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Highlights
Despite their initial successes, it is be-
coming apparent that modern deep
learning (DL) models are hindered by an
important bottleneck: the need for large
quantities of annotated data to train the
models.

Synthetic data provide a solution to this
challenge. They are easy to generate,
error-free, inexhaustible, pre-annotated,
and avoid many ethical and practical
concerns.

The past decade has experienced un-
precedented progress in data synthesis
and domain adaptation techniques that
Deep learning (DL) is being successfully applied across multiple domains, yet
thesemodels learn in amost artificial way: they require large quantities of labeled
data to grasp even simple concepts. Thus, themain bottleneck is often access to
supervised data. Here, we highlight a trend in a potential solution to this chal-
lenge: synthetic data. Synthetic data are becoming accessible due to progress
in rendering pipelines, generative adversarial models, and fusion models.
Moreover, advancements in domain adaptation techniques help close the statis-
tical gap between synthetic and real data. Paradoxically, this artificial solution is
also likely to enable more natural learning, as seen in biological systems, includ-
ing continual, multimodal, and embodied learning. Complementary to this, simu-
lators and deep neural networks (DNNs) will also have a critical role in providing
insight into the cognitive and neural functioning of biological systems. We also
review the strengths of, and opportunities and novel challenges associated
with, synthetic data.
close the (statistical) gap between syn-
thetic and real data.

Beyond sustaining the DL revolution,
synthetic data will enable a next genera-
tion of DL models that understand the
physical composition of the world and
learn continually, multimodally, and
interactively.

Integrated synthesis and learning pipe-
lines can support life-long structured
learning that is more similar to biological
learning systems.
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The bottleneck is labeled data
The past decade has experienced a revolution in interest and investment in DL that has enabled
successful applications in visual perception, natural language processing, and robotic control,
among others [1]. The success of DL benefited from converging trends in the development of al-
gorithms to train these models (e.g., backpropagation), the availability of ‘big data’ (e.g., social
media), and advances in computational power [e.g., powerful graphical processing units
(GPUs)]. However, despite these initial successes, it is becoming apparent that the current gen-
eration of DNNs has important practical and theoretical limitations. DNNs are sample inefficient in
that they require large amounts of annotated data (e.g., images of vehicles with bounding boxes)
to optimize all their parameters (typically in the order of millions). Therefore, rather than algorithm
or computational capability, the availability of annotated data is often the main bottleneck in the
development of DL models. Synthetic data (see Glossary) and simulators have emerged as
a promising solution to this challenge [2]. Synthetic data are comparatively easier to generate, in-
exhaustible, pre-annotated, and less expensive. Synthetic data also have the potential to avoid
ethical (e.g., privacy concerns) and practical issues (e.g., security concerns). They further intro-
duce unique opportunities in that they enable training data that may be impractical or impossible
to collect in the real world.

More fundamentally, DNNs still lack important capabilities seen in biological systems. Humans
can learn rich representations of the world, including its (hierarchical) compositional and physical
nature [3,4]. Humans are more efficient learners, often being able to grasp novel concepts from a
small sample of examples [5] and in a mostly unsupervised fashion [6]. Moreover, human learning
is sophisticated, often relying on rich interactive experiences, in contrast to static data sets, which
capture ‘moments in time’ (e.g., ImageNet). Synthetic data and simulators are a new catalyst for
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these richer representations of the world and more sophisticated forms of learning, including
multimodal learning [7] (e.g., fusing visual and audio information), continual learning [8]
(e.g., understanding gradually more complex tasks in sequence), and embodied learning [9]
(e.g., interactive exploratory play to understand object affordances). Complementary to this, sim-
ulators can be used to gather unique insight into biological systems [10,11]. By comparing how
well different artificial neural models simulate cognitive functionality and predict brain activity, it be-
comes possible to test, validate, and extend existent theory [12–14]. Insofar as simulated data
enable the training and testing DNNs, they therefore have an instrumental role in the study of bi-
ological systems. Simulated data further present novel opportunities for scientific exploration. By
analyzing the properties of DNNs, it is possible to synthesize optimized stimuli to activate specific
neural populations with relevant application to the study of brain function [13]. Simulated environ-
ments, perhaps even fully immersive (e.g., virtual reality), can further provide a unique opportunity
for direct comparisons of behavior and neural activation in DNNs versus humans versus nonhu-
man primates in embodied interactive tasks. Therefore, synthetic data can further the develop-
ment of artificial neural networks (ANNs) that model critical functions seen in biological
systems, simultaneously contributing to our understanding of these systems and offering solu-
tions with broad practical relevance.

