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• Project proposals due today

• Next lecture (Wed, Feb 23) on NeRFs will be by Ben Mildenhall and 
Pratul P. Srinivasan, two of the authors of the original NeRF paper. It 
will still be virtual on Zoom.

• Because of the special guests, the student presentations for Feb 23 
will be moved to Feb 28 (two sets of student presentation then)

• From Feb 28 the class will be physical, in Clark S361
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Class Logistics



Last Time: Conditional Shape 
Generation Based on Image 

Data
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Point Cloud Synthesis from a Single Image

Input Reconstructed 3D point cloud



sample

Loss
on

sets

Deep network

Prediction
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End-to-End Learning

Source model



Point Cloud Distance Metrics

Worst case: Hausdorff distance (HD)

Average case: Chamfer distance (CD)

Optimal case: Earth Mover’s distance (EMD)

Solves the optimal transportation (bipartite matching) problem!
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Predictor
conv
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End-to-End Learning Architecture

Loss
on

sets



Two-Branch Architecture

conv

... 

Deconv
branch

FC
branch

Capture smooth structures

Capture intricate 
structures

Nx3

Mx3

…

…

…

(M+N)x3

Set union by array concatenation



The Two Branches
blue: deconv branch – large, consistent, smooth structures

red: fully-connected branch – more intricate structures



• A fundamental issue: inherent ambiguity in prediction

Ambiguity in Object Views

By loss minimization, the network tends to predict a “mean shape” that 

averages out uncertainty
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Canonical “Containers” for Object Categories

He Wang, Srinath Sridhar, Jingwei Huang, Julien 
Valentin, Shuran Song, Leonidas J. Guibas. Normalized 
Object Coordinate Space for Category-Level 6D Object 
Pose and Size Estimation. CVPR 2019.
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Normalized Object Coordinate Spaces (NOCS)

(1, 1, 1)

(0, 0, 0)

(0, 1, 0)

(1, 0, 0)
(0, 0, 1)

(0, 1, 1)(1, 1, 0)

RGB colors 
represent XYZ
coordinates of 

shape.

Canonicalize

• Position
• Orientation
• Size
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NOCS Lifting Map

Readout


Microsoft Game DVR

pyEasel





Multi-View NOCS Aggregation

Limitations:

- Set union often insufficient
- No surface






SP Branch
X
Y
Z

Learned Chart

NOCS-UV 
Branch

NOCS Map, MaskSkip Links

Encoder F

Unwrapped 
Chart

(image colors)0

1

1U

V

CE

z

p U
VUV Amplifier

Pix2Surf: Single-View Single-Chart

Lei, J., Sridhar, S., Guerrero, P., Sung, M., Mitra, N. and Guibas, L.J. Pix2surf: Learning parametric 3D 
surface models of objects from images. ECCV 2020.

Surface Parametrization



zm

MaxPool

X0
Y0
Z0

X1
Y1
Z1

SP Branch

SP Branch

SharedShared Shared

Encoder F0
CE z0

View 0

Encoder F1
CE z1

View 1

NOCS-UV
Branch

NOCS-UV
Branch

Pix2Surf: Multi-View Atlas

Lc =
1
P
�

i,j ∈P
||𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗||2

Multi-View 
consistency loss
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Pix2Surf: Single-View Single-Chart

Lei, J., Sridhar, S., Guerrero, P., Sung, M., Mitra, N. and Guibas, L.J. Pix2surf: Learning parametric 3D 
surface models of objects from images. ECCV 2020.



• Key Idea:
• Do not represent the 3D shape explicitly
• Consider the surface implicitly, as the decision boundary of a non-linear 

classifier, parametrized by the neural network:
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Occupancy Networks

The decision boundary of the 
classifier models the occupancy field.

