Diffusion Probabilistic Models for 3D Point Cloud Generation

Authors: Shitong Luo, Wei Hu Presented by Ayush Agarwal

Problem Setting

Point Cloud Generation:

• Previous works use adversarial loss which is hard to optimize, are not permutationally invariant (e.g. autoregressive models), have limitations to generate a fixed number of points, or have an invertibility requirement

Paper Contributions

- Novel point cloud generative model motivated by Markov diffusion process in thermodynamics
 - reduces the learning objective to learning the Markov diffusion kernel in a simple functional form
- Mathematical formulation of tractable learning objective maximizing a variational lower bound on the likelihood of point clouds conditioned on shape latents
- Strong quantitative and qualitative results on point cloud generation, autoencoding, and unsupervised representation learning

Formulation of Diffusion Probabilistic Model

Variational Training Objective

$$\begin{split} \mathbb{E}\big[\log p_{\boldsymbol{\theta}}(\boldsymbol{X}^{(0)})\big] &\geq \mathbb{E}_{q}\Big[\log \frac{p_{\boldsymbol{\theta}}(\boldsymbol{X}^{(0:T)}, \boldsymbol{z})}{q(\boldsymbol{X}^{(1:T)}, \boldsymbol{z} | \boldsymbol{X}^{(0)})}\Big] \\ &= \mathbb{E}_{q}\Big[\log p(\boldsymbol{X}^{(T)}) \\ &+ \sum_{t=1}^{T} \log \frac{p_{\boldsymbol{\theta}}(\boldsymbol{X}^{(t-1)} | \boldsymbol{X}^{(t)}, \boldsymbol{z}}{q(\boldsymbol{X}^{(t)} | \boldsymbol{X}^{(t-1)})} \\ &- \log \frac{q_{\boldsymbol{\varphi}}(\boldsymbol{z} | \boldsymbol{X}^{(0)})}{p(\boldsymbol{z})}\Big]. \end{split}$$

Algorithm 1 Training (Simplified)

1: repeat

- 2: Sample $\boldsymbol{X}^{(0)} \sim q_{\text{data}}(\boldsymbol{X}^{(0)})$ 3: Sample $\boldsymbol{z} \sim q_{\boldsymbol{\varphi}}(\boldsymbol{z} | \boldsymbol{X}^{(0)})$
- 4: Sample $t \sim \text{Uniform}(\{1, \dots, T\})$
- 5: Sample $\boldsymbol{x}_1^{(t)}, \ldots, \boldsymbol{x}_N^{(t)} \sim q(\boldsymbol{x}^{(t)} | \boldsymbol{x}^{(0)})$
- 6: $L_t \leftarrow \sum_{i=1}^N D_{\mathrm{KL}} \left(q(\boldsymbol{x}_i^{(t-1)} | \boldsymbol{x}_i^{(t)}, \boldsymbol{x}_i^{(0)}) \| p_{\boldsymbol{\theta}}(\boldsymbol{x}_i^{(t-1)} | \boldsymbol{x}_i^{(t)}, \boldsymbol{z}) \right)$
- 7: $L_{\boldsymbol{z}} \leftarrow D_{\mathrm{KL}}(q_{\boldsymbol{\varphi}}(\boldsymbol{z}|\boldsymbol{X}^{(0)}) \| p(\boldsymbol{z}))$
- 8: Compute $\nabla_{\theta}(L_t + \frac{1}{T}L_z)$. Then perform gradient descent.

9: until converged

$$\begin{split} \varphi) &= \mathbb{E}_{q} \bigg[\sum_{t=2}^{T} \sum_{i=1}^{N} D_{\mathrm{KL}} \big(\underbrace{q(\boldsymbol{x}_{i}^{(t-1)} | \boldsymbol{x}_{i}^{(t)}, \boldsymbol{x}_{i}^{(0)})}_{(\underline{\mathbf{J}})} \\ & \underbrace{p_{\boldsymbol{\theta}}(\boldsymbol{x}_{i}^{(t-1)} | \boldsymbol{x}_{i}^{(t)}, \boldsymbol{z}))}_{(\underline{\mathbf{J}})} \\ & - \sum_{i=1}^{N} \underbrace{\log p_{\boldsymbol{\theta}}(\boldsymbol{x}_{i}^{(0)} | \boldsymbol{x}_{i}^{(1)}, \boldsymbol{z})}_{(\underline{\mathbf{J}})}_{(\underline{\mathbf{J}})} \\ & + D_{\mathrm{KL}} \big(\underbrace{q_{\boldsymbol{\varphi}}(\boldsymbol{z} | \boldsymbol{X}^{(0)})}_{(\underline{\mathbf{J}})} \| \underbrace{p(\boldsymbol{z})}_{(\underline{\mathbf{J}})} \big) \bigg]. \end{split}$$

 $L(\boldsymbol{\theta},$

Model Implementation

$$p(\boldsymbol{z}) = p_{\boldsymbol{w}}(\boldsymbol{w}) \cdot \left| \det \frac{\partial F_{\boldsymbol{\alpha}}}{\partial \boldsymbol{w}} \right|^{-1}$$
 where $\boldsymbol{w} = F_{\boldsymbol{\alpha}}^{-1}(\boldsymbol{z}).$

