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• Homework 2 is due today
• Homework 3 is out, due in two weeks
• Solutions to homework 1 will be sent out today

• Please take the questionnaire below to provide us with feedback on the 
class:

• https://forms.gle/igFFpmnWaWL11Tfw9

• Project proposals (1 page) are due next Wed

• The class will continue on Zoom next week
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Some Class Logistics

https://forms.gle/igFFpmnWaWL11Tfw9


Last Time: Equivariance and 
Invariance
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The Effect of Transformations on 3D Data

segmentation

airplane

classification reconstruction

invariant equivariant
(or invariant, depending 
on data representation)

equivariant encoder
invariant decoder

[W. Sun, A. Tagliasacchi, B. Deng, S. Sabour, S. Yazdani, G. Hinton, K. M. Yi, arXiv:2012.04718 (2020)]
[J. J. Park, P. Florence, J. Straub, R. Newcombe, S. Lovegrove, CVPR 2019]



We say a neural network              is rotation equivariant, if for any 3D 
rotation                      applied to its input    , it is explicitly related to a 
transformation            on the network output satisfying

• should be independent of
• Special case: when                      is the identity 

mapping, it is the common-sense “equivariance”
• Special case: when                      is the constant 

mapping, it is invariance

Equivariance



Last Time: Vector Neurons 
(VNs)
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Classical (scalar) feature                                                     , with 

Vector-list feature                                                          , with
• For pointcloud with 𝑁𝑁 points

Vector Neurons

(classical)
scalar neurons vector neurons

Mapping between network layers:

? Equivariance to rotation                     :



VN Features (for Point Cloud)

Classical:

VN:

feature

feature



VN Linear Layer

Linear operator: left multiply by the learnable weight matrix

feature

Equivariance: right multiply by the SO(3) rotation matrix

featureweight

feature featureweight



VN Non-Linearity
ReLU Non-Linearity

Weights                      and

Learn a feature
Learn a direction

For each output vector neuron

direction 𝒌𝒌 direction 𝒌𝒌
feature 𝒒𝒒

feature 𝒒𝒒
unchanged clip!



VN Pooling

Mean pooling
?  Max pooling

• (Similar to non-linearity)
• argmax alone learned directions

direction 𝒌𝒌
input 𝒗𝒗

direction 𝒌𝒌
input 𝒗𝒗

VN-
Linear

input

= argmax ,
directions output input



LayerNorm
InstanceNorm
Dropout

? BatchNorm
averaging across 
arbitrarily rotated 
inputs would not 
necessarily be 
meaningful

VN Normalizations

B B B
C C CN N N

LayerNorm BatchNorm InstanceNorm

B B B
N N N

3C 3C 3C

LayerNorm BatchNorm InstanceNorm

(classical) scalar neurons

Vector neurons



VN Normalizations
BatchNorm

ElementWiseNorm

BatchNorm… …

element-wise 
2-norm

output



VN Invariant Layer

(equivariant feature) × (equivariant feature)T = (invariant feature)

T

input

output



DGCNN

VN-DGCNN

Build VN Networks: VN-DGCNN

[Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, J. M. Solomon, TOG 2019]

Edge feature:

Aggregation:

Edge feature:

Aggregation



PointNet

VN-PointNet

Build VN Networks: VN-PointNet

[C. R. Qi, H. Su, K. Mo, L. J. Guibas, CVPR 2017]



Last Time: Tensor Field 
Networks (TFNs)
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SO(3) Equivariant Features

Wigner matrices
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Examples of Type 0 Features
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Examples of type 1 Features
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Spherical Harmonics & Higher Degree Features
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How does TFN work ?
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Steerable Kernel Basis
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3D Steerable Basis



Conditional Shape Generation 
Based on 3D Data
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• Complete or re-generate shape from a single view scan

Goal: Scan Completion



• 3D scanning is laborious.

Motivation



Goal: Composition-Based Modeling

Create a shape by assembling components of 3D models in a large-
scale repository.

28



Data-Driven Structural Priors
for Shape Completion

Minhyuk Sung1 Vladimir G. Kim1,2 Roland Angst1,3 Leonidas Guibas1
1Stanford University    2Adobe Research     3Max Planck Institute for Informatics

⋯



 Symmetry-based

Filling in What is Missing …
 Data-based

[Thrun el. al. 2005]

[Pauly el. al. 2008] [Sipiran et. al., 2014][Podolak et. al. 2006]

[Shen et. al. 2012]

[Li et. al. 2015][Pauly el. al. 2005]



 Symmetry-based
• Hard to predict from partial

data.

