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Some Class Logistics

* Homework 2 is due today
* Homework 3 is out, due in two weeks
* Solutions to homework 1 will be sent out today

* Please take the questionnaire below to provide us with feedback on the
class:

* https://forms.gle/isFFpmnWaWL11Tfw9

* Project proposals (1 page) are due next Wed

* The class will continue on Zoom next week


https://forms.gle/igFFpmnWaWL11Tfw9

Last Time: Equivariance and
lnvariance




The Effect of Transformations on 3D Data

classification segmentation reconstruction

invariant equivariant equivariant encoder

(or invariant, depending invariant decoder
on data representation)

[W. Sun, A. Tagliasacchi, B. Deng, S. Sabour, S. Yazdani, G. Hinton, K. M. Yi, arXiv:2012.04718 (2020)]
[J. J. Park, P. Florence, J. Straub, R. Newcombe, S. Lovegrove, CVPR 2019]



Equivariance

We say a neural network f( -;8)is rotation equivariant, if for any 3D
rotation R € SO(3) applied to its input x, it is explicitly related to a
transformation D(R) on the network output satisfying

f(xR;0) = f(x;0)D(R)

* D(R)should be independent of x

* Special case: when D(R) = R is the identity SOC) SO(3)
. .l P . . ’ rotation R rotation R
mapping, it is the common-sense “equivariance

* Special case: when D(R) =1 is the constant
mapping, it is invariance




Last Time: Vector Neurons
(VNs)




Vector Neurons

Classical (scalar) feature z = [21,29,---,2¢c]' € RY, with z; € R

Vector-list feature V = [v1,vs, - - ,vc]' € RE%3 with v; € R?
* For pointcloud with N points V = {V;, Va,--- , Vy} € RVXEx3

Mapping between network layers:

F(-:0) : RNXCW %3 _y pNxCHDx3

)

? Equivariance to rotation R € SO(3):

FOVR:0) = f(V:0)R (classical)

vector neurons
scalar neurons



VN Features (for Point Cloud)

Classical:

N x C x 1 feature
SO(3) SO(3)
VN: rotation R rotation R

N x (' x 3 feature



VN Linear Layer

Linear operator: left multiply by the learnable weight matrix

C’ x C weight C x 3 feature C’ x 3 feature

Equivariance: right multiply by the SO(3) rotation matrix

C'" x 3 feature



VN Non-Linearity

ReLU Non-Linearity

Weights W € R1X¢and U € R*¢

Learn a feature ¢ = WV ¢ R1*3
Learn a direction k = UV € R'*5

For each output vector neuronv’ € V'

r

\

q

k

q— (¢ 1)

K|

if (g, k) >0

otherwise

direction k direction k
feature q
<
|
feature q
unchanged clip!



VN Pooling

v'Mean pooling direction k direction k
? Max pooling input v input v
* (Similar to non-linearity) ' '

e argmax alone learned directions

C x3 C x3 C x3 C x3
input directions output input



VN Normalizations

v'LayerNorm ...”
Y 7 7 y— 7 7 7 7
o g l

‘HEEE

N ¢ .’ N
B

v'InstanceNorm

\/Dropout LayerNorm BatchNorm InstanceNorm
(classical) scalar neurons

? BatchNorm

averaging across

arbitrarily rotated

inputs would not 3¢

necessarily be

meaningful B
LayerNorm BatchNorm InstanceNorm

Vector neurons




VN Normalizations

BatchNorm

element-wise

EEEEEE ElementWiseNorm
2-norm
EEEEEE EEEEEE
EEEEEE BatchNorm EEEEEE
EEEEEE EEEEEE
EEEEEE
output



VN Invariant Layer

( feature) X ( feature)'™ = (invariant feature)

