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Fig. 1. Given a bitmap sketch of a man-made shape, our method automatically infers a complete parametric 3D model, ready to be edited, rendered, or
converted to a mesh. Compared to conventional methods, our resolution-independent geometry representation allows us to faithfully reconstruct sharp
features (wing and tail edges) as well as smooth regions. Results are shown on sketches from a test dataset. Sketches in this figure are upsampled from the
actual images used as input to our method.

Sketch-based modeling aims to model 3D geometry using a concise and easy
to create—but extremely ambiguous—input: artist sketches. Most conven-
tional sketch-based modeling systems target smooth shapes and, to counter
the ambiguity, put manually-designed priors on the 3D shape; they also
typically require clean, vectorized input. Recent approaches attempt to learn
those priors from data but often produce low-quality output. Focusing on
piecewise-smooth man-made shapes, we address these issues by presenting
a deep learning-based system to infer a complete man-made 3D shape from
a single bitmap sketch. Given a sketch, our system infers a set of parametric
surfaces that realize the drawing in 3D. To capture the piecewise smooth
geometry of man-made shapes, we learn a special shape representation—
a deformable parametric template composed of Coons patches. Naïvely
training such a system, however, would suffer from lack of data and from
self-intersections of the parametric surfaces. To address this, we introduce a
synthetic sketch augmentation pipeline as well as a loss function that biases
the network to output non-self-intersecting shapes. We demonstrate the
efficacy of our system on a gallery of synthetic and real artist sketches as
well as via comparison to related work.
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1 INTRODUCTION
Algorithmically interpreting natural sketches as well as humans do
would make 3D modeling intuitive and accessible. This is the goal
of sketch-based 3D modeling research: to bring 3D modeling inter-
faces closer to paper-and-pencil sketching, allowing non-experts to
quickly create expressive 3D content.

The task of interpreting a natural sketch and creating a 3D model
automatically, however, remains unsolved. Converting rough, in-
complete 2D input into a clean, complete 3D shape is extremely
ill-posed, requiring inference of missing parts and interpretation of
noisy sketch curves. To cope with these ambiguities, most systems
rely on hand-designed shape priors. This approach severely limits
the applications of those methods. Each shape category requires its
own expert-designed prior, and many shape categories do not admit
obvious means of regularizing the reconstruction process. A few
recent papers explore the possibility of learning the shapes from
data, implicitly learning the shape priors [Delanoy et al. 2018; Lun
et al. 2017; Wang et al. 2018a], but their output models often lack
resolution and sharp features necessary for high-quality 3D models.

To address these issues, in this paper we present a deep learning-
based system to infer a complete man-made 3D shape from a single
bitmap sketch. Given an expressive sketch of an object, our system
infers a set of parametric surfaces that realize the drawing in 3D. The
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component surfaces, parameterized by their control points, allow for
easy editing in conventional shape editing software or conversion
to a manifold mesh.
Most sketch-based modeling algorithms target natural shapes

like humans and animals [Bessmeltsev et al. 2015; Entem et al. 2015;
Igarashi et al. 1999], which are naturally smooth. To aid shape recon-
struction, these systems promote smoothness of the reconstructed
shape; representations like generalized cylinders are chosen to opti-
mize in the space of smooth surfaces [Bessmeltsev et al. 2015; Entem
et al. 2015]. This principle, however, does not apply to the focus of
our work: man-made shapes. These objects, like planes or espresso
machines, are only piecewise smooth and hence do not satisfy the
assumptions of many sketch-based modeling systems.
In industrial design, man-made shapes are typically modeled

using collections of smooth parametric patches, such as NURBS
surfaces, with patch boundaries forming the sharp features. To
learn such shapes effectively, we leverage this structure by using
a special shape representation, a deformable parametric template
[Jain et al. 1998]. This template is a manifold surface composed of
patches, where each patch is parameterized by its control points;
example patches include Bézier patches [Farin 2002] and Coons
patches [Coons 1967] (Fig. 3(a)). This representation enables us to
control the smoothness of each patch while allowing the model to
introduce sharp edges between patches where necessary.

