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The task of shape completion (a naive approach)
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Motivation

Given a partial point cloud, generate a unique multiple completed point clouds

and train without paired dataset
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Network architecture
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Network architecture
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Network architecture
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Train an auto-encoder with complete point clouds



Network architecture
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Can encode partial point clouds with the pre-trained auto-encoder



Network architecture
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This won’t complete the partial point clouds



Network architecture

9

𝐸!"𝒫

𝒞 𝐸!"

𝕏#

𝕏$

𝐺 𝐷!"
#𝒞𝐱# '𝐱$

We want a generator (𝐺) that can generate latent code for complete point cloud ("𝐱!) 
given the latent code of a partial point cloud (𝐱")



Network architecture
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And we want this generator to generate various shapes rather than a unique shape
aka. multimodal aka. conditional
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Network architecture
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How do we train such a generator? à GAN

𝐳

𝐹
ℒ&!'𝐱$

Real or fake



Network architecture
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To encourage the generator to use the conditional mode vector z

𝐳

𝐹
ℒ&!'𝐱$

Real or fake

𝐸%
)𝐳ℒ()*+,*

Pre-train an AE
that maps C to
standard normal



Network architecture
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To encourage the generator to partially reconstruct a partial input



Total loss
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Qualitative results
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§ PartNet: Leave out part(s)

§ PartNet-Scan: Leave out part(s) 
+ incomplete scan

§ 3D-EPN: Arbitrary incompleteness



Qualitative results
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Encode a reference shape to get the latent code z and use it to complete the partial input



Comparing with baselines

Baselines

§ pcl2pcl: Also uses GAN & unpaired dataset but NO conditional (multimodal) generation

§ KNN-latent: Encode à Latent code à Search for KNN latent codes à Decode

§ Ours-im-l2z: Simultaneously train 𝐸% by feeding '𝐱$ into 𝐸%
§ Ours-im-pc2z: Simultaneously train 𝐸% by feeding *𝒞 into 𝐸%
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Jointly train



Quantitative comparisons

Evaluation metric: Minimum Matching Distance (MMD)

Meaning

Measures the quality of the completed samples (w.r.t the test set) à The lower the better

How it’s calculated

Essentially one-way CD or EMD
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Quantitative comparisons

Evaluation metric: Total Mutual Difference (TMD)

Meaning

Measures the diversity of the completed samples à The higher the better

How it’s calculated

1. Partial input à Generate k completed samples

2. For each completed sample, calculate the Chamfer Distance to the other k – 1 samples 
and get the mean

3. Sum k of these
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Quantitative comparisons

Evaluation metric: Unidirectional Hausdorff Distance (UHD)

Meaning

Measures the fidelity of the completed samples (w.r.t the partial inputs) à Lower the better

How it’s calculated

Calculate the average unidirectional HD from a partial input to k completed samples
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Quantitative comparisons
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Quantitative comparisons
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More experiments

Effect of input incompleteness
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More missing parts à More diverse



Summary

Novelty

§ Used conditional GAN to for multimodal shape completion.

§ Found that jointly training 𝐸/ tend to produce worse results.

§ Can complete into a shape we want to simulate + more missing part à more diversity.

Shortcomings (common issues)

§ Not producing samples with fine-scale details.

§ Canonical orientation.
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Backup slides
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Qualitative comparisons
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Mode
collapse?



Qualitative comparisons
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Perhaps KNN-latent

more diverse on this one?

Mode
collapse?



Qualitative comparisons
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