Cl X 3 02 X3 Cl X 02
% & output

C' x 3
input




Build VN Networks: VN-DGCNN

DGCNN
. =ReLU(O(mmm,, —mum,) + Ounm,,)
Aggregation: mmmmm’ — Poolm:(n,m)eg( )
VN-DGCNN
= VN-ReLU(O(E&,, — H,) + ®5,)
nm - — m" m"

Aggregation ’,n, — VN'POOIm:(n,m)Eg( / )

[Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, J. M. Solomon, TOG 2019]



Build VN Networks: VN-PointNet

PointNet

mmEEE’ = Pooly, cx (h(mmmmm, ), h(memmmy) - f(memesy))

VN-PointNet

! :VN—POOlvnev(f( 1)7f( 2)7"' 7f( N))

[C. R. Qi, H. Su, K. Mo, L. J. Guibas, CVPR 2017]



Last Time: Tensor Field
Networks (TFNs)




SO(3) Equivariant Features

Wigner matrices

PR S RH FUXRT) = DAR)FAX)



Examples of Type O Features

e Type 0 features are rotation invariant as DY(R) = 1:

Segmentation Classification

fO(X)i,c,: — fO(XRT)
ok - g ( ) Chair

(3 )-

I\
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Examples of type 1 Features

e We have D!(R) = R, thefore type 1 features are 3D vectors rotating with
the pointcloud X.

1 pme\M/ S
'\\\\’1 s m'&\\ -\\\:&
~ fi &
+—0
Pointcloud normals are type 1 features. Bounding box center and principal directions

are type 1 features, lengths are type 0 features
20



Spherical Harmonics & Higher Degree Features

e Spherical harmonics are homogeneous polynomials on R?, their restriction
to Sy form an orthonormal basis of L?(S3).

e Just like type ¢ equivariant features the vector of degree ¢ spherical har-
monics Y¢(z) € R?***! satisfies Y¢(Rz) = DY(R)Y*(x).

-:;’; -2l -1 0 1 2 3

gl | . o,

eCO
|  ocace
| OCecoe® v,
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How does TFN work ?

e TFEFN is a convolutional architecture.

e It inherits its equivariance properties from SH kernels.

TEN =

Feature maps

Convolutions Subsampling Fully connected

22



Steerable Kernel Basis

e A steerable kernel basis, is a kernel basis (ki)r such that, the rotation
of any kernel x; linearly decomposes onto the basis by a rotation matrix

D(R):
ZD )ikkk (T

e Using a steerable basis we can relate convolutions on X and on XR' by
a simple linear relation:

f*xrT ~j(@ ZD Jikf *x k()

23



3D Steerable Basis

e For each ¢ we have a sterrable basis of the form:

@) i= or ol ()

|2

e Where ¢, is any radial function e.g. a gaussian shell:

or(y) == exp <—(y —~ pr)2>

202
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Conditional Shape Generation
Based on 3D Data




Goal: Scan Completion

 Complete or re-generate shape from a single view scan




* 3D scanning is laborious.




Goal: Composition-Based Modeling

Create a shape by assembling components of 3D models in a large-
scale repository.

28



Data-Driven Structural Priors
for Shape Completion

Minhyuk Sung! Vladimir G. Kim'2 Roland Angst’3 Leonidas Guibas'
Stanford University 2Adobe Research 3Max Planck Institute for Informatics

SIGGRAPH
dasid 2415

KDOSE



Filling in What is Missing ...

= Data-based
* Symmetry-based

[Thrun el. al. 2005] [Shen et. al. 2012]

[Podolak et. al. 2006] [Pauly el. al. 2008] [Sipiran et. al., 2014] [Pauly el. al. 2005] [Li et. al. 2015]



However ...

* Symmetry-based

e Hard to predict from partial

data.

N,
~ X4
~ -
~. -
~o e
~~ -
_____________

» Data-based (Priors)
 Hard to recover the

exact shape.
Input Shape Reconstruction
o T
— P 4 "‘xn
- _‘/// /’\*--
/;‘ P !
H\H“‘H

N

Complementary!