Compared to traditional representations, deformable parametric
templates have numerous benefits for our task. They are intuitive
to edit with conventional software, are resolution-independent, and
can be meshed to arbitrary accuracy. Furthermore, since typically
only boundary control points are needed, our surface representa-
tion has relatively few parameters to learn and store. Finally, this
structure admits closed-form expressions for normals and other
geometric features, which can be used to construct loss functions
that improve reconstruction quality (§4.2).

The core of our system is a CNN-based architecture to infer the co-
ordinates of control points of a deformable template, given a bitmap
sketch. A naïve attempt to develop and train such network faces
two major challenges: lack of data and the difficulty of detecting
self-intersecting surfaces (Fig. 9(b,c)):

• A lack of data is the primary reason that sketch-based modeling
has been slow to respond to developments in modern computer
vision. Shape repositories are orders of magnitude smaller than
image datasets, and supervised methods mapping from sketches
to 3D models require a database of sketch-model pairs; to-date,
there are no such large-scale repositories. Instead, we introduce a
synthetic sketch augmentation pipeline that uses insights from
the artistic literature to simulate possible variations observed in
natural drawings (§3). Although our model is trained on synthetic
sketches exclusively, it generalizes well to natural sketches (Fig. 8).

• To address the challenge of penalizing self-intersection, we bias
the network to output non-self-intersecting surfaces.We train two
networks to predict shape self-intersections given shape parame-
ters. These networks (with frozen weights) act as additional loss
terms in the optimization for sketch-based modeling to regularize
our patches.

Contributions. We present a system for predicting parametric
man-made 3D shapes from bitmap sketches. We validate with a
gallery of results on both synthetic and natural sketches from vari-
ous artists. Our key technical contributions include learning a dif-
ferent geometric representation, a novel sketch augmentation tech-
nique, and new loss terms with learned surface regularizers.

2 RELATED WORK
Our research leverages recent progress in deep learning to address
long-standing problems in sketch-based modeling. To give a rough
idea of the landscape of available methods, we briefly summarize
related work in sketch-based modeling and deep learning.

2.1 Sketch-based 3D shape modeling
Reconstructing 3D geometry from sketches has a long history in the
computer graphics literature. A complete survey of sketch-based
modeling is beyond the scope of this paper; an interested reader
may refer to the recent paper by Delanoy et al. [2018] or surveys by
Ding and Liu [2016] and Olsen et al. [2009]. Here, we mention the
work most relevant to our approach.

Many sketch-based 3D shape modeling systems are incremental,
i.e., they allow users to model shapes by progressively adding new
strokes, updating the 3D shape after each action. Such systems may
be designed as single-view interfaces, where the user is often re-
quired to manually annotate each stroke [Chen et al. 2013; Cherlin
et al. 2005; Gingold et al. 2009; Shtof et al. 2013], or they may allow
strokes to be added to multiple views [Igarashi et al. 1999; Nealen
et al. 2007; Tai et al. 2004]. These systems can cope with considerable
geometric complexity, but their dependence on the ordering of the
strokes forces artists to deviate from standard approaches to sketch-
ing. In contrast, we aim to interpret complete sketches, eliminating
training for artists to use our system and enabling 3D reconstruc-
tion of legacy sketches. Xu et al. [2014] present a single-view 3D
curve network reconstruction system for man-made shapes that
can produce impressive sharp results. Yet, they process specialized
design sketches, consisting of cross-sections, output only a curve
network without the surface, and rely on user annotations. Our
system produces complete 3D shapes from natural sketches with
no extra annotation.

