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Abstract

We present a novel neural network architecture, termed
Decomposer-Composer, for semantic structure-aware 3D
shape modeling. Our method utilizes an auto-encoder-
based pipeline, and produces a novel factorized shape la-
tent space, where the semantic structure of the shape col-
lection translates into a data-dependent sub-space factor-
ization, and where shape composition and decomposition
become simple linear operations on the embedding coor-
dinates. We further propose to model shape assembly us-
ing an explicit learned part deformation module, which uti-
lizes a 3D spatial transformer network to perform an in-
network volumetric grid deformation, and which allows us
to train the whole system end-to-end. The resulting net-
work allows us to perform part-level shape manipulation,
unattainable by existing approaches. Our extensive abla-
tion study, comparison to baseline methods and qualitative
analysis demonstrate the improved performance of the pro-
posed method.

1. Introduction

Understanding, modeling and manipulating 3D objects
are areas of great interest to the vision and graphics com-
munities, and have been gaining increasing popularity in
recent years. Examples of related applications include se-
mantic segmentation [47], shape synthesis [41, 2], 3D re-
construction [8, 9], view synthesis [45], and fine-grained
shape categorization [3], to name a few. The advancement
of deep learning techniques, and the creation of large-scale
3D shape datasets [6] enabled researchers to learn task-
specific representations directly from the existing data, and
led to significant progress in all the aforementioned areas.

There is a growing interest in learning shape modeling
and synthesis in a structure-aware manner, for instance, at
the level of semantic shape parts. This poses several chal-
lenges compared to approaches considering the shapes as
a whole. Semantic shape structure and shape part geom-
etry are usually interdependent, and relations between the
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Figure 1: Given unlabeled shapes, the Decomposer maps
them into a factorized latent space. The Composer can ei-
ther reconstruct the shapes with semantic part labels, or cre-
ate new shapes , for instance, by exchanging chair legs.

two must be implicitly or explicitly modeled and learned
by the system. Examples of such structure-aware shape
representation-learning are [24, 20, 39, 43].

However, the existing approaches for shape modeling,
while being part aware at the intermediate stages of the sys-
tem, still ultimately operate on the low-dimensional rep-
resentations of the whole shape. For example, [24, 39]
use a Variational Autoencoder (VAE) [16] to learn gener-
ative part-aware models of man-made shapes, but the latent
spaces of the VAEs correspond to complete shapes, with
entangled latent factors corresponding to different seman-
tic parts. Therefore, these and other existing approaches
cannot perform part-level shape manipulation, such as sin-
gle part replacement, part interpolation, or part-level shape
synthesis.

Inspired by the recent efforts in image modeling to sepa-
rate different image formation factors, to gain better con-
trol over image generation process and simplify editing
tasks [29, 35, 36], we propose a new semantic structure-
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aware shape modeling system. This system utilizes an
auto-encoder-based pipeline, and produces a factorized la-
tent space which both reflects the semantic part structure
of the shapes in the dataset, and compactly encodes differ-
ent semantic parts’ geometry. In this latent space, differ-
ent semantic part embedding coordinates lie in separate lin-
ear subspaces, and shape composition can naturally be per-
formed by summing up part embedding coordinates. The la-
tent space factorization is data-dependent, and is performed
using learned linear projection operators. Furthermore, the
proposed system operates on unlabeled input shapes, and at
test time it simultaneously infers the shape’s semantic struc-
ture and compactly encodes its geometry.

Towards that end, we propose a Decomposer-Composer
pipeline, schematically illustrated in Figure 1. The Decom-
poser maps an input shape, represented by an occupancy
grid, into the factorized latent space described above. The
Composer reconstructs a shape with semantic part-labels
from a set of part-embedding coordinates. It explicitly
learns the set of transformations to be applied to the parts,
so that together they form a semantically and geometrically
plausible shape. In order to learn and apply those part trans-
formations, we employ a 3D variant of the Spatial Trans-
former Network (STN) [12]. 3D STN was previously uti-
lized to scale and translate objects represented as 3D occu-
pancy grids in [11], but to the best of our knowledge, ours
is the first approach suggesting an in-network affine defor-
mation of occupancy grids.

