
Instant Neural Graphics Primitives with
a Multiresolution Hash Encoding

NeRF

‣ smaller MLPs
KiloNeRF: break up space into 163 or 323
voxels, each with its own set of (small) MLP
weights

‣ direct voxel lookups
Plenoxels: 512^3 voxel grid with density and spherical harmonics

‣ Acorn: adaptive feature-grid with a lightweight MLP to decode

Instant Neural Graphics Primitives with a
Multiresolution Hash Encoding

The approach

1. For a given input coordinate x, we find the surrounding voxels at L resolution levels and assign indices to their corners by
hashing their integer coordinates

2. For all resulting corner indices, we look up the corresponding F-dimensional feature vectors from the hash tables
3. Linearly interpolate them according to the relative position of x within the respective l-th voxel.
4. Concatenate + auxiliary inputs (the encoded view, etc.)
5. MLP

The approach

1. For a given input coordinate x, we find the surrounding voxels at L resolution levels and assign indices to their corners by
hashing their integer coordinates

2. For all resulting corner indices, we look up the corresponding F-dimensional feature vectors from the hash tables
3. Linearly interpolate them according to the relative position of x within the respective l-th voxel.
4. Concatenate + auxiliary inputs (the encoded view, etc.)
5. MLP

The approach

1. For a given input coordinate x, we find the surrounding voxels at L resolution levels and assign indices to their corners by
hashing their integer coordinates

2. For all resulting corner indices, we look up the corresponding F-dimensional feature vectors from the hash tables
3. Linearly interpolate them according to the relative position of x within the respective l-th voxel.
4. Concatenate + auxiliary inputs (the encoded view, etc.)
5. MLP

The approach

1. For a given input coordinate x, we find the surrounding voxels at L resolution levels and assign indices to their corners by
hashing their integer coordinates

2. For all resulting corner indices, we look up the corresponding F-dimensional feature vectors from the hash tables
3. Linearly interpolate them according to the relative position of x within the respective l-th voxel.
4. Concatenate + auxiliary inputs (the encoded view, etc.)
5. MLP

The approach

1. For a given input coordinate x, we find the surrounding voxels at L resolution levels and assign indices to their corners by
hashing their integer coordinates

2. For all resulting corner indices, we look up the corresponding F-dimensional feature vectors from the hash tables
3. Linearly interpolate them according to the relative position of x within the respective l-th voxel.
4. Concatenate + auxiliary inputs (the encoded view, etc.)
5. MLP

The approach

1. For a given input coordinate x, we find the surrounding voxels at L resolution levels and assign indices to their corners by
hashing their integer coordinates

2. For all resulting corner indices, we look up the corresponding F-dimensional feature vectors from the hash tables
3. Linearly interpolate them according to the relative position of x within the respective l-th voxel.
4. Concatenate + auxiliary inputs (the encoded view, etc.)
5. MLP

Experiment results - reconstruction quality

Experiment results

test error over training time for varying hash table size T

Test error over training time for fixed values of feature dimensionality F

Experiment results - runtime

Where does the speedup come from?

• factor of 10 from tiny-cuda-cnn - optimised CUDA kernels

• factor of 10~100 from smaller MLP due to better encoding
• Combine many hash maps with cells of different resolutions

Ref: http://graphics.stanford.edu/courses/cs348n-22-winter/LectureSlides/FinalSlides/leo_class_nerf_2022.pdf

Hash Collision

• When the same feature vector is used for multiple spatial locations, you average
gradients over all of them.

• When only a small fraction of those locations have interesting things going on (e.g. not empty
space), then that feature vector will mostly be used to represent the interesting stuff going on
there, since gradients from that location will be largest.

Summary
• multiresolution hash encoding

+

• Very small MLP (2-3 layers x 64

channels) decodes the trilinearly

interpolated hash map features

+

• optimized CUDA kernels

	Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
	NeRF
	Slide Number 3
	Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
	The approach
	The approach
	The approach
	The approach
	The approach
	The approach
	Experiment results - reconstruction quality
	Experiment results
	Slide Number 13
	Experiment results - runtime
	Where does the speedup come from?
	Slide Number 16
	Hash Collision
	Summary