A variety of systems interpret a complete 2D sketch with no extra
information. This species of input is extremely ambiguous thanks to
hidden surfaces and noisy sketch curves, and hence reconstruction
algorithms rely on strong 3D shape priors. These priors are typically
manually created by experts. For example, priors for humanoid
characters, animals, or natural shapes promote smooth, round, and
symmetrical shapes [Bessmeltsev et al. 2015; Entem et al. 2015;
Igarashi et al. 1999], while garments are typically regularized to
be (piecewise-)developable [Jung et al. 2015; Li et al. 2017, 2018;
Robson et al. 2011; Turquin et al. 2004; Zhu et al. 2013], and man-
made shapes are often approximated as combinations of geometric
primitives [Shao et al. 2016] or as unions of nearly-flat faces [Yang
et al. 2013]. Our work focuses on man-made shapes, which have
characteristic sharp edges and are only piecewise smooth rather
than developable. We use a deformable patch template to promote
shapes with this structure (§4.1). Moreover, introducing specific
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expert-designed priors can be challenging: Man-made shapes are
varied, diverse, and complex (Fig. 1,7,8). Instead, we automatically
learn a separate, perhaps stronger, shape prior for each category of
shapes from data. This stronger category-specific prior allows us to
process ambiguous and complex sketches.
The vast majority of sketch-based modeling interfaces process

vector input, which consists of a set of clean curves [Bessmeltsev
et al. 2015, 2016; Entem et al. 2015; Jung et al. 2015; Li et al. 2017,
2018; Xu et al. 2014]. This approach is acceptable for tablet-based
input, but it again may force the users to deviate from their preferred
drawing media. Paper-and-pencil sketches still remain one of the
most preferred means of capturing a shape. While those can be
vectorized and cleaned up by modern methods [Bessmeltsev and
Solomon 2019; Simo-Serra et al. 2018], preprocessing can introduce
unnecessary distortions and errors into the drawing, leading to
suboptimal reconstruction. In contrast, our system processes bitmap
sketches, scanned or digital.

2.2 Deep learning for shape reconstruction
Learning to reconstruct 3D geometry from various input modalities
recently has enjoyed significant research interest. Typical forms of
input are images [Choy et al. 2016; Delanoy et al. 2018; Gao et al.
2019; Hane et al. 2018; Wang et al. 2018a; Wu et al. 2017; Yan et al.
2016] and point clouds [Groueix et al. 2018; Park et al. 2019;Williams
et al. 2018]. When designing network for this task, two important
questions affect the architecture: the loss function and the geometric
representation.

Loss Functions. One promising and popular direction employs
a differentiable renderer and measures 2D image loss between a
rendering of the inferred 3D model and the input image, often called
2D-3D consistency or silhouette loss [Kato et al. 2018; Rezende et al.
2016; Tulsiani et al. 2018, 2017; Wu et al. 2017, 2016a; Yan et al. 2016].
A notable example is the work by Wu et al. [2017], which learns
a mapping from a photograph to a three-piece output of normal
map, depth map, and silhouette, as well as the mapping from this
output to a voxelization. They use a differentiable renderer and
measure inconsistencies in 2D. 2D losses are powerful in typical
computer vision environments. Hand-drawn sketches, however,
cannot be interpreted as perfect projections of 3D objects: They are
imprecise and often inconsistent [Bessmeltsev et al. 2016]. Another
approach uses 3D loss functions, measuring discrepancies between
the predicted and target 3D shapes directly, often via Chamfer or
a regularized Wasserstein distance [Gao et al. 2019; Groueix et al.
2018; Liu et al. 2010; Mandikal et al. 2018; Park et al. 2019; Williams
et al. 2018], or—in the case of highly-structured representations
such as voxel grids—sometimes cross-entropy [Hane et al. 2018].
We build on this work, adapting the Chamfer distance to our novel
geometric representation and extending the loss function with new
regularizers (§4.2).

Shape representation. As noted by Park et al. [2019], geometric
representations in deep learning broadly can be divided into three
classes: voxel-based representations, point-based representations,
and mesh-based representations.