Finally, to promote part-based shape manipulation, such
as part replacement, part interpolation, or shape synthesis
from arbitrary parts, we employ the cycle consistency con-
straint [48, 29, 25, 38]. We utilize the fact that the De-
composer maps input shapes into a factorized embedding
space, making it possible to control which parts are passed
to the Composer for reconstruction. Given a batch of in-
put shapes, we apply our Decomposer-Composer network
twice, while randomly mixing part embedding coordinates
before the first Composer application, and then de-mixing
them into their original positions before the second Com-
poser application. The resulting shapes are required to be
as similar as possible to the original shapes, using a cycle
consistency loss.

Main contributions Our main contributions are: (1) A
novel latent space factorization approach which enables per-
forming shape structure manipulation using linear opera-
tions directly in the learned latent space; (2) The application
of a 3D STN to perform in-network affine shape deforma-
tion, for end-to-end training and improved reconstruction
accuracy; (3) The incorporation of a cycle consistency loss
for improved reconstruction quality.

2. Related work

Learning-based shape synthesis Learning-based meth-
ods have been used for automatic synthesis of shapes
from complex real-world domains; In a seminal work [13],
Kalogerakis et al. used a probabilistic model, which learned
both continuous geometric features and discrete compo-
nent structure, for component-based shape synthesis and
novel shape generation. The development of deep neural
networks enabled learning high-dimensional features more
easily; 3DGAN [41] uses 3D decoders and a GAN to gener-
ate voxelized shapes. A similar approach has been applied
to 3D point clouds and achieved high fidelity and diversity
in shape synthesis [2].

Apart from generating shapes using a latent representa-
tion, some methods generate shapes from a latent represen-
tation with structure. SSGAN [40] generate the shape and
texture for a 3D scene in a 2-stage manner. GRASS [20]
generate shapes in two stages: first, by generating orientated
bounding boxes, and then a detailed geometry within those
bounding boxes. Nash and Williams [24] use use point
cloud shape representation and a VAE to learn a probabilis-
tic latent space of shapes; however, they require all training
data to be in point-to-point correspondence. In a related
work [39], Wang et al. introduced a 3D GAN-based gener-
ative model for 3D shapes, which produced segmented and
labeled into parts shapes. Unlike the latter approach, our
network does not use predefined subspaces for part embed-
ding, but learns to project the latent code of the entire shape
to the subspaces corresponding to codes of different parts.

In concurrent efforts, several deep architectures for part
based shape synthesis were proposed [32, 19, 44, 23]. Schor
et al. [32] utilized point-base shape representation, while
operating on input models with known per-point parts la-
bels. Li et al. [19] and [44] proposed two generative net-
works for part-based shape synthesis, operating on labeled
voxelized shapes. Mo et al. [23] introduced a hierarchical
graph network for learning structure-aware shape genera-
tion.

Spatial transformer networks Spatial transformer net-
works (STN) [12] allow to easily incorporate deformations
into a learning pipeline. Kurenkov et al. [17] retrieve a 3D
model from one RGB image and generate a deformation
field to modify it. Kanazawa et al. [14] model articulated
or soft objects with a template shape and deformations. Lin
et al. [21] use STNs iteratively, to warp a foreground onto
a background, and use a GAN to constrain the composition
results to the natural image manifold. Hu et al. [11] use a
3D STN to scale and translate objects given as volumetric
grids, as a part of scene generation network. Inspired by
this line of work, we incorporate an affine transformation
module into our network. This way, the generation module
only needs to generate normalized parts, and the deforma-
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Figure 2: The proposed Decomposer-Composer architecture.

tion module transforms and assembles the parts together.

Deep latent space factorization Several approaches sug-
gested to learn disentangled latent spaces for image rep-
resentation and manipulation. β-VAE [10] introduce an
adjustable hyperparameter β that balances latent channel
capacity and independence constraints with reconstruction
accuracy. InfoGAN [7] achieves the disentangling of fac-
tors by maximizing the mutual information between certain
channels of latent code and image labels. Some approaches
disentangle the image generation process using intrinsic de-
composition, such as albedo and shading [36], or normal-
ized shape and deformation grid [29, 35]. The proposed
approach differs from [29, 35, 36] in that it maps both full
and partial shapes into the same low dimensional embed-
ding space, while in [29, 35, 36], different components have
their own separated embedding spaces.

Projection in neural networks Projection is widely used
in representation learning. It can be used for transformation
from one domain to another domain [4, 27, 28], which is
useful for tasks like translation in natural language process-
ing. For example, Senel et al. [33] use projections to map
word vectors into semantic categories. In this work, we use
a projection layer to transform a whole shape embedding
into semantic part embeddings.

