Multimodal Shape Completion via Conditional Generative Adversarial Networks

Paper by Wu et al. (2020) Presented by Yongsoo Park

The task of shape completion (a naive approach)

Loss

Motivation

Given a partial point cloud, generate a unique multiple completed point clouds and train without paired dataset

Multimodal completion

Train an auto-encoder with complete point clouds

Can encode partial point clouds with the pre-trained auto-encoder

This won't complete the partial point clouds

We want a generator (G) that can generate latent code for complete point cloud ($\hat{\mathbf{x}}_c$) given the latent code of a partial point cloud (\mathbf{x}_p)

And we want this generator to generate various shapes rather than a unique shape aka. multimodal aka. conditional

How do we train such a generator? \rightarrow GAN

 $\mathcal{L}_{F}^{\text{GAN}} = \mathbb{E}_{\mathbf{C} \sim p(\mathbf{C})} [F(E_{\text{AE}}(\mathbf{C})) - 1]^{2} + \mathbb{E}_{\mathbf{P} \sim p(\mathbf{P}), \mathbf{z} \sim p(\mathbf{z})} [F(G(E_{\text{AE}}(\mathbf{P}), \mathbf{z}))]^{2}$ $\mathcal{L}_{G}^{\text{GAN}} = \mathbb{E}_{\mathbf{P} \sim p(\mathbf{P}), \mathbf{z} \sim p(\mathbf{z})} [F(G(E_{\text{AE}}(\mathbf{P}), \mathbf{z})) - 1]^{2},$

To encourage the generator to use the conditional mode vector **z**

 $\mathcal{L}_{G,E_z}^{\text{latent}} = \mathbb{E}_{\mathbf{P} \sim p(\mathbf{P}), \mathbf{z} \sim p(\mathbf{z})} [\|\mathbf{z}, E_z(D_{\text{AE}}(G(E_{\text{AE}}(\mathbf{P}), \mathbf{z})))\|_1],$

Total loss

$$\operatorname{argmin}_{(G,E_z)} \operatorname{argmax}_{F} \mathcal{L}_{F}^{\text{GAN}} + \mathcal{L}_{G}^{\text{GAN}} + \alpha \mathcal{L}_{G}^{\text{recon}} + \beta \mathcal{L}_{G,E_z}^{\text{latent}},$$

Qualitative results

Fig. 3. Our multimodal shape completion results. We show result examples, where the input partial shape is colored in grey and is followed by five different completions in yellow. From top to bottom: PartNet (rows 1-3), PartNet-Scan (rows 4-6), and 3D-EPN (rows 7-9).

PartNet: Leave out part(s)

PartNet-Scan: Leave out part(s)
+ incomplete scan

3D-EPN: Arbitrary incompleteness

Qualitative results

Encode a reference shape to get the latent code **z** and use it to complete the partial input

Fig. 4. Shape completion guided by reference shapes. The completion result varies accordingly when the reference shape changes.

Comparing with baselines

Baselines

- pcl2pcl: Also uses GAN & unpaired dataset but NO conditional (multimodal) generation
- KNN-latent: Encode \rightarrow Latent code \rightarrow Search for KNN latent codes \rightarrow Decode
- Ours-im-l2z: Simultaneously train E_Z by feeding $\mathbf{\hat{x}}_c$ into E_Z
- Ours-im-pc2z: Simultaneously train E_Z by feeding $\hat{\mathcal{C}}$ into E_Z

Evaluation metric: Minimum Matching Distance (MMD)

Meaning

Measures the quality of the completed samples (w.r.t the test set) \rightarrow The lower the better

How it's calculated

Essentially one-way CD or EMD

Evaluation metric: Total Mutual Difference (TMD)

Meaning

Measures the diversity of the completed samples \rightarrow The higher the better

How it's calculated

1. Partial input \rightarrow Generate **k** completed samples

2. For each completed sample, calculate the Chamfer Distance to the other $\pmb{k} - \pmb{1}$ samples and get the mean

3. Sum **k** of these

Evaluation metric: Unidirectional Hausdorff Distance (UHD)