Here, we provide an overview of successful methodologies used to synthesize data for DL
models, emphasizing the integration of the synthesis and machine learning pipelines. Next,
we focus on a central challenge to using simulated data: aligning synthetic data to real data
at both the pixel and feature level. We then articulate how synthetic data and simulators can
enable DL solutions that can learn richer representations of the world and in more sophisti-
cated ways, while simultaneously providing insight into the biological systems they draw
inspiration from.

Synthesizing data and integrating with the deep learning pipeline
Progress in computer graphics tools, such as game engines (e.g., Unity and Unreal), and the in-
creasing availability of 3D assets, are making it easier to develop simulators for custom domains
(Figure 1A). This approach has been used to synthesize training data for a variety of tasks, includ-
ing object detection [15–17], object tracking [18,19], viewpoint estimation [20], semantic seg-
mentation [21–23], robot manipulation and control [24–28], pose estimation [29–31], gaze
estimation [32], and activity recognition [33,34] (for a detailed review of simulators and synthetic
data sets, see [35]). Across these diverse domains, synthetic data have often improved DNN per-
formance when tested in real domains, especially when combined with real data. In this ap-
proach, synthesis relies on a computer graphics-rendering pipeline, which takes as input
3D information about the scene (e.g., points in 3D space specifying a vehicle), information
about the materials and lighting properties (e.g., vehicle color and light sources), and rendering
parameters (e.g., rasterization or raytracing algorithm), and produces a 3D visualization of the
scene (Figure 1D). Since the pipeline has information about the scene details, it can automatically
generate error-free ground-truth (e.g., bounding boxes for objects of interest, depth information,
and scene segmentation masks). By increasing the amount of 3D information (e.g., the number of
3D vertices specifying the objects of interest) and the sophistication of the algorithms used to ren-
der the scene, it is possible to increase the visual realism of the output (i.e., the visual fidelity of the
scene compared with the real world). Similarly, it is possible to increase the motion realism of the
output by using 3D motion capture techniques (e.g., for human activity recognition) and sophis-
ticated physics engines (e.g., for robot manipulation). In general, increasing the realism of the syn-
thesized output tends to improve DL performance [20,36–39], although, in some cases, it is less
important [17,40–43]. However, achieving high levels of realism (e.g., as seen in movies) can be
costly. One alternative approach is to generate synthetic data and then improve realism by using
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Glossary
Computer graphics-rendering
pipeline: sequence of algorithms that
produces a 3D visualization in screen
space from parameters that describe
the scene, such as object 3D and
material information, lighting and camera
properties, and rendering parameters.
Continual learning: process of learn-
ing a sequence of tasks without forget-
ting about how to perform earlier tasks in
the sequence.
Domain adaptation: techniques that
seek to align the statistical properties
across domains (e.g., synthetic and
real), so that DL models training in one
domain can be deployed in another.
Domain randomization: techniques
to create a data set that is diverse and
broadly representative of a target
domain, for the purpose of increasing
the robustness and generalizability of a
DL model.
Domain shift: change in the domain
distribution that occurs when a DL
model is trained with data from one
domain (e.g., synthetic) and tested on
another (e.g., real).
Embodied learning: process of learn-
ing from multimodal information
obtained through interactive exploration
of the environment.
Hybrid models: DL models trained
with a mix of real and synthetic data.
Inverse rendering: process of auto-
matically retrieving, from 2D imagery,
scene attributes, such as 3D object
information, lighting properties, and
camera parameters.
Latent space disentanglement:
technique that seeks to learn a lower
dimension representation (e.g., letter
category, rotation, and color) of a high-
dimension space (e.g., images of letters)
to support classification and generation
in the lower dimension space.
Multimodal learning: process of
learning knowledge from time-locked
synchronized information from multiple
sensors, such as audio, visual, and
haptic input.
Neural rendering: controlled rendering
of 3D realistic imagery using DL models.
In contrast to traditional rendering
pipelines, neural rendering pipelines are
differentiable and can acquire 3D and
physics knowledge from 2D training data.
Simulators: software that is able to
generate, often in real time, data and
ground-truth annotation from metadata
for DL models, such as 3D imagery of a
scene and segmentation masks.
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domain adaptation techniques, as discussed in the next section. Another alternative is to use
generative adversarial models.