The most popular approach is to use voxels, directly reusing suc-
cessful methods for 2D images [Choy et al. 2016; Delanoy et al. 2018;
Tulsiani et al. 2018;Wang et al. 2018a,b;Wu et al. 2017, 2018; Yan et al.
2016; Zhang et al. 2018; ZhirongWu et al. 2015]. The main limitation
of voxel-based methods is low resolution due to memory limitations.
Octree-based approaches mitigate this problem [Hane et al. 2018;
Wang et al. 2017], learning shapes at up to 5123 resolution, but even
this density is insufficient to produce visually convincing surfaces.
Furthermore, voxelized approaches cannot directly represent sharp
features, which are key for man-made shapes.

Point-based approaches represent 3D geometry as a point cloud
[Fan et al. 2017; Lun et al. 2017; Mandikal et al. 2018; Tatarchenko
et al. 2015; Yang et al. 2018], sidestepping the memory issues. Those
representations, however, do not capture connectivity. Hence, they
cannot guarantee production of manifold surfaces.
Some recent methods explore the possibility of reconstructing

mesh-based representations [Bagautdinov et al. 2018; Baqué et al.
2018; Kanazawa et al. 2018; Litany et al. 2017; Wang et al. 2019],
representing shapes using deformable meshes. We take inspiration
from this approach to reconstruct a surface by deforming a tem-
plate, but our deformable parametric template representation allows
us to more easily enforce piecewise smoothness and test for self-
intersections (§4.2). These tasks are difficult to perform on meshes
in a differentiable manner. Other mesh-based methods either use a
precomputed parameterization to a domain on which it is straight-
forward to apply CNN-based architectures [Haim et al. 2018; Maron
et al. 2017; Sinha et al. 2016] or learn a parameterization directly
[Ben-Hamu et al. 2018; Groueix et al. 2018]. Even though these
methods are not specifically designed for sketch-based modeling,
for completeness, we compare our results to one of the more popular
methods, AtlasNet [Groueix et al. 2018] (Fig. 13).
Finally, a few works explore less common representations, such

as signed distance functions [Mescheder et al. 2018], implicit fields
[Chen and Zhang 2018], implicit surfaces [Genova et al. 2019], shape
programs [Tian et al. 2019], splines [Gao et al. 2019], volumetric
primitives [Tulsiani et al. 2016; Zou et al. 2017], and elements of a
learned latent space [Achlioptas et al. 2017; Wu et al. 2016b]. These
papers demonstrate impressive reconstruction results, but either
do not aim to produce an expressive complete 3D model [Gao et al.
2019; Tian et al. 2019; Tulsiani et al. 2016; Zou et al. 2017] or are
not tuned to the problem of sketch reconstruction [Achlioptas et al.
2017; Chen and Zhang 2018; Genova et al. 2019; Mescheder et al.
2018; Wu et al. 2016b].
Very few deep learning algorithms address sketch-based 3D ge-

ometry reconstruction, with the notable exceptions of [Delanoy et al.
2018; Lun et al. 2017; Wang et al. 2018a]. Lun et al. [2017] use a CNN-
based encoder-decoder architecture to predict multi-view depth and
normal maps, later converted to point clouds. Wang et al. [2018a]
successfully learn from separate unlabeled databases of sketches and
3D models with no correspondence between them. They train two
networks: The first network is a GAN with an autoencoder-based
discriminator aimed to embed both natural sketches and renders
into a latent space with matching distributions. The second net-
work is a more traditional CNN mapping the latent vector into a
voxelization, trained on renders only. Another inspiration for our
research is the work of Delanoy et al. [2018], which reconstructs a
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(a) (b) (c) (d)

Fig. 2. Our data generation and augmentation pipeline. Starting with a
3D model (a), we use Autodesk Maya to generate its contours (b), which
we vectorize using the method of Bessmeltsev and Solomon [2019] and
stochastically modify (c). We then use the pencil drawing generation model
of Simo-Serra et al. [2018] to generate the final image (d).

