PIE-NET: Parametric Inference of Point Cloud Edges

2/6/2022 Connor Lin

Published at NeurIPS 2020

PIE-NET: Parametric Inference of Point Cloud Edges

¹State Key Laboratory of Virtual Reality Technology and Systems, Beihang University ²Simon Fraser University ³National University of Defense Technology ⁴Google Research ⁵Tsinghua University

Xiaogang Wang^{1,2} **Yuelang Xu**^{2,5} **Kai Xu**³ **Andrea Tagliasacchi**⁴ **Bin Zhou¹** Ali Mahdavi-Amiri² Hao Zhang²

Edge Detection for 2D Images

Well-studied problem, existing tools and methods produce reasonable results

But what about edge detection for 3D data?

Edge Detection for 3D Point Clouds

- Input
 - 3D Point Cloud collection of xyz points {(xi, yi, zi)}
- Output
 - Edges, represented as parametric curves (lines, circles, B-splines)

Input point cloud

Related Work

- Edge Feature Detection
 - Analyze local geometric properties (e.g. normals, curvatures)
 - Reconstruct Moving Least Squares (MLS) surface from point cloud

$$S = \{(x_i, f_i)|f(x_i)\}$$

$$\sum_{i\in I}(p(x_i)-f_i)^2 heta(\|$$

Extract feature curves from reconstructed MLS

es (e.g. normals, curvatures) es (MLS) surface from point cloud

Х

Related Work

- **Edge Feature Detection**
 - Point cloud segmentation network on local geometric features
 - EC-Net [Yu et al. 2018]
 - Point classification + predict per-point distance to edge
 - Edge points = points with zero distance to edge

Overall Approach

Point Classification

- PointNet++ Classification Networks
 - Predict probability of corner and probability of edge
 - Predict offset vector to corner or edge

$$\mathcal{L}_{\rm corner} = \mathcal{L}_{\rm cls}(T_c,$$

Perform post-processing clustering to clean up predictions

 $\mathcal{L}_{edge} = \mathcal{L}_{cls}(T_e, \hat{T}_e) + \hat{T}_e \cdot \lambda_e \mathcal{L}_{reg}(D_e, \hat{D}_e),$ $(\hat{T}_c) + \hat{T}_c \cdot \lambda_c \mathcal{L}_{\text{reg}}(D_c, \hat{D}_c),$

Curve Proposal

- Generate all pairs of corner points
- Sample edge points in between each pair of corner points
- For each corner pair, predict:
 - Segmentation whether each point belongs to the curve or not
 - Curve Type line, circle, or B-spline
 - Curve Parameters parameterization for the curve type

Curve Proposal

• Training Losses

$$\mathcal{L}_{\text{proposal}} = w_{\text{m}} \mathcal{L}_{\text{mask}}(M_p, \hat{M}_p)$$

$$\mathcal{L}_{\text{para}} = \hat{T}_{\text{circle}} \cdot \mathcal{L}_{\text{circle}}(\beta) + \hat{T}_{\text{line}} \cdot \mathcal{L}_{\text{line}}(\beta) + \hat{T}_{\text{spline}} \cdot \mathcal{L}_{\text{spline}}(\beta),$$

$(f_p) + w_{\rm c} \mathcal{L}_{\rm cls}(T_p, \hat{T}_p) + w_{\rm p} \mathcal{L}_{\rm para}(\beta),$

Dataset and Metrics

• ABC Dataset — large collection of 3D CAD models

- Edge Classification
 - Precision & Recall measure of true positives
 - IoU intersection / union of two sets
- Geometric Accuracy of Edges
 - Edge Chamfer Distance

Quantitative Results

		VCM			EAR		EC-Net	PIE-NET
	$\mid au{=}0.12$	$\tau{=}0.17$	$\tau{=}0.22$	$\tau = 0.03$	$\tau{=}0.035$	$\tau = 0.04$		
ECD↓	0.0321	0.0430	0.0569	0.0679	0.0696	0.0864	0.0360	0.0088
IOU ↑	0.2841	0.2854	0.2855	0.3404	0.3250	0.2844	0.3561	0.6223
Precision ↑	0.3063	0.3244	0.3456	0.5560	0.4149	0.6523	0.4872	0.6918
Recall ↑	0.8385	0.7644	0.6937	0.4820	0.5910	0.3578	0.5736	0.8584

- - Classical non-learning methods
- EC-Net [Yu et al. 2018]
 - Neural network approach

Voronoi Covariance Measure (VCM) and Edge Aware Resampling (EAR)

Qualitative Results

Qualitative Results (unseen shapes)

- setting is still relatively new
- Proposes a new learning-based method that outperforms previous works
 - Requires less domain-specific knowledge to analyze geometric features

• Future work — consider other approaches of identifying salient edge features, such as using attention and transformers

Edge detection on 2D images is a well studied problem, but the 3D point cloud