

Motivation

• 3D scanning is laborious.

Goal: Composition-Based Modeling

Create a shape by assembling components of 3D models in a largescale repository.

Data-Driven Structural Priors for Shape Completion

Minhyuk Sung¹ Vladimir G. Kim^{1,2} Roland Angst^{1,3} Leonidas Guibas¹ ¹Stanford University ²Adobe Research ³Max Planck Institute for Informatics

Filling in What is Missing ...

Symmetry-based

[Thrun el. al. 2005]

[Podolak et. al. 2006]

[Sipiran et. al., 2014]

Data-based

[Shen et. al. 2012]

However ...

Symmetry-based

• Hard to predict from *partial* data.

Data-based (Priors)

• Hard to recover the *exact* shape.

Complementary!

Get Best of Both Worlds

• Combine both symmetry and database sources.

Approach

 Estimate part and symmetry structure from the *partial* scan data using data-driven *priors*.

• Predict missing parts based on part relations.

Earlier efforts analyze **complete** shapes only

Training

- Probabilistic shape model
 - Per-point classifiers

Pairwise part relations

Probabilistic Part Relations

- Part parameters
 - Local coordinates + Scale
- Pairwise relations
 - Gaussian distributions of *relative* pose, height, and scale

Probabilistic Part Relations

- Part parameters
 - Local coordinates + Scale
- Reflectional and rotational partial symmetries
 - On either a *single* part and/or *pairs* of parts.
 - e.g. Reflectional symmetry: Rotational symmetry:

back, seat, armrests (pairs). column, legs.

The Pipeline

Inference

Inference Time

Energy function

Input Data

Additional

Initialization

Clustering

Part Pose Optimization

 \rightarrow

Additional

Part Pose

Final Result

Completion Strategy

• Input

Completion Strategy

• Input \rightarrow Symmetry

Completion Strategy

• Input \rightarrow Symmetry \rightarrow Database

Qualitative Results

Comparison

Low

Comparison

Low

Real Scans

KBOX 36

Object Synthesis by Part Assembly

Minhyuk Sung, Hao Su, Vova Kim, Siddhartha Chaudhuri, Leonidas Guibas, Siggraph Asia '17 Minhyuk Sung, Anastasia Dubrovina, Vova Kim, , Leonidas Guibas, SGP '18

CONFERENCE 27 – 30 November 2017 EXHIBITION 28 – 30 November 2017 BITEC, Bangkok, Thailand SA2017.SIGGRAPH.ORG

ComplementMe: Weakly-Supervised Component Suggestions for 3D Modeling

Minhyuk Sung¹, Hao Su^{1,2}, Vladimir G. Kim³, Siddhartha Chaudhuri⁴, Leonidas Guibas¹ ¹Stanford University ²University of California San Diego ³Adobe Research ⁴IIT Bombay

Motivation

3D Modeling is time-consuming.

Composition-Based Modeling

Create a shape by assembling components of 3D models in a largescale repository.

Composition-Based Modeling

- Propose an iterative *assembly* system.
- Suggest *complementary* parts and their locations at each time.

Composition-Based Modeling

Interactive design interface

Automatic shape synthesis

Modeling by Assembly

Create a high quality model by predicting *mid-level* information and *reusing* geometries of parts in the database.

Previous Work

Requires consistent part labels.

Chaudhuri et al., 2013

Chaudhuri et al., 2011

Limitations

Requires consistent part labels. 114 Templates for COSEG dataset ShapeNet Dataset (~400 models) (~3,000,000 models)

Observations

CAD data include *scene graphs*: Part geometry + Hierarchical structure

Kim et al., 2015

Observations

(+) Provides natural part segmentations.

Observations

(+) Provides natural part segmentations.

(-) Inconsistent and unlabeled.

Predict complementary parts using only geometric information

ComplementMe: Weakly-Supervised Component Suggestions

Jointly map both the query shape and complements to an **embedding** space, and find the **nearest neighbors**.

Retrieval and Embedding

- Precompute embedding coordinates of parts in the database.
- Compute only for the input shape in test time.

Retrieval and Embedding

Problem of the joint embedding when learning a **multi-valued** function:

Retrieval and Embedding

Problem of the joint embedding when learning a **multi-valued** function:

Retrieval and Embedding

Problem of the joint embedding when learning a **multi-valued** function:

Retrieval and Embedding

Predict a multimodal probability distribution (Bishop 1994).

Neural Network Training

coordinates

Placement Network

- Sample a complement from the predicted distribution.
- Predict the location of the selected component.

Placement Network

Add the maximum probability part iteratively.

Observation

The retrieval network discovers *interchangeable* parts.

Can discover semantic relationships among parts!

Limitations

Limitations

- Accumulating noise in iterations.
- Missing notion of termination.

Learning Fuzzy Set Representations of Partial Shapes on Dual Embedding Spaces

Eurographics Symposium on Geometry Processing (SGP) 2018 Minhyuk Sung¹, Anastasia Dubrovina¹, Vladimir G. Kim², and Leonidas Guibas¹ ¹Stanford University ²Adobe Research

Learn relations among *partial shapes*.

- Can complete an object with a single retrieval.
- Can discover group-to-group relations.

Learn relations among *partial shapes*.

- Complementarity
- Interchangeability

Complementarity

: Two partial shapes can be combined into a complete and plausible object.

Complementary

Complementary

Interchangeability

: Replacing one with the other still produces a plausible object.

Two partial shapes are *interchangeable* if they share the same set of *complements*.

Our Approach

Jointly encode both *complementary* and *interchangeable* relations in a *dual* embedding space.

Our Approach

Learn *interchangeability* from *complementarity*.

- Complementary pairs are created by splitting objects.
- No supervision for *interchangeability* is given.

Applications

• Shape analysis

• Shape completion

Embedding as Set Inclusion

Encode 1-to-N mapping as set inclusion.

Embedding as Set Inclusion

Encode 1-to-N mapping as set inclusion.

Complementary Shape Retrievals

Complementary Shape Retrievals

Complementary Shape Retrievals

Interchangeable Shape Retrievals

Interchangeable Shape Retrievals

Partial Scan Completion

Completing synthetic scan data [Sung et al., 2015]

Partial Scan Completion

Completing synthetic scan data [Sung et al., 2015]