However …

 Data-based  (Priors)
• Hard to recover the 

exact shape.

[Shen et. al. 2012]

Input Shape Reconstruction

?
Complementary!



• Combine both symmetry and database sources.

Get Best of Both Worlds

Reflectional
Symmetry

Rotational
Symmetry

Seat

Legs

Back

Armrest



• Estimate part and symmetry structure from the partial scan data 
using data-driven priors.

Approach

Seat

Legs

Column

Reflectional
Symmetry

Rotational
Symmetry

Back

Armrest

⋯

Training Data



• Predict missing parts based on part relations.

Approach

[Chaudhuri et. al. 2011] [Kalogerakis et. al. 2012] [Fish et. al. 2014] [Kim et. al. 2013]

Earlier efforts analyze complete shapes only



• Probabilistic shape model

Training

 Per-point classifiers  Pairwise part relations

Seat
Back
Armrest

[Kim et. al. 2014]



• Part parameters
• Local coordinates + Scale

• Pairwise relations
• Gaussian distributions of relative

pose, height, and scale

Probabilistic Part Relations

Fixed



• Part parameters
• Local coordinates + Scale

• Reflectional and rotational partial symmetries
• On either a single part and/or pairs of parts.

Probabilistic Part Relations

e.g. Reflectional symmetry: back, seat, armrests (pairs).
Rotational symmetry: column, legs.



The Pipeline

Training
Input Output

Inference
Input Output

⋯
A collection of

3D models with
part annotations

Partial
scan data

Part/symmetry structure
including missing parts

Probabilistic shape model
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Inference

Segmentation Labeling Structure
Estimation

Missing Parts
Prediction

Discrete Continuous



Inference Time

Part Labels &
Orientations
Prediction

Additional
Candidate
Generation

Part Pose
Optimization

Point
Segmentation

Final ResultInput Data Initialization

Energy function

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆+𝑬𝑬 = + + +𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝 𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

Point-level Part-level
40



Inference Pipeline

Part Labels &
Orientations
Prediction

Additional
Candidate
Generation

Part Pose
Optimization

Point
Segmentation

Final ResultInput Data Initialization



Inference Pipeline

Part Labels &
Orientations
Prediction

Additional
Candidate
Generation

Part Pose
Optimization

Point
Segmentation

Final ResultInput Data Initialization

Initialization

Clustering



Inference Pipeline

Part Labels &
Orientations
Prediction

Additional
Candidate
Generation

Part Pose
Optimization

Point
Segmentation

Final ResultInput Data Initialization

Part Conditional
Random Field

(CRF)

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆+ +

+ +

𝑬𝑬𝒑𝒑𝒑𝒑𝒑𝒑
𝑬𝑬𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

Part Label &
Orientation
Predictions

CRF Node: Part

Binary
Term

Unary
Term



Inference Pipeline

Part Labels &
Orientations
Prediction

Additional
Candidate
Generation

Part Pose
Optimization

Point
Segmentation

Final ResultInput Data Initialization

Point Conditional
Random Field

(CRF)

𝑬𝑬𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝑬𝑬𝑺𝑺𝑺𝑺𝑺𝑺+ +

+ +

𝑬𝑬𝒑𝒑𝒑𝒑𝒑𝒑
𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

Point
Segmentation

CRF Node: 
Point

Binary
Term

Unary
Term

Unary
Term



Inference Pipeline

Part Labels &
Orientations
Prediction

Additional
Candidate
Generation

Part Pose
Optimization

Point
Segmentation

Final ResultInput Data Initialization

ICP-inspired
Nonlinear

Optimization

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑬𝑬𝑺𝑺𝑺𝑺𝑺𝑺+ +

+ +

𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝
𝑬𝑬𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝑬𝑬𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔

Part Pose
Optimization



Inference Pipeline

Part Labels &
Orientations
Prediction

Additional
Candidate
Generation

Part Pose
Optimization

Point
Segmentation

Final ResultInput Data Initialization

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆+ +

+ +

𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝
𝑬𝑬𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