3D object, represented as voxelization, given sketches drawn from
multiple views. We compare our results to results from these papers
in Fig. 11. Because we target man-made shapes, we use a different
shape representation—a deformable parametric template—which
allows us to better capture the piecewise nature of the objects.

3 DATA PREPARATION
Since large-scale databases of hand-drawn sketches accompanied by
3D data are unavailable, we instead propose a method for generating
synthetic training data from 3D models. Our system allows us to a
generate sketch-like images that capture a model from several views
and contain the typical ambiguities and inaccuracies we expect to
see in human-drawn sketches.
Our first step is to generate 2D contours from the 3D model,

which an artist would capture in a sketch. Guided by the study by
Cole et al. [2012], we render occluding contours and sharp edges
using the Arnold Toon Shader in Autodesk Maya. We render each
model from a fixed number of distinct camera views.

Although the contour images capture the main features of the 3D
model, they lack some of the ambiguities present in natural sketches.
We would like to augment our contour images with features such as
broken lines to replicate the feeling of a rough hand-drawn sketch
[Liu et al. 2018]. To this end, we first vectorize the contour images
using the method of Bessmeltsev and Solomon [2019]. Then, for
each vectorized image, we augment the set of contours. With a
probability of 0.3, we split a random contour into two, introducing
a gap at a uniformly random position. We do this no more than 10
times for a single image. Additionally, for each curve, we truncate
it at its endpoints with probability of 0.2. Finally, we remove curves
that are below a threshold in length.
In our final step, we introduce a realistic sketch-like texture to

our contours while also introducing additional noise and ambiguity.
For each augmented vectorized contour image, we rasterize it using
several different stroke widths. We then pass the rasterized images
through the pencil drawing generation model of Simo-Serra et al.
[2018]. We illustrate our entire data generation and augmentation
pipeline in Figure 2.
In the end, for each 3D model, we are able to obtain a series of

realistic but synthetically-generated sketch images. In our experi-
ments, we train on models with corresponding sketches from the

airplane, bathtub, guitar, and knife categories of the ShapeNet Core
(v2) dataset [Chang et al. 2015]. We choose these categories be-
cause they largely contain models with similar consistent structure,
making them well-suited for our representation, which we describe
below. Prior to processing, we convert the ShapeNet models to
watertight meshes using the method of Huang et al. [2018].

4 ALGORITHM
Equipped with a large dataset of sketch-like images and correspond-
ing 3D shapes for training, we can engineer a pipeline that takes as
input a raster sketch image and outputs a predicted 3D surface. We
describe the geometric representation of the output surfaces (§4.1),
define the loss terms that we optimize (§4.2), and specify the deep
CNN architecture and training procedure (§4.3).

4.1 Representation
4.1.1 Patch Primitives. We would like to express 3D surfaces with
a representation that is both compact and expressive. To capture
the details of man-made shapes, our representation must be capable
of containing smooth regions as well as sharp creases and corners.
Given these requirements, we represent our surfaces as collections
of parametric primitives, where each primitive is a Coons patch
[Coons 1967].

A Coons patch is a parametric surface patch in three dimensions
that is fully specified by four boundary curves sharing endpoints.
We chose each boundary curve to be a cubic Bézier curve, c(γ ),
specified by four control vertices p1, . . . ,p4, two of which, p1 and
p4, are connected to adjacent curves. Thus, a Coons patch is fully
parameterized by 12 control vertices.