[Shen et. al. 2012]




Get Best of Both Worlds

* Combine both symmetry and database sources.
!

il Reflectional
Symmetry

Rotational
Symmetry




Approach

e Estimate part and symmetry structure from the partial scan data
using data-driven priors.

- Reflectional
Back Symmetry

Training Data

Rotational
Symmetry



Approach

* Predict missing parts based on part relations.

~
~.-__—’

i (0N o J
e | B /RN I
Final cemplates: § 4 vy \ ‘o 11s

I pprnnama,

. c’\nz na'\ns 5 / —
| A AL ppmmARTEE
OO AR A e
. fo L - R m s
@ @ @ @ /” & //* / \ /‘ » MM /* H o "m
[Chaudhuri et. al. 2011] [Kalogerakis et. al. 2012] [Fish et. al. 2014] [Kim et. al. 2013]

Earlier efforts analyze complete shapes only



* Probabilistic shape model
* Per-point classifiers * Pairwise part relations

[Kim et. al. 2014]



Probabilistic Part Relations

* Part parameters
* Local coordinates + Scale

e Pairwise relations

e Gaussian distributions of relative
pose, height, and scale




Probabilistic Part Relations

* Part parameters
* Local coordinates + Scale

» Reflectional and rotational partial symmetries
* On either a single part and/or pairs of parts.

e.g. Reflectional symmetry: back, seat, armrests (pairs).
Rotational symmetry: column, legs.




The Pipeline

Probabilistic shape model

A collection of Training

collection o

3D models with Output
part annotations
Partial Inference

scan data Input Output

Part/symmetry structure
including missing parts

38



Inference

Segmentation Labeling Structure Missing Parts
Estimation Prediction

l J l J
Discrete Continuous




Inference Time

J/ - J

Input Data Initialization Part Labels & Point Part Pose Additional Final Result
Orientations Segmentation Optimization Candidate
Prediction Generation
(]
Energy function

E = pnt T Esmooth :+EESMD T Ep

Part-level _
_____________________ - - 40




Inference Pipeline

Input Data




Inference Pipeline

Initialization

Clustering

Initialization



Inference Pipeline

Part Labels &
Orientations
Prediction

Part Conditional
Random Field
(CRF)

R fry _— CRF Node: Part

Part Label &
| Orientation
Predictions




Inference Pipeline

£
%

Point
Segmentation

Point Conditional
Random Field

(CRF) CRF Node:
Point
Epnt + Esmooth + ESMD
Unary Binary Unary
Term Term Term
Point

Segmentation



Inference Pipeline

Part Pose
Optimization

|ICP-inspired
Nonlinear
Optimization

Part Pose
Optimization




Inference Pipeline

J

Additional
Candidate
Generation

Additional
Candidate
Generation




Inference Pipeline




Completion Strategy

* Input



Completion Strategy

* Input - Symmetry

Reflectinal
Symmetry

Rotational
Symmetry




Completion Strategy

* Input - Symmetry - Database
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Completion
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Comparison

Symmetry-only
Accuracy

Databaase-only Final Output

Accuracy

Accuracy
High

52



Comparison

Symmetry-only Database-only Final Output
Accuracy Accuracy Accuracy

High
53



Real Scans

Input Output

54



Object Synthesis by
Part Assembly

Minhyuk Sung, Hao Su, Vova Kim, Siddhartha Chaudhuri, Leonidas Guibas, Siggraph Asia ‘17
Minhyuk Sung, Anastasia Dubrovina, Vova Kim, , Leonidas Guibas, SGP ‘18
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< CONFERENCE 27 — 30 November 2017

p EXHIBITION 28 — 30 November 2017
¢ d BITEC, Bangkok, Thailand
SIGGRAPH SA2017.SIGGRAPH.ORG
ASIA 2017
BANGKOK

ComplementMe: Weakly-Supervised
Component Suggestions for 3D Modeling

Minhyuk Sung’, Hao Su'?, Vladimir G. Kim3, Siddhartha Chaudhuri4, Leonidas Guibas’

1Stanford University 2University of California San Diego 3Adobe Research #lIIT Bombay



Motivation

3D Modeling is time-consuming.







