CAD-DEFORM: DEFORMABLE FITTING OF CAD MODELS TO 3D SCANS

Vladislav Ishimtsev* Skolkovo Institute of Science and Technology Russia

Alexey Artemov Skolkovo Institute of Science and Technology Russia

Matthias Niessner Technical University of Munich, Germany Alexey Bokhovkin* Skolkovo Institute of Science and Technology Russia

Savva Ignatyev Skolkovo Institute of Science and Technology Russia

Denis Zorin New York University, USA Skolkovo Institute of Science and Technology Russia

1

Evgeny Burnaev Skolkovo Institute of Science and Technology Russia

CS348N JC Kretsch 2022-02-28

The task: point cloud \rightarrow set of meshes

Past work: Scan2CAD (ScanNet+ShapeNet)

CAD-Deform

Dataset - Scan2CAD (ScanNet+ShapeNet) +PartNet

Deformation: Optimize energy

Input:

$$\mathcal{E}(\mathbf{V}, \mathbf{P}) = \underbrace{E_{\text{shape}} + \alpha_{\text{smooth}} E_{\text{smooth}} + \alpha_{\text{sharp}} E_{\text{sharp}}}_{\text{quadratic problem}} + \alpha_{\text{data}} E_{\text{data}},$$

$$E_{\text{shape}} = \underbrace{\sum_{e \in \mathbf{E}} \|T_e(\mathbf{V}) - T_e^0\|_2^2}_{\text{deviation}}, \quad E_{\text{smooth}} = \sum_{f \in \mathbf{F}} \sum_{e_i, e_j \in f} \|T_{e_i}(\mathbf{V}) - T_{e_j}(\mathbf{V})\|_2^2;$$

$$E_{\text{sharp}} = \sum_{k=1}^{n_p} \sum_{e_s \in \mathbf{E}_{\text{sharp}}^k} \|T_{e_s}(\mathbf{V}) - T_{e_{s+1}}(\mathbf{V})\|_2^2; \quad E_{\text{data}} = f_{\text{data}}(\mathbf{V}, \mathbf{P}).$$

How to compare vertices and points?

If start close to target, can use a priori correspondences:

When far from target use screened attraction:

$$f_{\text{data}}^{\text{nn}}(\mathbf{V}, \mathbf{P}) = \sum_{c \in \mathbf{C}} \sum_{p \in \mathbf{P}_c} \|p - v_{\iota^c(p)}\|_2^2.$$

$$f_{\text{data}}^{\text{p2p}}(\mathbf{V}, \mathbf{P}) = \sum_{c \in \mathbf{C}} \sum_{v \in \mathbf{V}_c} \sum_{p \in \mathbf{P}_c} \xi^{\sigma}(p, \mathbf{V}_c) \left(d^{\varepsilon}(v-p) \right)^2,$$

Results: deformations improve fit while maintaining shape

Results: deformations fit well independent of alignment input

		Class avg.			Instance avg.			
Method	GT	S2C [9]	E2E [10]	GT	S2C [9]	E2E [10]		
# TPs	1410	499	882	1410	499	882		
TP undeformed	89.2	83.7	88.5	90.6	79.4	93.9		
Ours: NN only	89.7	84.3	89.0	91.4	84.7	94.4		
Ours: p2p only	90.3	88.3	89.4	91.6	90.3	94.9		
Ours: w/o smooth	90.6	90.0	89.6	92.3	90.3	95.0		
Ours: w/o sharp	90.3	86.9	90.6	92.3	89.4	95.2		
CAD-Deform	91.7	89.8	90.3	93.1	92.8	94.6		

Table 1: Comparative evaluation of our deformations to true positive (TP) alignments by non-deformable approaches in terms of Accuracy (%). Note that deformations improve performance for all considered alignment approaches.

Method	bookshelf	cabinet	chair	display	table	trashbin	other	class avg.	avg.
# instances	142	162	322	86	332	169	197	201.4	1410
Ground-truth	88.0	75.2	94.8	98.9	89.6	96.6	81.4	89.2	90.6
Ours	90.5	82.2	95.4	99.1	91.0	98.6	84.8	91.7	93.1

Table 2: Comparative evaluation of our approach to non-deformable ground-truth and baselines in terms of scan approximation Accuracy (%). We conclude that our deformations improve fitting accuracy across all object classes by 2.5% on average.

Results: produces higher quality surfaces

Results: produces higher quality surfaces

Results: balances fit-to-scan and perceptual quality

Conclusions

- Goal: mesh representations of real world scene from 3D scans
- Balance accuracy and high-perceptual quality
- Propose adding a deformation to Scan2CAD
- Deformation minimizes a composite energy function:
 - Uses semantic part structures
 - Enforces smooth transformations
 - Preserves sharp geometric features
 - Minimizes difference to point cloud
- First step in improving accuracy while preserving perceptual quality through deformation

Extra slides

Results: attempts shape interpolation

Results: attempts at various level of segmented objects

Accuracy, %	class avg.	avg.
Ground-truth	89.22	90.56
Level 1 (object)	89.25	90.79
Level 2	89.16	91.21
Level 3	89.40	91.05
Level 4 (parts)	91.65	93.12

Optimization of non-linear part

The data term is highly nonlinear, but solving the complete optimization problem can be done efficiently using A_{quad}^{-1} as the preconditioner. For our problem, we use the preconditioned L-BFGS optimizer summarized in Algorithm 1.

Algorithm 1: Preconditioned L-BFGS mesh optimization (PL-BFGS)

$$\begin{split} M_{\rm precond} &= A_{\rm quad}^{-1} \ // \ {\rm stored} \ {\rm as} \ {\rm LU} \ {\rm decomposition} \\ \overline{\mathbf{V}} &= T_m^0(\overline{\mathbf{V}}^0) \\ {\rm for} \ i \leftarrow 0 \ {\rm to} \ N_{iter} \ {\rm do} \\ & \left| \begin{array}{c} g_{\rm tot} &= \alpha_{\rm data} {}^{\rm dE_{\rm data}} / {\rm d}p + A_{\rm quad} \overline{\mathbf{V}} + b \\ \overline{\mathbf{V}} &= {\rm L}\text{-BFGS-step}(\overline{\mathbf{V}}, g_{\rm tot}, M_{\rm precond}) \\ \end{split} \right. \end{split}$$

end