Occupancy Probability

3D Locations

Condition
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Network Architecture

How can we train Occupancy Networks?
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How well does it work?
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DISN – Model Overview
Key Idea: Use both global and local features for capturing both the overall 
shape and the fine-grained details.
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DISN – Model Overview
Key Idea: Use both global and local features for capturing both the overall 
shape and the fine-grained details.

Given an image and a
3D point p in world 
coordinates, we first 
need to predict the 
camera parameters that 
project the 3D point to 
the image plane.
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DISN – Camera Pose Estimation



• Camera Pose Network: Estimate the camera pose, the 6 DoF
transformation from the camera coordinate to world coordinate.

• Local Feature Extraction Network: Using the camera pose find a 3D 
point’s 2D location on the image and extract local feature patches 
from multiple network layers.
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DISN – Model Overview

Camera Pose Network Local Feature Extraction Network
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How well does it work?
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PIFu: Pixel-Aligned Implicit Function
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What about Texture?
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A Similar Idea: Texture Fields

For every point on the corresponding
surface predict its color value.



Shape Deformations / Edits 
and Variation Generation
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Generative Models for Deformations / Edits

Learn possible variations of an input shape, meeting semantic 
constraints.

latent space
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• Leverage on existing artist generated models

• Create new models through deformations and edits
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Motivation
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Continuous Shape Variability

A chair manifold?
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Combinatorial or Discrete Variability



Shapes are often Over-Parametrized for Edits

Learn a reduced parameter space and enforce that each learned 
parameter represents an intuitive deformation or change.

• Locality
• Independence
• Interpretability

Adversarial
testing w/

the deformed
shape

latent space
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Shape Differences as First-Class Citizens
Shape A Shape B Shape Diff



Continuous Shape 
Variations: Deformations
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Neural ODEs for Shape 
Deformation

MeshFlow: A Robust and Scalable Shape Deformation Framework. Jingwei Huang, Max Jiang, 
Baiqiang Leng, Bin Wang, Leonidas Guibas. 



Pairwise Deformation:

Problem Setup: Semantic Deformation

Source A Deformed A Target B

Deform

Minimize 
Distance

Source geometry provides “style” while target provides “pose”. Geometric 
“style” transfer.



“As Rigid As Possible” (ARAP) Deformations



Remeshing: Mesh to Uniform Skeleton Graph

Origin Subdivide Virtual 
Link

Uniform Skeleton 
(red->green)



Uniform Skeleton Graph Representation



• A general interface for shape deformation optimization
• Mesh representation to support effective Non-rigid ICP
• Support general deformation functions

• Deep flow-based method
• A bijective mapping
• No self-intersection
• Encourages but does not rely on rigidity during optimization
• Better alignment

Methodology

Fitness to destination  +  Preservation of constraints



MeshFlow Key Modules



Neural Ordinary Differential Equations

h(0)
Neural 

NetworkInitial 
State

h(T)

Black Box
ODE Solver

Final 
State x(0)

x(t)

x(T)
(x, y, z)

• Key idea: neural network gives derivative, ODE solver to integrate
• Gives “infinite depth” nets and continuous representation of time series



Use Neural ODE + learned flow model to deform geometries.

Deep Flow-Based Deformation

Parameterize a learnable flow field                          using a fully connected neural network that 
outputs three velocity components for every point at every time. Advecting the source shape 
by integrating an ODE produces the resulting deformed shape. 

Flow 
field

Integrate in time

Source Deform Target



Denote the mapping induced by convecting the geometry using Neural ODE as:

The mapping is bijective since the inverse of the mapping can be easily acquired by 
inverting the integration order.

Therefore the deformation field between two shapes can be learned via optimizing 
for a symmetric deformation loss between the two shapes:

Here     is a differentiable geometric loss. A simple choice is Chamfer loss. 