Generative adversarial networks (GANs) are a promising technique to synthesize novel images
that match the statistical properties of the training data (Figure 1B) [44] (for a recent survey see
[45]); for instance, GANs can generate faces of people that do not exist from a training set of
existing human faces [46]. GANs comprise two models trained to optimize opposite objectives
(i.e., adversarial): a generator and a discriminator (Figure 1E). The generator learns a lower-
dimension latent representation of the training data domain and can generate new samples by
receiving as input a random vector in the latent space. The discriminator, in turn, learns to distin-
guish original images from synthesized images. By training the generator and discriminator simul-
taneously, the generator learns to synthesize better samples to fool the discriminator. GANs are
becoming increasingly popular due to the high visual quality of synthesized imagery [46–49], par-
ticularly when compared with other generative approaches, such as variational autoencoders
[45]. However, in its original formulation, it is hard to control the output produced by GANs, al-
though this remains an area of active research. A promising trend involves conditioning GANs
on additional input that characterizes the samples being fed in training (e.g., labels specifying
the gender of human faces) [50]. This idea has been extended to allow sophisticated control in
the generation of images [46,51] (e.g., pose and hairstyle of human faces). One challenge with
using GANs is that the synthesized imagery is not produced with the associated ground truth
data, as is done for graphics pipelines. However, good progress is being made extending
GANs to produce imagery that already comeswith detailed annotation, such as images of scenes
with automatically generated scene segmentation ground truths [52]. Another recent trend has
been to train big generative models (e.g., with billions of parameters and terabytes of data) [53],
including language [54] and multimodal models [55], that can subsequently be reused to synthe-
size novel content and be integrated with other pipelines to solve domain-specific tasks.

A third approach for synthesizing data comprises creating imagery by fusing from multiple data
sources (Figure 1C). This is often accomplished by superimposing virtual objects [15,56,57] or
people [58,59] on real backgrounds while ensuring that the virtual entities fit consistently with
the background (e.g., by aligning surfaces and lighting). Extending this approach to fusing real en-
tities on real backgrounds brings the extra challenge of cropping the real entities from the original
backgrounds. Although this could be done manually, GAN-based methods have shown promise
in automatically finding the cropping region (i.e., the semantic mask) with minimal annotation
(e.g., bounding boxes) [60,61]. By combining segmentation with domain adaptation techniques,
it is further possible to replace in place one type of entity for another (e.g., a bicycle for a motor-
cycle) while preserving the rest of the image [62,63].

Finally, we see much promise in integrating the synthesis and learning pipelines. There is a long
history of integrating simulators with the learning process in deep reinforcement learning, where
it is often impractical or impossible to train in the real world [64,65]. Reinforcement learning agents
learn an action policy (e.g., grasping objects or playing a game) by practicing (millions of times) in
simulators [66,67]. The key distinction is the integration of the learning process with the simulator,
rather than relying on a static data set of simulated data for training. This powerful idea can be ex-
tended to support more sophisticated forms of learning, such as continuous (lifelong) learning
and embodied (interactive) learning, which we discuss further below. The concept can be applied
to supervised learning by using error signals, such as a task classification loss, to optimize data
synthesis generation [68] (Figure 1F). When using graphics-rendering pipelines, one challenge
is to propagate the error signal through the nondifferentiable functions implemented in traditional
pipelines. An emerging field, called neural rendering, aims to build differentiable rendering
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Synthetic data: data used to train and
test DL models that are created by arti-
ficial means, such as by rendering pipe-
lines, GANs, and fusion models.
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pipelines and is showing fast progress in generating controllable visually realistic rendering [69,70]
(reviewed in [71]). Thus, the integration of DL and differentiable rendering pipelines has the poten-
tial to support the generation of customized curricula for more sample-efficient learning.