3. Our model
3.1. Decomposer network

The Decomposer network is trained to embed unlabeled
shapes into a factorized embedding space, reflecting the
shared semantic structure of the shape collection. To allow
for composite shape synthesis, the embedding space has to
satisfy the following two properties: factorization consis-
tency across input shapes, and existence of a simple shape
composition operator to combine latent representations of

different semantic factors. We propose to model this em-
bedding space V as a direct sum of subspaces {Vi}Ki=1,
where K is the number of semantic parts, and each sub-
space {Vi} corresponds to a semantic part i, thus satisfying
the factorization consistency property. The second property
is ensured by the fact that every vector v ∈ V is given by a
sum of unique vi ∈ Vi such that V = V1⊕ ...⊕Vk, and part
composition may be performed by part embedding summa-
tion. This also implies that the decomposition and composi-
tion operations in the embedding space are fully reversible.

A simple approach for such factorization is to split the
dimensions of the n-dimensional embedding space into K
coordinate groups, each group representing a certain seman-
tic part-embedding. In this case, the full shape embedding is
a concatenation of part embeddings, an approach explored
in [39]. This, however, puts a hard constraint on the dimen-
sionality of part embeddings, and thus also on the repre-
sentation capacity of each part embedding subspace. Given
that different semantic parts may have different geometric
complexities, this factorization may be sub-optimal.

Instead, we perform a data-driven learned factorization
of the embedding space into semantic subspaces. We
use learned part-specific projection matrices, denoted by
{Pi}Ki=1 ∈ Rn×n. To ensure that the aforementioned two
factorization properties hold, the projection matrices must
form a partition of the identity and satisfy the following
three properties

(1) P 2
i = Pi,∀i,

(2) PiPj = 0 whenever i 6= j,

(3) P1 + ...+ PK = I, (1)

where 0 and I are the all-zero and the identity matrices of
size n× n, respectively.

In practice, we efficiently implement the projection op-
erators using fully connected layers without added biases,



with a total of K ∗ n2 variables, constrained as in Equa-
tion 1. The projection layers receive as input a whole shape
encoding, which is produced by a 3D convolutional shape
encoder. The parameters of the shape encoder and the pro-
jection layers are learned simultaneously. The resulting ar-
chitecture of the Decomposer network is schematically de-
scribed in Figure 2, and a detailed description of the shape
encoder and the projection layer architecture is given in the
supplementary material.

3.2. Composer network

The composer network is trained to reconstruct shapes
with semantic part labels from sets of semantic part em-
bedding coordinates. The simplest composer implementa-
tion would consist of a single decoder mirroring the whole
binary shape encoder (see Figure 2), producing a semanti-
cally labelled reconstructed output shape. Such approach
was used in [39], for instance. However, this straightfor-
ward method is known to fail in reconstructing thin volu-
metric shape parts and other fine shape details. To address
this issue, we use a different approach, where we first sep-
arately reconstruct scaled and centered shape parts, using a
shared part decoder. We then produce per-part transfor-
mation parameters and use them to deform the parts in a
coherent manner, to obtain a complete reconstructed shape.

In our model, we make the simplifying assumption that
it is possible to combine a given set of parts into a plausible
shape by transforming them with per-part affine transfor-
mations and translations. While the true set of transforma-
tions which produce plausible shapes is significantly larger
and more complex, our experiments demonstrate that the
proposed simplified model is successful at producing ge-
ometrically and visually plausible results. This in-network
part transformation is implemented using a 3D spatial trans-
former network (STN) [12]. It consists of a localization net,
which produces a set of 12-dimensional affine transforma-
tions (including translations) for all parts, and a re-sampling
unit, which transforms and places the reconstructed part
volumes at their correct locations in the full shape. The
SNT receives as input both the reconstructed parts from the
part decoder, and the sum of part encodings, for best re-
construction results. The resulting Composer architecture
is schematically described in Figure 2; its detailed descrip-
tion is given in the supplementary material.