Deep Flow-Based Deformation



Deformation Comparison



Deformation Video






Scan2CAD & Part Deformation



Learnable Deformations Among 3D Shapes

Chiyu “Max” Jiang 1, Jingwei Huang 2, 
Andrea Tagliasacchi 3, Leonidas Guibas 2

1 UC Berkeley, 2 Stanford University, 3 Google Brain

ShapeFlow
2020



Generative Space

Generative vs Deformation Space

Deformation Space

z2 Decoder(z2)

z1 Decoder(z1)

z2

z1

Embed

Embed

Deformer
(z1, → z2)

Deformer
(z2 → z1)



Deformation Space

A deformation space naturally allows the disentanglement of geometric style 
(coming from the source) and structural pose (conforming to the target).



Regularizing Deformation Flows

Furthermore, we can apply implicit and explicit flow regularization to ensure 
various desirable deformation properties.

• Implicit regularization: volume conservation
• Implicit regularization: symmetries.
• Explicit regularization: surface metrics



Hub-and-Spoke Deformation

All-To-All Hub-and-spokes



Experiment - Reconstruction via Deformation



Deformation to “Mean Shape” in Canonical Space

Source:

Mean-Shape at “hub”:

Shapes naturally align when deformed to the common “hub” in an unsupervised manner.



Experiment: Unsupervised Shape 
Correspondences



DeformSyncNet

61

DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces . Minhyuk Sung, Zhenyu Jiang, 
Panos Achlioptas, Niloy J. Mitra, and Leonidas J. Guibas. SIGGRAPH Asia 2020



Embedding Space for Deformations and Variations

𝐴𝐴 𝑣𝑣

+ =

Input Offset field Deformed

Encoding Latent Vector Space

Decoding



Synchronized Shape Edit/Deformation Spaces

Editing

Projection

Synchronized
Deformation Spaces



Transfer deformations across shapes without correspondences.

Learning and Exploiting Correlations in Deformations
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We aim to have a latent vector meaning the same thing everywhere: 
e.g., �⃑�𝑣 = 1, 0,⋯ , 0 Indicates “elongate legs”.

Consistency

�⃑�𝑣

�⃑�𝑣

�⃑�𝑣

�⃑�𝑣



We want to reach to the same destination, no matter which route we 
choose.

Path Invariance

�⃑�𝑣
𝑢𝑢 𝑢𝑢 + �⃑�𝑣 𝑢𝑢

�⃑�𝑣



The axes of autoencoder latent spaces are not typically associated with 
semantically meaningful shape changes.

Autoencoder Latent Space

�⃑�𝑣

�⃑�𝑣

OursAE



An affine latent action space satisfies the following property:

Additive action: x ∈ 𝑋𝑋, 𝑢𝑢, �⃗�𝑣 ∈ 𝑉𝑉, 𝑥𝑥 ⊕ 𝑢𝑢 ⊕ �⃗�𝑣 =
𝑥𝑥 ⊕ 𝑢𝑢 + �⃗�𝑣 .

A Latent Space for Deformations/Actions

�⃑�𝑣
𝑢𝑢 + �⃑�𝑣

𝑢𝑢
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An action defined with an antoencoder:

𝑥𝑥 ⊕ �⃗�𝑣 ≔ 𝒟𝒟(ℰ 𝑥𝑥 + �⃗�𝑣).

does not guarantee additivity and transitivity.
• A vector �⃗�𝑣 can act differently given the shape.
• Multiple vectors can be decoded to the same deformation.

Autoencoder



We predict the deformation dictionary for each shape using another 
dictionary prediction network ℱ ∈ ℝ3𝑛𝑛 → ℝ3𝑛𝑛×𝑘𝑘.

The deformation d(𝑥𝑥 → 𝑦𝑦) from shape 𝑥𝑥 to 𝑦𝑦 is computed as:

d 𝑥𝑥 → 𝑦𝑦 = ℱ(𝑥𝑥) 𝐸𝐸 𝑦𝑦 − 𝐸𝐸 𝑥𝑥 + 𝑥𝑥.