Composition-Based Modeling

Create a shape by assembling components of 3D models in a large-
scale repository.

58



Composition-Based Modeling

* Propose an iterative assembly system.
* Suggest complementary parts and their locations at each time.

59



Composition-Based Modeling

. o Automatic shape synthesis
Interactive design interface e 5y

60



Modeling by Assembly

Create a high quality model by predicting mid-level information and
reusing geometries of parts in the database.

61



Previous Work

Requires consistent part labels.

E head M decoration @ | | " & & E
' W main { w v N Vo " H :
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-Pointed — H M clothes I H
' ) w H
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Chaudhuri et al., 2013

Chaudhuri et al.,, 2011
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Requires consistent part labels.

&
4

Templates for COSEG dataset ShapeNet Dataset
(~400 models) (~3,000,000 models)

63



Observations

CAD data include scene graphs:
Part geometry + Hierarchical structure

Annotations !:'
Sce ne gra ph | |
Parts

PGUP/PGDN: slice voxels CADJ‘!\SSEH‘I bl}’

Shift+PGUP/PGDN: change plane

Part Type meshes : | |
4--3dw.29731611¢8a6i59bd007e7980e2b01ba-orig/Model | CADPE rt | CADPart I CADAssemb |"|,|'
E I

Group1

----- gzEz;meshéfmeshs-geometry Emj'ﬂa'lr — EEIEHTJ"‘ : [ |

----- Group6/mesh6/mesh6-geometry ﬂ_f,r?a,l‘}' 'qlr'e - S-’m":l"f ';'r"le CAD Pa I"t CAD F"-a.l"t
Group? .

— [Scene graph‘ Scene graph] External E External

..... R Binary File : Binary File :

----- Group_10_1/Group_10 —_— F

l-—Group_12_1/Group_12/mesh25/mesh25-geometry @ l Scene graph I
Group_12_2/Group_12_1_2/mesh26/mesh26-geometry 3

{—Group_10_2/Group_10_1_2 v
----- Group_23_1/Group_23/mesh36/mesh36-geometry
(- Group_23_2/Group_23_1_2/mesh37/mesh37-geometry LamE SES

Images

ShapeNet Kim et al., 2015
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(+) Provides natural part segmentations.

65



(+) Provides natural part segmentations.

(—) Inconsistent and unlabeled.

66



Predict complementary parts

using only geometric information

67



ComplementMe: Weakly-Supervised Component Suggestions
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‘ Embedding Network ‘

ighbors.

Retrieval
Network

Jointly map both the query shape and complements to an embedding

space, and find the nearest ne

Query

Partial
Assembly

Space

ing
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Retrieval and Embedding

* Precompute embedding coordinates of parts in the database.
 Compute only for the input shape in test time.

~t

2

Retrieval
Network

‘ Embedding Network ‘

Query
Partial

Assembly

70



Retrieval and Embedding

Problem of the joint embedding when learning a multi-valued
function:

-

71



Retrieval and Embedding

Problem of the joint embedding when learning a multi-valued
function:

Complements

k {
\
\
\

Query \

Should be mapped to
the same position.
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Retrieval and Embedding

Problem of the joint embedding when learning a multi-valued
function:

Should NOT be mapped to
the same position.

Contradiction!

Sz

P
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Retrieval and Embedding

Predict a multimodal probability distribution (Bishop 1994).