Additional
Candidate
Generation



Inference Pipeline

Part Labels &
Orientations
Prediction

Additional
Candidate
Generation

Part Pose
Optimization

Point
Segmentation

Final ResultInput Data Initialization



• Input

Completion Strategy



• Input → Symmetry

Completion Strategy

Reflectinal
Symmetry

Rotational
Symmetry



• Input → Symmetry → Database

Completion Strategy

Seat

Legs

Back

Armrest



Qualitative Results

Input Completion
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Comparison

Symmetry-only
Accuracy

Database-only
Accuracy

Final Output
Accuracy

Input
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Comparison

Symmetry-only
Accuracy

Database-only
Accuracy

Final Output
Accuracy

Input
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Real Scans
OutputInput



Object Synthesis by
Part Assembly

Minhyuk Sung, Hao Su, Vova Kim, Siddhartha Chaudhuri, Leonidas Guibas, Siggraph Asia  ‘17
Minhyuk Sung, Anastasia Dubrovina, Vova Kim, , Leonidas Guibas, SGP ‘18
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ComplementMe: Weakly-Supervised 
Component Suggestions for 3D Modeling

Minhyuk Sung1, Hao Su1,2, Vladimir G. Kim3, Siddhartha Chaudhuri4, Leonidas Guibas1

1Stanford University  2University of California San Diego  3Adobe Research  4IIT Bombay



3D Modeling is time-consuming.

Motivation

https://www.youtube.com/watch?v=aS5KcO0etcM ×200






Composition-Based Modeling

Create a shape by assembling components of 3D models in a large-
scale repository.
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Composition-Based Modeling

• Propose an iterative assembly system.
• Suggest complementary parts and their locations at each time.
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Interactive design interface

Composition-Based Modeling

Automatic shape synthesis
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Modeling by Assembly

Create a high quality model by predicting mid-level information and 
reusing geometries of parts in the database.
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Previous Work

Requires consistent part labels.

Chaudhuri et al., 2011
Chaudhuri et al., 2013
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Limitations

Requires consistent part labels.

Templates for COSEG dataset
(~400 models)

ShapeNet Dataset
(~3,000,000 models)
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Observations

CAD data include scene graphs:
Part geometry + Hierarchical structure

ShapeNet Kim et al., 2015
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Observations

(+) Provides natural part segmentations.
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Observations

(+) Provides natural part segmentations.
(−) Inconsistent and unlabeled.
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Goal
Predict complementary parts

using only geometric information

Query
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ComplementMe: Weakly-Supervised Component Suggestions
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Retrieval and Embedding

Jointly map both the query shape and complements to an embedding
space, and find the nearest neighbors.

Query
Partial

Assembly

Embedding Space

Embedding Network

Retrieval
Network
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Retrieval and Embedding

• Precompute embedding coordinates of parts in the database.
• Compute only for the input shape in test time.

Query
Partial

Assembly

Embedding Space

Embedding Network

Retrieval
Network
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Retrieval and Embedding

Problem of the joint embedding when learning a multi-valued
function:

71



Retrieval and Embedding

Problem of the joint embedding when learning a multi-valued
function:

Query

Should be mapped to
the same position.

Complements
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Retrieval and Embedding

Problem of the joint embedding when learning a multi-valued
function:

Query

Should NOT be mapped to
the same position.

Contradiction!
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Retrieval and Embedding

Predict a multimodal probability distribution (Bishop 1994).

Partial
Assembly

Embedding Network

Probability
Distribution

Embedding Space

𝒩𝒩(𝜇𝜇1,𝜎𝜎12)

𝒩𝒩(𝜇𝜇2,𝜎𝜎22) 𝒩𝒩(𝜇𝜇3,𝜎𝜎32)

Retrieval
Network

Gaussian mixture
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Neural Network Training

Y Yc

Z Zc

Embedding
Network

Embedding
Network

Shared

Positive
(Correct

complement)

Negative
(Wrong

complement)

X Retrieval
Network

{𝜑𝜑𝑘𝑘}

{𝜇𝜇𝑘𝑘}

{𝜎𝜎𝑘𝑘}

Query

𝐸𝐸 𝑋𝑋,𝑌𝑌,𝑍𝑍 =
max{𝑚𝑚 + 𝐸𝐸 𝑋𝑋,𝑌𝑌 − 𝐸𝐸 𝑌𝑌,𝑍𝑍 , 0}

Relative margin loss
(Chechik et al. 2010)