Closing the gap between synthetic and real data
Despite their success in achieving state-of-the-art performance in several visual recognition
tasks, neural networks suffer from domain shift (i.e., the performance of neural networks
drops significantly when the test distribution is different from the training distribution, such as
when training on synthetic data and testing on real data). To close this gap, several techniques
have been developed to enhance the value of synthetic data. Domain randomization com-
prises varying the parameters used to generate the synthetic data so that the data set broadly
captures the distribution in the target domain [16,28]. By training on such a diverse data set,
the hope is that themodel will be more robust to variation in the target domain and generalize bet-
ter to novel samples. In some cases, this idea was even pushed to create nonphotorealistic ver-
sions of the data (e.g., vehicles with random textures) to encourage the model to learn better
representations of the target concepts (e.g., features that capture the shape, rather than texture,
of vehicles) [17]. Mixing real and synthetic data (hybrid models) has also often led, in practice, to
a boost in performance compared with training only on one type [34]. The idea is that mixing data
allows different data types to strengthen training, where others may have weaknesses
(e.g., synthetic data tend to be more diverse, but real data may capture low-level details better).

An increasingly prominent technique is domain adaptation, which involves aligning the synthetic
data pixel and feature distribution to the real data (Figure 2). Pixel-level adaptation comprises
transferring the style, or visual appearance properties, of the target to the source domain. Ap-
proaches based on adversarial generative models are showing increasing success in creating re-
alistic versions of the synthetic data, even without the need for any supervision (i.e., no labels are
necessary) [32,72–75]. Recent promising techniques preserve semantic consistency when trans-
lating from source to target through cycle consistency (i.e., the translation needs to learn to go
from source to target and back) [73], patch consistency (i.e., image patches in the source and tar-
get domain should reflect the same content) [74], and leveraging intermediate representations
from an integrated computer graphics pipeline (e.g., depth and color masks) [75].

Whereas the goal in pixel alignment is to adjust the visual style of the source domain, in feature-
level adaptation the distributional distance between source and target feature spaces is mini-
mized, while simultaneously training a task network (e.g., segmentation model). Visual realism,
in this case, is not the main concern, because the focus is on optimization for task performance.
This problem is often presented as unsupervised domain adaptation, with labeled synthetic
source data being available, but without labels for the target real data. Several feature alignment
approaches have been explored, including through minimization of some distance between
source and target distributions [76,77], weight sharing, and discriminators to encourage the net-
work to learn domain invariant representations [78,79], projecting the distanceminimization prob-
lem to pixel space to increase the network capacity and preserve semantic content [80], adapting
while accounting for cross-domain label imbalances [81], and learning disentangled internal rep-
resentations that abstract away irrelevant transformations in the target domain [82]. Often, the
best results have been achieved by combining pixel and feature alignment approaches [83].

Enabling the next generation of deep learning
Drawing from cognitive psychology and neuroscience [14], there are several desirable functional
and architectural requirements for DNNs. Approaching human-level intelligence likely requires
grasping key concepts related to the physical world and its composition [3,14,84], as well as
4 Trends in Cognitive Sciences, Month 2021, Vol. xx, No. xx
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Figure 2. Domain adaptation at the pixel- and feature-level seeks to close the gap due to visual style and
feature distribution shift when moving from synthetic to real data. In unsupervised domain adaptation, the source
domain (synthetic data) is labeled (top row), whereas the target domain (real data) is unlabeled (bottom row). The goal is to
close the domain gap by aligning the pixel style of the source to the target domain (i.e., close the visual shift) and learn an em-
bedded representation that is invariant to the domains, while optimizing for a certain downstream task (i.e., close the feature
shift).
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the ability to learn continually, interactively, and multimodally [9,85]. Here, we emphasize the cen-
tral role of synthetic data and simulators in enabling this next generation of DL and, complemen-
tarily, in providing insight into biological systems (Figure 3).