A single Bézier curve c : [0, 1] → R3 is defined as

c(γ ) = p1(1 − γ )3 + 3p2γ (1 − γ )2 + 3p3γ 2(1 − γ ) + p4γ 3, (1)

and a Coons patch P : [0, 1] × [0, 1] → R3 is defined as

P(s, t) = (1 − t)c1(s) + tc3(1 − s) + sc2(t) + (1 − s)c4(1 − t)
− (c1(0)(1 − s)(1 − t) + c1(1)s(1 − t) + c3(1)(1 − s)t + c3(0)st . (2)

4.1.2 Templates. We introduce templates to specify the connectiv-
ity of a collection of Coons patches. A single template consists of the
minimal number of control points necessary to the Coons patches,
where some patches are adjacent to others, sharing boundary curves.
For instance, we can define a template with cube topology consisting
of six patches with 12 shared curves and 32 control points.
A template provides both a hard topological constraint for our

surfaces as well as an initialization of their geometry (see §4.2.4).
Thus, we define a distinct template for each category of shapes. In
particular, we show our templates for the airplane, bathtub, guitar,
and knife categories, consisting of 38, 14, and 22, respectively, in Fig-
ure 3. These templates are simple to construct, capturing only coarse
geometric features and the approximate scale of their corresponding
categories. However, they are crucial in ensuring that our predicted
patches have consistent topology—an approach without templates
would result in unstructured patch collections, with patches that do
not align at boundaries or form a watertight surface.

Since each individual Coons patch is smooth andmanifoldwhereas
boundaries between adjacent patches are able to capture creases
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(a) (b)

(c)

Fig. 3. Our geometry representation is composed of Coons patches (a) that
are organized into a deformable template (b). We have designed a separate
template per category of shapes: guitars (b), planes, bathtubs, and knives
(c).

and corners, our choice of patch parameterization together with the
templates yield a representation that is well-suited for our task.

4.2 Loss
In our training procedure, we would like to fit a collection of Coons
patches {Pi } to a target mesh M by optimizing a differentiable
loss function. Below, we describe each term of our loss—a main
reconstruction loss analogous to Chamfer distance (§4.2.1), a normal
alignment loss (§4.2.2), and two regularizing losses to inhibit self-
intersections (§4.2.3, §4.2.4).

4.2.1 Area-weighted Chamfer distance. Given twomeasurable shapes
A,B ⊂ R3 and point setsX andY sampled fromA andB, respectively,
the directed Chamfer distance between X and Y is

Chdir(X ,Y ) =
∑
x ∈X

min
y∈Y

d(x ,y), (3)

and the symmetric Chamfer distance is

Ch(X ,Y ) =
∑
x ∈X

min
y∈Y

d(x ,y) +
∑
x ∈X

min
y∈Y

d(x ,y), (4)

where d(x ,y) is Euclidean distance between x and y.
Chamfer distance is differentiable and therefore a popular loss

function in deep learning pipelines that optimize shapes (§2.2). It
suffers from several disadvantages, however. In particular, the dis-
tribution under which X and Y are sampled from A and B has a
significant impact on the Chamfer distance. In our setting, sampling
uniformly from Coons patches is hard, and sampling uniformly from
the parameter domain results in oversampling around regions of
the patches with high curvature.

To address this sampling issue, following Smirnov et al. [2019], we
first define the variational Chamfer distance, which follows naturally

from the original definition:

Chvardir (A,B) =
∫
A
inf
y∈B

d(x ,y) dx , (5)

with symmetric variational Chamfer distance Chvar(A,B) defined
analogously.

We leverage the fact that, while it is difficult to sample uniformly
from our parametric patches, we are able to sample uniformly from
their parameter domain (i.e., the unit square) in a straightforward
fashion. Thus, we perform a change of variables:

Chvardir (P ,M) =
∫
P

inf
y∈M

d(x ,y) dx (6)

=
1

Area(P)

∫
P

inf
y∈M

d(x ,y) dS (7)

=
E(u,v)∼U□

[
infy∈M d(P(u,v),y)|det J |

]
E(u,v)∼U□

[|det J |] , (8)

whereU□ is the uniform distribution on the parameter domain, dS
is an area element on P , and J is the Jacobian of P(u,v). In practice,
we approximate this value viaMonte Carlo sampling at each training
iteration.
Since we can precompute points randomly sampled from the

target mesh, we do not need to use this approach to compute
Chdir(M, P). Thus, our area-weighted Chamfer distance is