Point Cloud Generation Loss:

$$\begin{split} L_G(\boldsymbol{\theta}, \boldsymbol{\varphi}, \boldsymbol{\alpha}) &= \mathbb{E}_q \Big[\sum_{t=2}^T \sum_{i=1}^N D_{\mathrm{KL}} \big(q(\boldsymbol{x}_i^{(t-1)} | \boldsymbol{x}_i^{(t)}, \boldsymbol{x}_i^{(0)}) \| \\ & p_{\boldsymbol{\theta}}(\boldsymbol{x}_i^{(t-1)} | \boldsymbol{x}_i^{(t)}, \boldsymbol{z}) \big) \\ &- \sum_{i=1}^N \log p_{\boldsymbol{\theta}}(\boldsymbol{x}_i^{(0)} | \boldsymbol{x}_i^{(1)}, \boldsymbol{z}) \\ &+ D_{\mathrm{KL}} \Big(q_{\boldsymbol{\varphi}}(\boldsymbol{z} | \boldsymbol{X}^{(0)}) \Big\| p_{\boldsymbol{w}}(\boldsymbol{w}) \cdot \Big| \det \frac{\partial F_{\boldsymbol{\alpha}}}{\partial \boldsymbol{w}} \Big|^{-1} \Big) \Big]. \end{split}$$

Autoencoding Loss:

$$\begin{split} L(\boldsymbol{\theta}, \boldsymbol{\varphi}) &= \mathbb{E}_{q} \Big[\sum_{t=2}^{T} \sum_{i=1}^{N} D_{\mathrm{KL}} \big(q(\boldsymbol{x}_{i}^{(t-1)} | \boldsymbol{x}_{i}^{(t)}, \boldsymbol{x}_{i}^{(0)}) \| \\ & p_{\boldsymbol{\theta}} \big(\boldsymbol{x}_{i}^{(t-1)} | \boldsymbol{x}_{i}^{(t)}, E_{\boldsymbol{\varphi}}(\boldsymbol{X}^{(0)}) \big) \big) \\ & - \sum_{i=1}^{N} \log p_{\boldsymbol{\theta}} \big(\boldsymbol{x}_{i}^{(0)} | \boldsymbol{x}_{i}^{(1)}, E_{\boldsymbol{\varphi}}(\boldsymbol{X}^{(0)}) \big) \Big]. \end{split}$$

Encoders use PointNet architecture for both point cloud generation and autoencoding

Point Cloud Generation Results

		MMD (↓)		COV (%, ↑)		1-NNA (%, ↓)		JSD (↓)
Shape	Model	CD	EMD	CD	EMD	CD	EMD	-
Airplane .	PC-GAN [1]	3.819	1.810	42.17	13.84	77.59	98.52	6.188
	GCN-GAN [22]	4.713	1.650	39.04	18.62	89.13	98.60	6.669
	TreeGAN [19]	4.323	1.953	39.37	8.40	83.86	99.67	15.646
	PointFlow [25]	3.688	1.090	44.98	44.65	66.39	69.36	1.536
	ShapeGF [2]	3.306	1.027	50.41	47.12	61.94	70.51	1.059
	Ours	3.276	1.061	48.71	45.47	64.83	75.12	1.067
	Train	3.917	1.003	51.73	54.04	48.85	50.82	0.809
Chair	PC-GAN [1]	13.436	3.104	46.23	22.14	69.67	100.00	6.649
	GCN-GAN [22]	15.354	2.213	39.84	35.09	77.86	95.80	21.708
	TreeGAN [19]	14.936	3.613	38.02	6.77	74.92	100.00	13.282
	PointFlow [25]	13.631	1.856	41.86	43.38	66.13	68.40	12.474
	ShapeGF [2]	13.175	1.785	48.53	46.71	56.17	62.69	5.996
	Ours	12.276	1.784	48.94	47.52	60.11	69.06	7.797
	Train	13.954	1.756	53.29	54.90	49.14	48.28	3.602

Autoencoding Results

Dataset	Metric	Atlas (S1)	Altas (P25)	PointFlow	ShapeGF	Ours Oracle
Airplane	CD	2.000	1.795	2.420	2.102	2.118 1.016
	EMD	4.311	4.366	3.311	3.508	2.876 2.141
Car	CD	6.906	6.503	5.828	5.468	5.493 3.917
	EMD	5.617	5.408	4.390	4.489	3.937 3.246
Chair	CD	5.479	4.980	6.795	5.146	5.677 3.221
	EMD	5.550	5.282	5.008	4.784	4.153 3.281
ShapeNet	CD	5.873	5.420	7.550	5.725	5.252 3.074
	EMD	5.457	5.599	5.172	5.049	3.783 3.112

Unsupervised Representation Learning Results

Model	ModelNet10	ModelNet40
AtlasNet [10]	91.9	86.6
PC-GAN (CD) [1]	95.4	84.5
PC-GAN (EMD) [1]	95.4	84.0
PointFlow [25]	93.7	86.8
ShapeGF [2]	90.2	84.6
Ours	94.2	87.6

Paper Takeaways

Strengths:

- Intuitive method as Markov diffusion process
- Permutationally invariant
- Can sample as few/many points as needed
- Matches SOTA performance

Weaknesses/Future Improvements:

- Doesn't improve much on SOTA performance
- Need to go through T steps of reverse diffusion in order to sample a point cloud