Deep learning for scientific exploration
There is a long history of drawing from artificial intelligence to further theory in cognitive psychol-
ogy and neuroscience [10,14]. However, DNNs are gaining increasing attention as models of
cognitive and neural function due to their ability to learn complex behavior from low-level sensory
input, such as image pixels [11]. Some recent successes include predicting behavior and neural
activity in perception [86,87] andmemory [88] systems. The benchmarking of different DNNswith
respect to howwell they predict brain activity allows scientists to test current theory and formulate
novel hypotheses about cognitive and neural functioning in biological systems [12]. Given that
simulators can systematically recreate environmental conditions to test different learning pro-
cesses and dynamics in DNNs, they are a key enabling technology to the study of biological sys-
tems (Figure 3A). Progress in techniques to ‘open up’ DNNs and gather insight into the
representations embedded in the hidden layers [89] also introduces the opportunity to retrieve
novel post hoc explanations for the functions modeled in DNNs. Here too, synthetic data can
be useful to generate stimuli that target portions of the neural networks to study its function
Figure 1. Data synthesis approaches and integration with the machine learning pipeline. Data can be synthesized using (A) computer graphics rendering
pipelines, (B) generative adversarial models, and (C) fusion models. (D) The traditional computer graphics pipeline receives as input 3D information about the scene and
renders, through stages, a visualization of the scene in screen space. (E) Generative adversarial networks rely on a generator and discriminator network learning
simultaneously on competing objectives, which leads the former to improve the quality of the synthesized imagery. (F) Integrating the synthesis and deep learning
pipelines enables more sophisticated learning, such as embodied continuous learning.
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and formulate explanations. For instance, synthetic data have been used to generate optimal
stimuli to activate neural subpopulations in primate cortical regions [13]. Synthetic data and sim-
ulators also support sophisticated comparisons of artificial and biological systems. The use of
synthetic materials to study biological systems has a long tradition in cognitive psychology, neu-
roscience, and artificial intelligence [3,90]. However, the increasing sophistication and realism of
current approaches, as reviewed above, afford novel possibilities. For instance, fully immersive
environments (e.g., virtual reality) could support direct comparisons of behavior and neural activa-
tion in DNNs versus humans versus nonhuman primates in embodied interactive tasks. Here, we
review how synthetic data and simulators can help gain insight andmodel key cognitive functions.

Physics
At a very young age, humans have a basic understanding of the physical world, such as notions of
what constitutes an object and expectations about how they interact with the environment [3,84].
This knowledge enables mental models about the composition of the world and predictions
about what may happen next [14]. Thus, endowing DL models with this type of knowledge
would support more sophisticated learning and inference. Recent work attempts to teach neural
networks about physics on the fly (Figure 3B, top). One approach is to train the network with
representative examples of the physical domain (e.g., collapsing block towers) and to rely on
standard learning algorithms to implicitly learn physical knowledge [91]. Another involves devel-
oping specialized architectures that learn physical laws governing the domain (e.g., ball trajecto-
ries) [92]. In either case, simulators with an appropriate physics engine are often used to generate
the training data [91,92]. It has been argued that human intuitive physics relies on a mental sim-
ulator tomake predictions about the world [4]. In this paradigm, a physics simulator can be explic-
itly used to make relevant predictions and the challenge is then transformed into perceiving the
environment (e.g., constructing a scene graph representation through inverse rendering [93])
and feeding that information to the simulator (Figure 3A, bottom). Finally, researchers have also
begun embedding physical priors into the learning process (e.g., loss objectives that reflect per-
tinent physical constraints) to improve transfer from synthetic to real domains [94] and to synthe-
size more realistic 3D models from 2D imagery [71].

