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Introduction

• The Problem: 

• learn shape modeling / synthesis in a structure-aware manner


• work hierarchically with semantic shape parts


• Vanilla VAE Shortcomings: 

• Latent spaces of the VAEs correspond to complete shapes


• entangled latent factors corresponding to different semantic parts


• difficult to do part-level shape manipulation


• single part replacement


• part interpolation


• part-level shape synthesis.



Introduction

• Proposed Approach 


• Auto-encoder-based pipeline 


• Produces a factorized latent space 


• Factorization reflects the semantic part structure of the shapes


• Compactly encodes geometry


• Different part encodings lie in separate linear subspaces


• Shape composition by summing up part embedding coordinates


• uses data to learn the factorization


• Operates on unlabeled input shapes


• infers the shape’s semantic structure 


• compactly encodes its geometry





Introduction

• Network Overview 

• The Decomposer 


• input occupancy grid -> factorized latent space


• The Composer 


• set of part-embedding coordinates -> semantically and geometrically plausible shape w/ part labels


• 3D Spatial Transformer Network (STN)  

• Learns and applies part transformations in-network to create coherent hierarchical shape


• Cycle consistency constraint 


• to learn part-based shape manipulation


• part replacement


• part interpolation


• shape synthesis



Main Contributions

• Novel Latent Space Factorization 

• Enables shape structure manipulation using linear operations directly in the 
learned latent space


• In-network 3D STN 

• The application of a 3D STN to perform in-network affine shape 
deformation, used in end-to-end training


• Cycle Consistency Loss  

• Improves shape synthesis and reconstruction quality





Decomposer Network

• Unlabeled shapes -> factorized embedding space


• Hierarchical structure


• Has to satisfy two properties


• 1) Factorization consistency 


• 2) Can combine embeddings of different shape components



Decomposer Network

• Model embedding space as a direct sum of subspaces 
 

• Could split embedding into K equal sized coordinate groups


• constrains dimensionality of part embeddings


• limited capacity, suboptimal


• Learned factorization of the embedding space 
 
 
 
 
 
 
 







Composer Network

• Sets of part embeddings -> shapes with semantic part labels 


• Could use single decoder 


• fails with thin shapes and fine details


• Instead each part’s decoder generates scaled and centered shape parts





Composer Network

• Produce per-part parameters to combine the parts into a complete shape


• per-part affine transformations and translations


• simplifying assumption 


• Uses 3D spatial transformer network (STN)


• localization net -> 12-D affine transformations / translations 


• re-sampling unit -> which transforms and places part components


• inputs


• scaled / centered parts 


• the sum of part encodings









Cycle Consistency

• Problem: No training data for synthesized composite shapes!


• Solution: Use a cycle consistency constraint


• 1) Batch of M training shapes 


• 2) K semantic part encodings per shape (w/ Decomposer)


• 3) randomly mix the part encodings within the batch 


• M new encoding sets w/ one embedding coordinate per part


• 4) reconstruct the shapes with Composer.


• 5) Reverse engineer! 


• 6) Compare final output to original



Cycle Consistency



Loss Function

• LPI: Deviation of the predicted projection matrices from projection constraints


• Lpart: Reconstructed centered and scaled part volumes vs GT


• Ltrans: Regression loss between the predicted and the ground truth transformation 
parameter vectors


• Lcycle: Cycle consistency loss


• wPI = 0.1, wpart = 100, wtrans = 0.1, wcycle = 0.1 in experiments



Interesting Training Details

• The network was trained on each shape category separately


• Training over 500 epochs 


• 150 epochs Essential to pretrain the binary shape encoder, projection layer, 
and part decoder parameters separately


• Use LPI and Lpart, ignore Ltrans and Lcycle 


• 100 epochs Train the parameters of the spatial transformer network keeping 
the rest of the parameters fixed.


• 250 epochs Train everything together for fine tuning













Main Contributions

• Novel Latent Space Factorization 

• Enables shape structure manipulation using linear operations directly in the 
learned latent space


• In-network 3D STN 

• The application of a 3D STN to perform in-network affine shape 
deformation, used in end-to-end training


• Cycle Consistency Loss  

• Improves shape synthesis and reconstruction quality



Summary Strengths and Limitations 

• Strengths  

• Structure-aware 3D shape modeling


• Generate a factorized latent shape representation


• Different semantic part embedding coordinates lie in separate linear subspaces


• Allows shape manipulation via part embedding coordinates


• exchange / interpolate parts between shapes


• synthesize novel shapes


• Limitations 

• Memory constraints limit resolution of voxel representations 


• Simplifying assumptions on affine transformations