We note that the proposed approach is related to the two-
stage shape synthesis approach of [20], in which a GAN is
first used to synthesize oriented bounding boxes for differ-
ent parts, and then the part geometry is created per bounding
box using a separate part decoder. Our approach is similar,
yet it works in a reversed order. Namely, we first recon-
struct part geometry, and then compute per-part affine trans-
formation parameters, which are a 12-dimensional equiva-
lent of the oriented part bounding boxes in [20]. Similarly

Decomposer ComposerMix part
encodings

Volumes with
mixed parts

DecomposerDe-mix part
encodingsComposer

Cycle-
consistency 

loss

Binarized output
volume

Input volume

Figure 3: Schematic description of the cycle consistency
constraint. See Section 3.3 for details.

to [20], this two stage approach improves the reconstruction
of fine geometric details. However, unlike [20], where the
GAN and the part decoder where trained separately, in our
approach the two stages belong to the same reconstruction
pipeline, trained simultaneously and end-to-end.

3.3. Cycle consistency

Our training set is comprised of 3D shapes with ground-
truth semantic part-decomposition; It does not include any
training examples of synthesized composite shapes. Exist-
ing methods for such shape assembly task operate on 3D
meshes with very precise segmentations, and often with
additional knowledge about part connectivity [46, 34, 13].
These methods cannot be applied to a dataset like ours,
to produce a sufficiently large set of plausible new shapes
(constructed from existing parts) to use for training a deep
network for composite shape modelling. In order to cir-
cumvent this difficulty, and train the net to produce non-
trivial part transformations for geometrically and semanti-
cally plausible part arrangements, we use a cycle consis-
tency constraint. It has been previously utilized in geom-
etry processing [25], image segmentation [38], and more
recently in neural image transformation [29, 48].

Specifically, given a batch ofM training shapes {X}Mi=1,
we map them to the factored latent space using the De-
composer, producing K semantic part encodings per in-
put shape. We the randomly mix the part encodings of
the shapes in the batch, while ensuring that after the mix-
ing each of the new M encoding sets includes exactly one
embedding coordinate per semantic part. We then recon-
struct the shapes with correspondingly mixed parts using
the Composer. After that, these new shapes are passed to
the Decomposer-Composer pipeline once again, while de-
mixing part encodings produced by the second Decomposer
application, to re-store the original encoding-to-shape as-
sociation. The cycle consistency requirement means that
the final shapes are as similar as possible to the original M
training shapes. We enforce it using the cycle consistency



loss described in the next section. The double application
of the proposed network with part encoding mixing and de-
mixing is schematically described in Figure 3.

3.4. Loss function

Our loss function is defined as the following weighted
sum of several loss terms

L = wPILPI + wpartLpart + wtransLtrans + wcycleLcycle. (2)

The weights compensate for the different scales of the loss
terms, and reflect their relative importance.

Partition of the identity loss LPI measures the deviation
of the predicted projection matrices from the optimal pro-
jections, as given by Equation 1.

Lproj(P1, ..., Pk) =

K∑
i=1

‖P 2
i − Pi‖2F +

K∑
i,j=1,
i 6=j

‖PiPj‖2F+

‖P1 + ...PK − I‖2F . (3)

Part reconstruction loss Lpart is the binary cross-entropy
loss between the reconstructed centered and scaled part vol-
umes and their respective ground truth part indicator vol-
umes, summed over K parts.

Transformation parameter loss Ltrans is an L2 regres-
sion loss between the predicted and the ground truth 12-
dimensional transformation parameter vectors, summed
over K parts. Unlike in the original STN approach [12],
we found that direct supervision over the transformation pa-
rameters is critical for our network convergence.

Cycle consistency loss Lcycle is a binary cross-entropy loss
between ground truth input volumes and their reconstruc-
tions, obtained using two applications of the proposed net-
work, as described in Section 3.3.

3.5. Training details

The network was implemented in TensorFlow [1], and
trained for 500 epochs with batch size 32. We used Adam
optimizer [15] with learning rate 0.0001, decay rate of 0.8,
and decay step size of 40 epochs. We found it was essential
to first pre-train the binary shape encoder, projection layer
and part decoder parameters separately for 150 epochs, by
minimizing the part reconstruction and the partition of the
identity losses and using wtrans = wcycle ≈ 0, for improved
part reconstruction results. We then train the parameters
of the spatial transformer network for another 100 epochs,
while keeping the rest of the parameters fixed. After that
we resume the training with all parameters and the cycle
consistency loss to fine-tune the network parameters. The
optimal loss combination weights were empirically detected
using the validation set, and set to be wPI = 0.1, wpart =
100, wtrans = 0.1, wcycle = 0.1. The network was trained on
each shape category separately.

Figure 4: Reconstruction results of the proposed pipeline,
for chair and table shapes. Gray shapes are the input test
shapes; the results are colored according to the part label.