Compositionality
One way to address the complexity of modeling complex synthetic environments is through
compositionality. Scenes in the world are decomposable into stable entities, animate (e.g., peo-
ple or animals) or inanimate (e.g., vehicles or furniture), that we can generically call objects. Such
decomposition is useful because objects recur in scenes in many different arrangements, but
maintain their appearance, properties, and functionality. Similarly, objects themselves comprise
parts that have a simpler structure and are often shared across related semantic categories
(e.g., chairs, tables, and beds can all have legs). There is a long history in computer vision [95]
and computer graphics (e.g., scene graphs) demonstrating the utility of exploiting
compositionality in both analysis and synthesis tasks, both static and dynamic. Compositional
representations are typically hierarchical groupings, based on many possible criteria, including
spatial proximity, symmetry, causality, functionality, and others [96,97], related to principles stud-
ied in Gestalt psychology. In synthesis settings, such hierarchies provide natural scaffolds for
editing operations, allowing convenient manipulation respecting the semantics of the object or
scene, and facilitating the generation of multiple variations.
physically realistic predictions. (C) They can also be used to teach latent disentangled representations that capture the structure and shape of objects. (D) Simulated audio,
visual, and haptic data provide redundancy and complementary that lead to more generalizable internal representations. (E) Simulators are ideal for generating a sequence
of tasks, which are neither too narrow nor too disjoint to support continual learning without forgetting prior tasks. (F) Open-ended interactive exploration in simulators can
enable the kind of embodied learning seen in biological systems.
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Themachine learning era has created the need for annotated compositional data. In the 3D object
domain, data sets that provide fine-grained part decompositions have begun to emerge, in which
objects are mapped into manually curated hierarchies [98]. Hierarchical neural nets, as well as
hierarchical convolutional graph networks, have been used in the synthetic generation of objects
and scenes, incorporating joint structure and geometry synthesis [99–101]. Scenes naturally ex-
hibit more compositional variability than do objects, becausemany of their constituent entities are
mobile or movable. In that setting, probabilistic formulations make sense, supporting rule statis-
tics for a generative probabilistic scene grammar to be learned from data [69] and grammar pro-
ductions themselves to be inferred [102]. Many variations are possible and a recent survey of
generative 3Dmodels for objects and scenes is available [103]. As with all generative approaches,
defining appropriate losses for assessing the quality of the generated compositions remains a
challenge. Generative compositional models can be conditioned on partial scans, images, or
even language. Ideally, one looks for low-dimensional parametrizations of compositional variabil-
ity with disentangled parameters. Composition often reflects function, and structuredmodels can
be useful in simulators, with either real or qualitative physics. It has also been suggested that
compositionality will be a key attribute in building machines that think more like humans [3].

Multimodal learning
Humans experience and learn about the world through multiple senses, including vision, hearing,
and touch [9]. The ability of multiple sensory neural structures to participate in the same function
[104] enables redundancy and self-supervision in learning. Redundancy pertains to the ability to
learn to perform a task using different modalities (e.g., vision or touch to grasp an object). Self-
supervision pertains to the ability of different sensory systems to educate each other about per-
forming a task (e.g., visual-haptic feedback to reach for an object inside a transparent container).
In DL systems, it is also possible to use redundant and complementary information from multiple
data sources to learn more robust and generalizable concept representations [105]. This is
perhaps best exemplified by models that integrate audio and visual information, which often
co-occur in nature, and learn correspondences that enable predictions on visual tasks from
audio information [7] and vice versa [106]. Recently, haptic information was further shown to be
useful for learning features that are pertinent to visual recognition tasks [107]. Given its relevance
to building robust robotics and autonomous systems, there has also been considerable interest
in merging RGB camera information with complementary sensors, such as depth, light detection
and ranging (LiDAR), and infrared [108]. However, multimodal sensor data often require alignment
or registration, both nontrivial tasks. Synthetic data generation can mostly alleviate the need for
data alignment because data generation is under our control. This motivated the simulation of
various sensor modalities, often by enhancing rendering pipelines with specialized physics en-
gines [109,110]. A recent promising trend is to develop open-ended simulators that support mul-
timodal training (e.g., physically realistic audiovisual data), as well as explorative incremental
learning [111] (more on this in the ‘Embodied learning’ subsection).