Another Solution



Neural Network

𝑥𝑥 ∈ ℝ3𝑛𝑛

ℱ

− +

ℰ

ℰ

=

𝑦𝑦 ∈ ℝ3𝑛𝑛

ℱ(𝑥𝑥) ∈ ℝ3𝑛𝑛×𝑘𝑘 ℰ(𝑥𝑥) ∈ ℝ𝑘𝑘

ℰ(𝑦𝑦) ∈ ℝ𝑘𝑘

𝑑𝑑(𝑥𝑥 → 𝑦𝑦) ∈ ℝ3𝑛𝑛𝑥𝑥

Source
shape

Target
shape

Deformed
source
shape

Point cloud

Network

Dictionary

Latent code



Path Invariance

Reinforce consistency by imposing path invariance. 

�⃗�𝑣𝑥𝑥→𝑦𝑦
�⃗�𝑣𝑥𝑥→𝑧𝑧

�⃗�𝑣𝑦𝑦→𝑧𝑧

𝑥𝑥

𝑦𝑦

𝑧𝑧

𝒗𝒗𝒙𝒙→𝒚𝒚 + 𝒗𝒗𝒚𝒚→𝒛𝒛 = 𝒗𝒗𝒙𝒙→𝒛𝒛



Consistency across the deformation dictionaries emerges during 
training.

Consistent Deformation Dictrionaries ℱ
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Deformation Dictionary

Translating seat along the up/down direction.
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Deformation Dictionary

Translating back along the front/back direction.
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Deformation Dictionary

Scaling back along the up/down direction.
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Deformation Dictionary

Scaling swivel leg.
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Deformation Dictionary

Scaling along the front/back direction.
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Deformation Dictionary

Translating shelf along the up/down direction.
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Deformation Dictionary

Translating top along the up/down direction.
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Projection & Deformation Transfer

Correspondence-Free
Deformation Transfer



Projection & Deformation Transfer

Correspondence-Free
Deformation Transfer



Projection & Deformation Transfer

Correspondence-Free
Deformation Transfer



• Each item in the dictionary indicates a linear motion for each point.
• We change our formulation to predict a circular motion per point.

Extension to Circular Motion

Shape2Motion Dataset (Wang et al., 2019)Linear Motion



Extension to Circular Motion

NOTE: Transitivity is not guaranteed — there can exist multiple
latent codes describing a specific deformation.



Discrete Shape Variations

86



87

Combinatorial or Discrete Variability



StructEdit

StructEdit: Learning Structural Shape Variations. Kaichun Mo, Paul Guerrero, Li Yi, Hao Su, Peter 
Wonka, Niloy Mitra, Leonidas J. Guibas. CVPR 2020.
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Recap: PartNet (CVPR 2019)
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Recap: StructureNet (Siggraph Asia 2019)
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Learn to Embed Local Shape Neighborhoods

Learn a Structural Shape-diff Space, which is

- Unified: learn one space that can be 
applied for any input shape

- Specialized: suggest different plausible 
shape-diff’s for different input shapes

- Coherent: suggest similar plausible shape-
diff’s for similar input shapes
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Learn Shape Structural Variations: StructEdit
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Shape Difference (Structure + Deformation)

input shape S shape change ΔS

bar bar

delete

add

modify
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Shape Hierarchy Differences
Shape A Shape B Shape Diff
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Network Architecture

hierarchica
l 

encoder

shape S

hierarchica
l

decoder

shape Sz

hierarchica
l 

encoder

input shape S

shape change ΔS

hierarchica
l

decoder

shape change ΔSz

StructureNet
(VAE)

StructEdit
(cVAE)
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Network Architecture

Two Types of Shape Neighborhood
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Experiment: Edit Generation



98

Experiment: Edit Transfer



DSG-Net

DSG-Net: Learning Disentangled Structure and Geometry for 3D Shape Generation. Jie Yang, Kaichun
Mo, Yu-Kun Lai, Leonidas J. Guibas, Lin Gao
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DSM-Net: Disentangled Tightly-Coupled Hierarchies