4. Experiments
Dataset In our experiments, we used the models from
the ShapeNet 3D data collection [6], with part annotations
produced by Yi et al. [47]. The shapes were converted to
32 × 32 × 32 occupancy grids using binvox [26]. Seman-
tic part labels were first assigned to the occupied voxels ac-
cording to the proximity to the labeled 3D points, and the fi-
nal voxel labels were obtained using graph-cuts in the voxel
domain [5]. We used the official ShapeNet train, validation
and test data splits in all our experiments. Additional re-
sults for 64× 64× 64 occupancy grids can be found in the
supplementary material.

4.1. Shape reconstruction

Figure 4 presents the results of reconstructing semanti-
cally labeled shapes from unlabelled input shapes, using
the proposed network. Note that since our method per-
forms separate part reconstruction with part decoders and
part placement with an STN, it may produce less accu-
rate part reconstruction, as compared to segmentation ap-
proaches - for example, the handles of the reconstructed
rightmost chair in Figure 4. But, as illustrated by our quan-
titative study in Section 4.4, this allows us to perform better
part-based shape manipulation.

4.2. Composite shape synthesis

Shape composition by part exchange In this experi-
ment, we used our structured latent space to randomly
swap corresponding embedding coordinates of pairs of in-
put shapes (e.g., embedding coordinates of legs or seats of
two chairs), and reconstruct the new shapes using the Com-
poser. The results are shown in Figure 5, and demonstrate
the ability of our system to perform accurate part exchange,
while deforming the geometry of both the new and the exist-
ing parts to obtain a plausible result. See the supplementary
material for additional results using four shape classes.

Shape composition by random part assembly In this
experiment we tested the ability of the proposed network to
assemble shapes from random parts using our factorized la-



L
eg

s
B

ac
k

GT1 REC1 SWAP1 SWAP2 REC2 GT2

Figure 5: Single part exchange experiment. GT1/2 de-
note ground truth shapes, REC1/2 - reconstruction results,
SWAP1/2 - part exchange results. Unlabeled shapes were
used as an input.

G
T

C
om

po
se

d

Figure 6: Shape composition by random part assembly. The
top row shows the ground truth (GT) shapes, and the bottom
row - shapes assembled using the proposed approach (see
Section 4.2). Unlabeled shapes were used as an input.

tent space. Specifically, we mapped batches of input shapes
into the latent space using the Decomposer, and created new
shapes by randomly mixing the part embedding coordinates
of the shapes in the batch, and reconstructing new shapes
using the Composer. The results are shown in Figure 6,
for chairs and tables, and illustrate the ability of the pro-
posed method to combine parts from different shapes, scale
and translate them so that the resulting shape looks real-
istic. See the supplementary material for additional shape
composition results.

Full and partial interpolation in the embedding space
In this experiment, we tested reconstruction from linearly
interpolated embedding coordinates of complete shapes, as
well as of a single semantic part. For the latter, we per-
formed the part exchange experiment, described above, and
interpolated the coordinates of that part, while keeping the
rest of part embedding coordinates fixed. The results are
shown in Figure 7. See the supplementary material addi-
tional interpolation results.

4.3. Latent space and projection matrix analysis

The latent space obtained using the proposed method ex-
hibits clear separation into subspaces corresponding to dif-

ferent semantic parts. The projection matrices, while not
not being strictly orthogonal, as required for the partition of
the identity (1), have low effective ranks, which is in line
with the clear separation into non-overlapping subspaces
produced by them. See the supplementary material for the
latent space and the projection matrices visualization.

4.4. Ablation study and comparison with existing
approaches

4.4.1 Ablation study

To highlight the importance of the different elements of our
approach, we conducted an ablation study, where we used
several variants of the proposed method, listed below.

Fixed projection matrices Instead of using learned pro-
jection matrices in the Decomposer, the n-dimensional
shape encoding is split into K consecutive equal-sized seg-
ments, which correspond to different part embedding sub-
spaces. This is equivalent to using constant projection ma-
trices, where the elements of the rows corresponding to a
particular embedding space dimensions are 1, and the rest
of the elements are 0.

Composer without STN We substituted the proposed
composer, consisting of the part decoder and the STN, with
a single decoder producing a labeled shape. The decoder
receives the sum of part encodings as an input, processes it
with two FC layers to combine information from different
parts, and then reconstructs a shape with parts labels using
a series of deconvolution steps, similar to the part decoder
in the proposed architecture.