Continual learning
Humans and animals are remarkably apt at adapting to a changing environment and learning
continuously [8,112]. Replicating this capability in DL models would support learning of a poten-
tially infinite series of tasks (e.g., detection of a growing number of categories). Therefore, re-
searchers have explored several mechanisms to support this type of learning, often taking
inspiration from biological systems. One approach prevents older tasks from being forgotten
by protecting the weights relevant to those tasks [113], similarly to synaptic plasticity mechanisms
in biological brains. Another approach integratesmemory systems to support replay and episodic
memory of relevant prior information [114]. Yet another approach replicates modularity in the
brain, often achieved through interactive expansion of the network parameters while
Trends in Cognitive Sciences, Month 2021, Vol. xx, No. xx 9
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Outstanding questions
How do we generate realistic complex
scenes using generative adversarial
models? How do we control and
condition generation? How do we
automatically generate labeled data?

How do we build fully differentiable
graphics rendering and animation
pipelines, and through these enable
structured learning? How can synthetic
data generation be integrated into
machine learning training pipelines to
provide content finely tailored to the
learner's needs?

How can synthetic data and simulators
enable continual, multimodal, interactive,
embodied learning as seen in human
and nonhuman primate systems? How
can simulators teach DNNs about the
physical world and its composition?

What are the relative strengths and
weaknesses of graphics-rendering pipe-
lines, generative adversarial models, and
fusion models?Whereas much progress
has been made in each of these synthe-
sis methods, systematic comparisons of
themethods in termsofmachine learning
performance are still mostly missing.

How dowe close the domain gap, at the
pixel and feature levels, between
synthetic and real data? How can we
learn disentangled domain-independent
internal representations?What is the rela-
tive importance of image-space align-
ment versus feature-space alignment
between synthetic and real data? Are
there fundamental limitations with syn-
thetic data?

How do we know that a model is
learning naturally (i.e., like a biological
system)? How do we optimize data
synthesis to match natural distribu-
tions, both in terms of content and
order? How can simulators be used
to benchmark the performance of
DNNs compared with humans and
nonhuman primates?

Will people trust DNNs that were
trained with synthetic data? How
can we build trust in them? Are there
any fundamental differences between
synthetic and real data? How do we
interpret and explain what a synthetic
DNN learnt and how it makes decisions?
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simultaneously trying to meet sparsity constraints [115]. A common challenge to these methods
is the need to have a representative set of tasks, which is neither too narrow nor disjoint, to train
continual learning algorithms. Due to the difficulty of collecting these training sets from the real
world, researchers have often resorted to simulated tasks, such as the Atari game suite [66]
and robot manipulation tasks [116], to train these algorithms. A natural extension is the develop-
ment of simulated open-ended environments [85,111] that would not only enable lifelong, but
also structured [117], continual learning. A practical consideration in this setting is designing com-
putationally efficient data generation given the extended training timelines [118].

Embodied learning
Exploration is essential for human learning. Babies acquire foundational knowledge about the
compositionality and the affordances of the physical world through free play with objects in
their environments [3,84]. This interactive engagement leads to rich time-locked correlated visual,
haptic, and auditory feedback that contributes to the formation of general internal representations
of concepts. The idea that aspects of human intelligence are grounded and emerge from embod-
ied interaction with the world has been associated with not only learning basic concepts
(e.g., intuitive physics [91]) but also sophisticated symbolic systems (e.g., language [119]). Con-
sequently, researchers noted that, in contrast to training from static data sets that capture mo-
ments in time, interactive explorative learning could lead DL systems to acquire more robust
and generalizable representations of objects, actions, and functions [120,121]. This paradigm
shift calls for data sets that, rather than capturing the world from a third-person perspective, rep-
resent first-person experiences. Whereas data sets have started emerging to support embodied
learning [122,123], collecting this type of data is particularly labor intensive [124]. Accordingly, re-
searchers have started developing open-ended physically realistic simulated environments that
provide multimodal feedback [85,111].