Meaning

Measures the fidelity of the completed samples (w.r.t the partial inputs) \rightarrow Lower the better

How it's calculated

Calculate the average unidirectional HD from a partial input to **k** completed samples

PartNet	MMD	(lower	is bet	ter)	TMD	(higher	is be	tter)	UHD	(lower	is bet	ter)
Method	Chair	Lamp	Table	Avg.	Chair	Lamp	Table	e Avg.	Chair	Lamp	Table	e Avg.
pcl2pcl	1.90	2.50	1.90	2.10	0.00	0.00	0.00	0.00	4.88	4.64	4.78	4.77
KNN-latent	1.39	1.72	1.30	1.47	2.28	4.18	2.36	2.94	8.58	8.47	7.61	8.22
Ours-im-12z	1.74	2.36	1.68	1.93	3.74	2.68	3.59	3.34	8.41	6.37	7.21	7.33
Ours-im-pc2z	1.90	2.55	1.54	2.00	1.01	0.56	0.51	0.69	6.65	5.40	5.38	5.81
Ours	1.52	1.97	1.46	1.65	2.75	3.31	3.30	3.12	6.89	5.72	5.56	6.06
PartNet-Scan	MMD	(lower	is bet	ter)	TMD	(higher	is bet	ter)	UHD	(lower	is bet	ter)
Method	Chair	Lamp	Table	Avg.	Chair	Lamp	Table	Avg.	Chair	Lamp	Table	Avg.
pcl2pcl	1.96	2.36	2.09	2.14	0.00	0.00	0.00	0.00	5.20	5.34	4.73	5.09
KNN-latent	1.40	1.80	1.39	1.53	3.09	4.47	2.85	3.47	8.79	8.41	7.50	8.23
Ours-im-12z	1.79	2.58	1.92	2.10	3.85	3.18	4.75	3.93	7.88	6.39	7.40	7.22
Ours-im-pc2z	1.65	2.75	1.84	2.08	1.91	0.50	1.86	1.42	7.50	5.36	5.68	6.18
Ours	1.53	2.15	1.58	1.75	2.91	4.16	3.88	3.65	6.93	5.74	6.24	6.30
3D-EPN	MMD	(lower	is bet	ter)	TMD	(higher	is bet	tter)	UHD	(lower	is bet	ter)
Method	Chair	Plane	Table	Avg.	Chair	Plane	Table	Avg.	Chair	Plane	Table	Avg.
pcl2pcl	1.81	1.01	3.12	1.98	0.00	0.00	0.00	0.00	5.31	9.71	9.03	8.02
KNN-latent	1.45	0.93	2.25	1.54	2.24	1.13	3.25	2.21	8.94	9.54	12.70	10.40
Ours-im-12z	1.91	0.86	2.78	1.80	3.84	2.17	4.27	3.43	9.53	10.60	9.36	9.83
Ours-im-pc2z	1.61	0.91	3.19	1.90	1.51	0.82	1.67	1.33	8.18	9.55	8.50	8.74
Ours	1.61	0.82	2.57	1.67	2.56	2.03	4.49	3.03	8.33	9.59	9.03	8.98

Rank #2

Rank #2

Rank #2

Fig. 6. Comparisons using metrics combinations. Our results present high diversity, quality and fidelity in comparisons using combinations of metrics. *Relative* performance is plotted, and pcl2plc is excluded as it fails to present completion diversity.

More experiments

Effect of input incompleteness

Summary

Novelty

- Used conditional GAN to for multimodal shape completion.
- Found that jointly training E_z tend to produce worse results.
- Can complete into a shape we want to simulate + more missing part \rightarrow more diversity.

Shortcomings (common issues)

- Not producing samples with fine-scale details.
- Canonical orientation.

Backup slides

Perhaps KNN-latent

more diverse on this one?