Without cycle loss We removed the cycle loss component
during the network training.

4.4.2 Comparison with existing methods

Most existing methods for composite shape modeling op-
erate on triangulated meshes with precise part segmenta-
tion. Hence, they are not directly applicable to the large-
scale ShapeNet dataset with less precise segmentation, pre-
venting a fair comparison. We therefore added the fol-
lowing comparisons with modern neural-net-based tech-
niques: we combined the state-of-the-art ComplementMe
method [37] with a 3D-CNN segmentation network [30].
From the former we used the component placement net-
work, which, given a partial shape and a complementary
component, produces a 3-D translation to place the com-
ponent correctly w.r.t. the partial shape. To produce the
”to-be-added” component we used a 3D-CNN segmenta-
tion network, described in [30], which achieved a state-of-
the-art mean Intersection over Union (mIoU) of 0.91 on the
test set. Together, these two networks replace our proposed
Decomposer-Composer. Both networks were trained using
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Method
Metric

mIoU
mIoU
(parts) Connectivity

Classifier
accuracy

Symmetry
score

Rec. Rec. Rec. Swap Mix Rec. Swap Mix Rec. Swap Mix
Our method 0.64 0.65 0.82 0.71 0.65 0.95 0.89 0.83 0.95 0.95 0.95
W/o cycle loss 0.63 0.66 0.74 0.62 0.54 0.93 0.84 0.80 0.96 0.96 0.95
Fixed projection 0.63 0.65 0.72 0.61 0.58 0.94 0.86 0.77 0.94 0.95 0.95
Composer w/o STN 0.75 0.8 0.69 0.48 0.23 0.95 0.9 0.71 0.95 0.91 0.85
Naive placement - - - 0.68 0.62 0.61 0.47 0.21 - 0.96 0.96
ComplementMe - - - 0.71 0.47 - 0.66 0.43 - 0.66 0.43
Segmentation+STN - - - 0.41 0.64 - 0.64 0.36 - 0.77 0.77

Table 1: Ablation study results. The evaluation metrics are mean Intersection over Union (mIoU), per-part mean IoU (mIoU
(parts)), shape connectivity measure, binary shape classifier accuracy, and shape symmetry score. Rec., Swap and Mix stand
for the shape reconstruction, part exchange and random part assembly experiment results, respectively (see Section 4.2). See
Section 4.4 for a detailed description of the compared methods and the evaluation metrics.

the same training data as the proposed method. This method
is denoted by ComplementMe in Table 1.

For an additional comparison, instead of the placement
network of ComplementMe we utilized the spatial trans-
former network. Here, the STN was trained using the
ground truth shape parts, and at test time it was applied to
the results of the segmentation network, described above.
This method is denoted by Segmentation+STN in Table 1.

Finally, we compared the proposed method to a base-
line shape composition network. Given ground-truth shape
parts, it composes new shapes from these parts by plac-
ing them at their original locations in the source shapes
they were extracted from. All the shapes in our dataset
are centered and uniformly scaled to fill the unit volume,
and there exist clusters of geometrically and semantically
similar shapes. Thus, we can expect that even this naive
approach without part transformations will produce plausi-
ble results in some cases. This method is denoted by Naive
placement in Table 1.

See the supplementary material for an additional quali-
tative comparison with 3D-GAN [42] and G2LGAN [39],

using 64× 64× 64 voxelized shapes.

4.4.3 Evaluation metrics

Mean Intersection over Union (mIoU) is commonly
used to evaluate the performance of segmentation algo-
rithms [22]. Here, we use it as a metric for the reconstruc-
tion quality. We computed the mIoU for both actual-sized
reconstructed parts, and scaled and centered parts (when ap-
plicable). We denote the two measures by mIoU and mIoU
(parts) in Table 1.

Connectivity In part based shape synthesis, one patho-
logical issue is that parts are often disconnected, or pen-
etrate each other. Here, we would like to benchmark the
quality of part placement, in terms of part connectivity. For
each 32×32×32 volume, we compute the frequency of the
shape forming a single connected component, and report it
as Connectivity in Table 1.