Gaussian mixture

Retrieval
Network

Partial
Assembly

i
X

Embedding Network

i
|
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Neural Network Training

Query

/
Positive
(Correct

complement)

Negative
(Wrong
complement)

\ 4

Retrieval
Network

{0k}

Gaussian mixture

Embedding
Network

\ 4

e} arameters

{or}

Relative margin loss

Shgred

Embedding
Network

(Chechik et al. 2010)

E(X,Y,Z) =
max{m + E(X,Y) — E(Y, Z), 0}

E(X,Y) = —log P(Y|X)

PO = ) 0 CON (V111 (X), 0, (X)?)
k

Embedding
coordinates 75



Placement Network

 Sample a complement from the predicted distribution.
* Predict the location of the selected component.

b

Placement

Embedding Network
Network

Probability
Distribution

76 76



Placement Network

Encoder
X > >
Network O
@]
g Position
0 =
5 15
Y wn
—t
d g. y
v . Encoder . P
/ Network
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Automatic Shape Synthesis

Add the maximum probability part iteratively.

| | | |

Source




Automatic Shape Synthesis




Automatic Shape Synthesis




Automatic Shape Synthesis

Randomly
sample two

components
at each time.



The retrieval network discovers interchangeable parts

Nearest neighbors in the embedding space

(

Can discover semantic relationships among parts!

83



\

Limitations

Limitations
e Accumulating noise in iterations.
* Missing notion of termination.

Already What happens
complete!

if we keep going...:

?




Learning Fuzzy Set Representations of Partial
Shapes on Dual Embedding Spaces

ol

Eurographics Symposium on Geometry Processing (SGP) 2018

Minhyuk Sung!, Anastasia Dubrovinatl, Vladimir G. Kim?2, and Leonidas Guibas!
1Stanford University  2Adobe Research &




Learn Relations Among Partial Shapes

Learn relations among partial shapes.
* Can complete an object with a single retrieval.
e Can discover group-to-group relations.

( X ; < >
) Interchangeable
Query Retrieval




Relations Among Partial Shapes

Learn relations among partial shapes.

* Complementarity .14” terchangeable \/

* Interchangeability

>
>

Complementary
Complementary

v

< >
. Interchangeable

<




Relations Among Partial Shapes

Complementarity
: Two partial shapes can be combined into a complete and plausible

object. .

L

>
>
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Complementary

Complementa

<
<
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Relations Among Partial Shapes

Interchangeability

: Replacing one with the other still produces a plausible object.
Interchangeable

< >V
/

-—

< >
. Interchangeable




Relations Among Partial Shapes

Two partial shapes are interchangeable if they share the same set of
complements.

A set of complements

< >
. Interchangeable




Our Approach

Jointly encode both complementary and interchangeable relations in a
dual embedding space.

.Interchangeab[e \/

f A

omplel’nentary




Our Approach

Learn interchangeability from complementarity.
 Complementary pairs are created by splitting objects.
* No supervision for interchangeability is given.

9 oF
«
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Applications

e Shape analysis

4

* Shape completion

| —t—

ICP Complement
Retrieval Retrieval
(Pink) (Green)




Embedding as Set Inclusion

Encode 1-to-N mapping as set inclusion.

A set of complements




Embedding as Set Inclusion

Encode 1-to-N mapping as set inclusion.

Neighbor —

Query
space



Complementary Shape Retrievals

Query (pink) Top-ranked Retrievals (green)

]




Complementary Shape Retrievals

Query (pink) Top-ranked Retrievals (green)




Complementary Shape Retrievals

Query (pink) Top-ranked Retrievals (green)

<
%




Interchangeable Shape Retrievals

Query Top-ranked Retrievals

e [wa vz
vl




Interchangeable Shape Retrievals

Query Top-ranked Retrievals

@ M 5 mm
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Partial Scan Completion

Completing synthetic scan data [Sung et al., 2015]

Query ICP Retrieval Complement Retrieval (Green)
AR % @l"




Partial Scan Completion

Completing synthetic scan data [Sung et al., 2015]

Query ICP Retrieval Complement Retrieval (Green)
A

W |
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