101
[Jie Yang, Kaichun Mo, Yu-Kun Lai, Leonidas J. Guibas, Lin Gao, 2020]
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Coupled Network Architecture: Double-VAEs
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Shape Generation
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Disentangled Shape Generation

Fix Shape Structure

Fix Shape Geometry
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Variation Generation

Learning to Vary
• Re-use what we already have
• Populate sparsely sampled 

regions

Varying to Learn
• Provide generation diversity
• Create training data tailored 

for hard concepts

Geometry,
Arrangement,
Appearance,
Motion

for Objects and 
Scenes
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Motivation

Photo taken from DeefSDF

Photo taken from Pixel2Mesh++

[1] DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. Park, et. al., CVPR 2019.
[2] Pixel2Mesh++: Multi-View 3D Mesh Generation via Deformation. Wen, et. al., ICCV 2019.



• Leverage on existing (discrete) artist generated models

• Create new models through (continuous) variations/deformations
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Motivation



• Leverage classical geometry techniques to define deformation.
• Preserves local geometric features
• In other words, ensures the quality of the output
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Deformation Models

• Cage-based deformation
• Neural Cages (CVPR 2020)

• Control point-based / 
biharmonic coordinates

• DeepMetaHandles (CVPR 2021)



Neural Cages for Detail-Preserving 
3D Deformations

Wang Yifan, Noam Aigerman, Vladimir Kim, Siddhartha Chaudhuri, Olga Sorkine-Hornung
(CVPR 2020)
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• Warp the source shape to match the general structure of the target 
while preserving surface details of the source

• Source shape is enclosed by a coarse control mesh  cage

• Neural network learns to optimize both the position of the cage 
around the source and the deformation of the cage to match the 
target

110

Key Idea



• Competing objectives
1. Alignment with the target
2. Quality: minimize distortion, preservation of geometric features

• Cage-based deformation enforces constraints to preserve local 
geometric features
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Deformation



112

Cage-based Deformation (CBD)

• CBD controls the warping of source 𝑆𝑆 by enclosing it with a coarse 
triangular mesh 𝐶𝐶 (cage), and warping this cage instead

• Any point 𝒑𝒑 in ambient space is encoded via a generalized barycentric 
coordinate: weight average of cage vertices:

• Weight functions           depend on the relative position of p wrt the 
cage vertices
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Cage-based Deformation (CBD)

• We then only deform the cage vertices and use the pre-computed 
weights 

• The deformation of any point in ambient space is then given by

• Use mean value coordinates (MVC) [1] to obtain weight functions            
: simple and differentiable 

[3] Tao Ju, Scott Schaefer, and Joe Warren. Mean value coordinates for closed triangular meshes. TOG 2004
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Learning cage-based deformation

• Train a network to predict both source and target cages

• Initial template cage is a 42-vertex sphere 𝐶𝐶0
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Learning cage-based deformation

• Both branches of encoder and decoder only predict the cage; they 
don’t rely on detailed geometric features of the input

• Network does not require high resolution
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Losses

• Cage loss: 
• Encourage positive MVC (weights of the cage)
• Negative weights occur when the source cage is highly concave, self-

overlapping or when points lie outside the cage

• Alignment loss:
• Chamfer distance / L2 distance or deformed source to target
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Losses

• Shape Loss
• Basically to ensure good quality of the output shape
• Modified Laplacian:

• PCA normals:

• Symmetry loss
• Total Shape loss:

• Total loss: 
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Experiments
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Experiments



DeepMetaHandles: Learning Deformation 
Meta-Handles of 3D Meshes with 

Biharmonic Coordinates

Minghua Liu,  Minhyuk Sung,  Radomir Mech,  Hao Su
(CVPR 2021)
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• Conditional generative model based on mesh deformation
• Able to generate variations of a shape without a specific target shape (as in 

Neural Cages)

• Deformations represented as a combination of given handles

121

Key Idea



• Bounded biharmonic weights

122

Control points / handles

[4] Alec Jacobson, et al. Bounded biharmonic weights for real-time deformation. TOG 2011
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Metahandles

• Given: 
• Mesh vertices:          
• Control points:
• Linear map:                     , pre-computed “biharmonic coordinates”

• Naive deformation:                                          ,

• A metahandle is represented as a set of offsets over the 𝑐𝑐 control points

• Deformation function is defined as a linear combination of metahandles

has 3c DoF!