Classification accuracy To measure the shape compo-
sition quality of different methods, we trained a binary
neural classifier to distinguish between ground-truth whole



chairs (acting as positive examples) and chairs produced by
naively placing random chair parts together (acting as neg-
ative examples). To construct the negative examples, we
randomly combined ground-truth shape parts, by adding a
certain semantic part only once, and placing the parts at
their original locations in the source shapes they were ex-
tracted from. In addition, we removed negative examples
assembled from parts from geometrically and semantically
similar chairs, since such part arrangement could produce
plausible shapes incorrectly placed in the negative example
set. The attained classification accuracy on the test set was
∼ 88%. For a given set of chairs, we report the average
classification score. Details of the network can be found
in the supplementary material. The results are reported as
Classifier accuracy in Table 1.

Symmetry The chair shapes in the ShapeNet are predom-
inantly bilaterally symmetric, with vertical symmetry plane.
Thus, similar to [39], we evaluated the symmetry of the re-
constructed shapes, and defined the Symmetry score as the
percentage of the matched voxels (filled or empty) in the re-
constructed volume and its reflection with respect to the ver-
tical symmetry plane. We performed this evaluation using
binarized reconstruction results, effectively measuring the
global symmetry of the shapes. For the evaluation, we used
the shapes in the test set (690 shapes), and conducted three
types of experiments: shape reconstruction, single random
part exchange between a pair of random shapes, shape com-
position by random part assembly. The experiments are de-
scribed in more detail in Sections 4.1 and 4.2.

4.4.4 Evaluation result discussion

According to all metrics, our method outperforms or per-
forms on par with all the baselines, and significantly out-
performs other existing methods. This shows that our de-
sign choices - the cycle loss, learned projection matrices
and usage of the STN, help to achieve plausible results both
when reconstructing shapes, and when performing com-
posite shape synthesis. This is especially pronounced in
the connectivity test results, illustrating that these design
choices are necessary for achieving good assembly quality.

In the classifier accuracy test and the symmetry test, the
proposed method performs slightly better or on par with
all baselines considered in the ablation study. It seems
that both these tests are less sensitive to disconnected shape
components, and most advantage that the proposed method
achieves over the baselines is in its composition robustness.
As expected, the naive placement also achieves high sym-
metry score, since it preserves the symmetry of the ground-
truth parts during shape assembly.

According to the mIoU and per-part mIoU metrics, the
proposed method performs on par with all baselines, except
when using the simple version of the Composer, without

STN. This follows from the fact that the proposed system,
while reconstructing better fine geometry features, decom-
poses the problem into two inference problems, for the ge-
ometry and the transformation, and thus does not produce
as faithful reconstruction of the original model as the simple
decoder. Notably, this version of the architecture achieves
worst connectivity scores for all compared methods, which
follows from the fact that such a Decomposer is unable to
faithfully reconstruct fine shape details. Please see the sup-
plementary material for a qualitative comparison of the re-
sults of all the compared methods.

5. Conclusions and future work

We presented a Decomposer-Composer network for
structure-aware 3D shape modelling. It is able to gener-
ate a factorized latent shape representation, where different
semantic part embedding coordinates lie in separate linear
subspaces. The subspace factorization allows us to per-
form shape manipulation via part embedding coordinates,
exchange parts between shapes, or synthesize novel shapes
by assembling a shape from random parts. Qualitative re-
sults show that the proposed system can generate high fi-
delity 3D shapes and meaningful part manipulations. Quan-
titative results shows we are competitive in the mIOU, con-
nectivity, symmetry and classification benchmarks.

While the proposed approach makes a step toward au-
tomatic shape-from-part assembly, it has several limita-
tions. First, while we can generate high-fidelity shapes at
a relatively low resolution, memory limitations do not al-
low us to work with voxelized shapes of higher resolution.
Memory-efficient architectures, such as OctNet [31] and
PointGrid [18], may help alleviate this constraint. Alter-
natively, using point-based shape representations and com-
patible deep network architectures, such as [30], may also
reduce the memory requirements and increase the output
resolution.

Secondly, we made a simplifying assumption that a plau-
sible shape can be assembled from parts using per-part
affine transformations, which represent only a subset of pos-
sible transformations. While this assumption simplifies the
training, it is quite restrictive in terms of the deformations
we can perform. In future work, we will consider general
transformations which have higher degree of freedom, such
as a 3D thin plate spline or a general deformation fields.
To promote better part connectivity, we will explore ad-
ditional shape connectivity preservation losses, similar to
[39]. Finally, we have been using a cross-entropy loss to
measure the shape reconstruction quality; it would be in-
teresting to investigate the use of a GAN-type loss in this
structure-aware shape generation context.
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