The notion of embodied learning implies, at a fundamental level, knowledge about the 3D prop-
erties of the world. For instance, to understand how to interact with a novel object, it is necessary
to understand its 3D affordances [120]. Whereas this information is readily available in simulators,
there is also research in inverse rendering that tries to retrieve this information directly from 2D im-
agery [93,125,126]. However, reconstructing 3D shapes requires training data with multiple
views of the target object or scene, which are seldom available in practice. Nevertheless, in prom-
ising recent work, researchers attempted to automatically retrieve, or disentangle, implicit 3D in-
formation from the latent space in GANs [127]. Therefore, simulators, inverse rendering, and
latent space disentanglement techniques establish a comprehensive foundation to enabling
embodied learning in DL models.

Concluding remarks
The next generation of DNNs will be able to learn rich models of the world in a continual, multi-
modal, and embodied fashion, matching cognitive capabilities seen only in biological systems.
Simulators and synthetic data will have a central role in this transformation. The current generation
of DL models is limited by access to high-quality training data. This challenge will only be exacer-
bated due to increased scrutiny of data privacy and security practices. Current research shows
that synthetic data can be successfully leveraged to train DL models, especially when used in
conjunction with domain adaptation techniques that align, statistically at the pixel and feature
levels, synthetic and real data. This trend is bound to become more pervasive because it is be-
coming easier to synthesize realistic data due to impressive advancements in computer graphics
rendering pipelines, generative adversarial models, and fusion models. However, beyond meet-
ing current demands for data, synthetic data will meet novel demands. Open-ended interactive
multimodal simulation will shift the training paradigm from static data sets usually from a third-
10 Trends in Cognitive Sciences, Month 2021, Vol. xx, No. xx
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person perspective to first-person embodied experience data sets, which are difficult to collect in
the real world. Integration of the synthesis and learning pipelines will support continuous life-long
structured learning more similarly to how humans learn and, thus, are likely to produce richer, ro-
bust, and generalizable knowledge about the world. Therefore, the paradox of using synthetic
data to model natural forms of learning may, in practice, be no paradox at all.

Nevertheless, several open issues remain with respect to synthesizing data that are optimal for DL
models (see Outstanding questions). From a modeling perspective, it is essential to assess how
similar the learning and decision process in DNNs are compared with biological systems. Perfor-
mance on existent data sets may provide insight into the predictive ability of the model, but the
explanation for the prediction can be obscure. Progress in techniques to dissect and visualize
the internal representations of DNNs [89] will likely have an essential role in retrieving these expla-
nations. Furthermore, synthetic data can be systematically created (e.g., with increasing levels of
complexity) precisely to study how internal representations are built. Synthetic data are also ideal
for exploration [10], not only allowing the creation of stimuli to study brain and behavior [86,87],
but also to create stimuli (e.g., virtual environments) for sophisticated interactive comparison of
behavioral outcome and neural activation of artificial versus biological systems. From a practical
perspective, before deploying DNNs in the real world, one needs to provide assurance that sys-
tems built using synthetic data will perform close to systems that were built using data collected
by real sensors. Such assurances will require theoretically sound metrics for synthetic data quality
that go beyond subjective impressions (e.g., ‘looks good’) and performance on benchmark data
sets. Considerable investment has been made developing simulators for mainstream domains
(e.g., driving), yet another practical difficulty is that there are still no sophisticated simulators for
other, perhaps more complex, domains (e.g., social interaction). Nevertheless, good progress
is being made in furthering these types of simulation (e.g., cognitive models of emotion and social
expression [128]), as well as using simulated environments to facilitate the collection of data for
these domains (e.g., virtual environments to study social interaction [90]). However, a more fun-
damental challenge may be whether people will trust and adopt systems trained exclusively, or
mostly, with synthetic data (e.g., would people trust a self-driving car that was trained on simula-
tors?). Therefore, it is important to understand the differences, in terms of not only performance,
but also representation in feature space between models trained with synthetic versus real data.
Here too, visualization and dissection techniques [89] will likely have a crucial role in explaining
how synthetic networks work and help build trust. Nevertheless, despite these challenges, syn-
thetic data introduce a unique opportunity that is worth exploring to enable a new generation of
DL models that are not limited by available data, but by our imagination alone.
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