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The task: point cloud — set of meshes
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Past work: Scan2CAD (ScanNet+ShapeNet)
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Dataset - Scan2CAD (ScanNet+ShapeNet) +PartNet
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Deformation: Optimize energy
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How to compare vertices and points?
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Results: deformations improve fit while maintaining shape

Scan mesh  Aligned CAD (GT) ARAP Harmonic CAD-Deform (Ours)




Results: deformations fit well independent of alignment input

Class avg. Instance avg.
Method GT S2C[9] E2E[10] GT S2C[9] E2E [10]
# TPs 1410 499 882 1410 499 882
TP undeformed 89.2 83.7 88.5 90.6 79.4 93.9
Ours: NN only 89.7 84.3 89.0 914 84.7 944
Ours: p2p only 90.3 88.3 89.4 91.6 90.3 94.9
Ours: w/o smooth  90.6 90.0 89.6 92.3 90.3 95.0
Ours: w/o sharp 90.3 86.9 90.6 92.3 89.4 95.2
CAD-Deform 91.7 89.8 90.3 93.1 92.8 94.6

Table 1: Comparative evaluation of our deformations to true positive (TP) alignments by non-deformable approaches in
terms of Accuracy (%). Note that deformations improve performance for all considered alignment approaches.

Method bookshelf cabinet chair display table trashbin other classavg. avg.
# instances 142 162 322 86 332 169 197 201.4 1410
Ground-truth 88.0 75.2 94.8 98.9 89.6 96.6 81.4 89.2 90.6
Ours 90.5 82.2 95.4 99.1 91.0 98.6 84.8 91.7 93.1

Table 2: Comparative evaluation of our approach to non-deformable ground-truth and baselines in terms of scan
approximation Accuracy (%). We conclude that our deformations improve fitting accuracy across all object classes
by 2.5 % on average.



Results: produces higher quality surfaces

Orig. mesh i CAD-Deform




Results: produces higher quality surfaces
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Results: balances fit-to-scan and perceptual quality

wo w\o part-to-part
sharp features smoothness only
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Conclusions

- Goal: mesh representations of real world scene from 3D scans
- Balance accuracy and high-perceptual quality
- Propose adding a deformation to Scan2CAD

- Deformation minimizes a composite energy function:
- Uses semantic part structures
- Enforces smooth transformations
- Preserves sharp geometric features
- Minimizes difference to point cloud

- First step in improving accuracy while preserving perceptual quality through
deformation
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Extra slides
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Results: attempts shape interpolation

Orig. mesh
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Results: attempts at various level of segmented objects

Accuracy, % class avg. avg.
Ground-truth 89.22 90.56
Level 1 (object) 89.25 90.79
Level 2 89.16  91.21
Level 3 89.40  91.05

Level 4 (parts) 91.65 93.12




Optimization of non-linear part

The data term is highly nonlinear, but solving the complete optimization problem can be done efficiently using A;_lld
as the preconditioner. For our problem, we use the preconditioned L-BFGS optimizer summarized in Algorithm 1.

Algorithm 1: Preconditioned L-BFGS mesh optimization (PL-BFGS)

Mprecond = A‘Lid // stored as LU decomposition

V=15V
for i < 0 to N, do
Gt = ﬂduludEd"“’/dP + J"‘lquudv +b
V = L-BFGS-step(V, gio1, Mirecond)
end
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