𝐸𝐸 𝑋𝑋,𝑌𝑌 = − log𝑃𝑃 𝑌𝑌 𝑋𝑋

𝑃𝑃 𝑌𝑌 𝑋𝑋 = �
𝑘𝑘

𝜑𝜑𝑘𝑘(𝑋𝑋)𝒩𝒩(𝑌𝑌|𝜇𝜇𝑘𝑘 𝑋𝑋 ,𝜎𝜎𝑘𝑘(𝑋𝑋)2)

Gaussian mixture
parameters

Embedding
coordinates 75



• Sample a complement from the predicted distribution.
• Predict the location of the selected component.

Placement Network

Embedding Space

Embedding Network

Probability
Distribution

Placement
Network

Output
𝒩𝒩(𝜇𝜇1,𝜎𝜎12)

𝒩𝒩(𝜇𝜇2,𝜎𝜎22) 𝒩𝒩(𝜇𝜇3,𝜎𝜎32)
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Placement Network

X

Y

Encoder
Network

Encoder
Network

Concatenation

M
LPs

Position
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Automatic Shape Synthesis

Add the maximum probability part iteratively.

Source
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Automatic Shape Synthesis

Source
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Automatic Shape Synthesis

Source
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Automatic Shape Synthesis

Randomly
sample two
components
at each time.
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Observation

The retrieval network discovers interchangeable parts.

Can discover semantic relationships among parts!

Nearest neighbors in the embedding spaceQuery
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Limitations
• Accumulating noise in iterations.
• Missing notion of termination.

Limitations

Already
complete!

What happens
if we keep going…?



Learning Fuzzy Set Representations of Partial 
Shapes on Dual Embedding Spaces 

Eurographics Symposium on Geometry Processing (SGP) 2018
Minhyuk Sung1, Anastasia Dubrovina1, Vladimir G. Kim2, and Leonidas Guibas1

1Stanford University      2Adobe Research



Learn relations among partial shapes.
• Can complete an object with a single retrieval.
• Can discover group-to-group relations.

Learn Relations Among Partial Shapes

RetrievalQuery

Interchangeable



Learn relations among partial shapes.

• Complementarity

• Interchangeability

Relations Among Partial Shapes

Interchangeable

Interchangeable

Co
m

pl
em

en
ta

ry

Co
m

pl
em

en
ta

ry



Complementarity
: Two partial shapes can be combined into a complete and plausible 
object.

Relations Among Partial Shapes

Co
m

pl
em

en
ta

ry

Co
m

pl
em

en
ta

ry



Interchangeability
: Replacing one with the other still produces a plausible object.

Relations Among Partial Shapes

Interchangeable

Interchangeable



Two partial shapes are interchangeable if they share the same set of 
complements.

Relations Among Partial Shapes

Interchangeable

A set of complements

⋯⋯ ⋯



Jointly encode both complementary and interchangeable relations in a 
dual embedding space.

Our Approach

g

f

Complementary

Interchangeable

Interchangeable



Learn interchangeability from complementarity.
• Complementary pairs are created by splitting objects.
• No supervision for interchangeability is given.

Our Approach



• Shape analysis

• Shape completion

Applications

ICP
Retrieval

(Pink)

Complement
Retrieval
(Green)

⋯



Encode 1-to-N mapping as set inclusion.

Embedding as Set Inclusion

A set of complements

⋯⋯ ⋯Complementary



Encode 1-to-N mapping as set inclusion.

Embedding as Set Inclusion

Neighbor
space

Query
space



Complementary Shape Retrievals

Query (pink) Top-ranked Retrievals (green)



Complementary Shape Retrievals

Query (pink) Top-ranked Retrievals (green)



Complementary Shape Retrievals

Query (pink) Top-ranked Retrievals (green)



Interchangeable Shape Retrievals

Query Top-ranked Retrievals



Interchangeable Shape Retrievals

Query Top-ranked Retrievals



Completing synthetic scan data [Sung et al., 2015]

Partial Scan Completion

Query ICP Retrieval Complement Retrieval (Green)



Completing synthetic scan data [Sung et al., 2015]

Partial Scan Completion

Query ICP Retrieval Complement Retrieval (Green)



That’s All
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