• Predict set of metahandles and ranges

124

Network Architecture

c : num control points
m : num metahandles
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Network Architecture
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Experiments
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Experiments



Deformation-Aware Retrieval

M.Uy, J. Huang, M. Sung, T. Birdal, L. Guibas (ECCV 20)
M. Uy, V. Kim, M. Sung, N. Aigerman, S. Chaudhuri, L. Guibas (CVPR 21)
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Problem
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Not all shapes are ”deformable” to each other!
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Key Idea

Retrieve

Query Model Closest Model

Chamfer Distance:
4.45 × 10−2

Ours Retrieved

Retrieve

Chamfer Distance:
7.09 × 10−2 ↑

Ours Deformed

Deform

Chamfer Distance:
1.71 × 10−2 ↓
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Deformation-Aware Embedding

Query

Egocentric
Distance Fields

PointNet
Encoder

PointNet
Encoder

shared

MLPs

MLPs

MLPs

shared

𝑠𝑠 ∈ ℝ𝑛𝑛×3
𝑡𝑡 ∈ ℝ𝑛𝑛×3

ℱ(𝒕𝒕) ∈ ℝ𝑘𝑘

ℱ(𝒔𝒔) ∈ ℝ𝑘𝑘

𝒢𝒢(𝒔𝒔) ∈ 𝕊𝕊+𝑘𝑘

𝑒𝑒𝒟𝒟 𝐬𝐬, 𝐭𝐭 ~ (ℱ 𝐭𝐭 − ℱ 𝐬𝐬 )𝑇𝑇𝒢𝒢(𝐬𝐬)(ℱ 𝐭𝐭 − ℱ 𝐬𝐬 )

[M. Uy, J. Huang, M. Sung, T. Birdal, L. Guibas, ECCV 2020]
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Joint Learning – Retrieval-Aware Deformation

…
(54 parameters,
24 constraints)

(42 parameters,
18 constraints)

(42 parameters,
24 constraints)

(36 parameters,
27 constraints)

(60 parameters,
33 constraints)

Database with heterogeneous deformations

Our Joint Learning

Target

Static Retrieval Non-joint
Deform

Baselines
Deformation-

aware retrieval
Retrieval-aware

deformationJointly trained

/

[M. Uy, V. Kim, M. Sung, N. Aigerman, S. Chaudhuri L. Guibas, CVPR 2021]
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Joint Approach – Soft Retrieval

𝒫𝒫ℛ 𝐬𝐬, 𝐭𝐭 =
exp(− dℛ 𝐬𝐬, 𝐭𝐭

𝜎𝜎0
)

∑𝐬𝐬′ exp( dℛ 𝐬𝐬′, 𝐭𝐭 /𝜎𝜎0)

target

/ Deformation-
Aware Retrieval [5]

Heterogenous Database

…… …

Soft Retrieval 𝐏𝐏ℛ

𝑆𝑆𝐶𝐶 ~𝐏𝐏ℛ

ℛ

…,{ }

)
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Results

• Our joint approach on Neural Cages:

Ours w/ IDO + DOOurs NCDAR+ NC

Input Retrieved Deformed Retrieved Deformed Retrieved Deformed
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Results – autosegmented dataset

Input Retrieved Deformed Input Retrieved Deformed
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Applications
Product Images from Google search: Real Scans:

Input Retrieved Deformed Input Retrieved Deformed Input Retrieved Deformed Input Retrieved Deformed



That’s All
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