LCh({Pi },M) =
∑
i
∑
(u,v)∈U□

minx ∈M ∥x − Pi (u,v)∥2 |det J (u,v)|∑
(u,v)∈U□

|det J (u,v)|

+
∑
x ∈M

min
i

min
y∈Pi

d(x ,y), (9)

whereU□ is a set of points uniformly sampled from the unit square.
We use symbolic evaluation software to compute the expression for
J (u,v) for a Coons patch in closed-form; this formula is computed
once and compiled into our code.

4.2.2 Normal alignment. While the Chamfer distance loss term
encourages our predicted patches to be close to the ground-truth
mesh with respect to Euclidean distance, it contains no explicit
notion of curvature or normal alignment. This results in surfaces
that with curvature that differs significantly from the ground truth
models (see §5.2). To address this, we add an additional normal
alignment loss term.

This loss term is computed analogously to Chdir({Pi },M), except
that instead of Euclidean distance, we compute normal distance,
defined as

dN (x ,y) = 1 − ⟨nx ,ny ⟩2, (10)

where nx is the normal vector at point x . For each point y sampled
from our predicted surface, we compare ny to nx , where x ∈ M
is closest to y under Euclidean distance. We precompute the nor-
mal vectors for all points sampled from our target meshes, and we
again use symbolic differentiation to compute the expression for
the normal vector of a Coons patch at P(u,v).
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In analogy to the variational Chamber loss above, we have

Lnormal({Pi },M) =∑
i
∑
(u,v)∈U□

(1 − ⟨nNN(Pi (u,v),M ),nPi (u,v)⟩
2)|det J (u,v)|∑

(u,v)∈U□
|det J (u,v)| , (11)

where NN(x ,Y ) is the point closest to x in Y under Euclidean dis-
tance.

4.2.3 Intersection regularization. Using only the two loss terms
described above, the surfaces output by our method would be con-
strained in topology via the prescribed template, but they would
not be guaranteed to be watertight. In particular, they may suffer
from self-intersections, both due to a single patch intersecting itself
as well as two distinct patches intersecting each other. We propose
two additional loss terms that regularize our training procedure,
acting as soft constraints to prevent such defects.
Traditional parametric surface intersection tests, such as the

Volino–Thalmann test [Andersson et al. 2007], are unfortunately
only necessary and not sufficient. Other tests, such as Point Test
Method [Andersson et al. 1997], are inapplicable to Coons patches
or they can only be carried out via a procedure that is computation-
ally expensive and non-differentiable [Patrikalakis and Maekawa
2002]. As an alternative approach better aligned to deep learning
applications, we train two auxiliary multilayer perceptrons (MLPs)
to approximate whether a patch intersects itself or whether two
patches intersect each other. The Coons self-intersection MLP is a
binary classifier that approximates the function f : R36 → [0, 1],
where the control points that define a Coons patch map to 1 if the
patch self-intersects and 0 otherwise. Similarly, the Coons pairwise
intersection MLP approximates the function д : R72 → {0, 1}, where
an intersecting pair of Coons patches—expressed using 36 × 2 = 72
coordinates—maps to 1.
We generate about 50,000 training samples to train each MLP,

making sure that the two classes are equally represented (there
is an equal number of intersecting and non-intersecting samples).
Each sample is generated by picking 12 (or 24) uniformly random
control points and determining whether the resulting Coons patch
(or pair of patches) is intersecting by converting the patches ito
a triangle mesh and testing the intersection of the mesh. During
training, we augment our data with random isometries. In particular,
we randomly rotate, reflect, and permute the control points of each
patch or pair of patches. Additionally, we normalize the input such
that each patch or pair of patches lies in the unit cube.

Each MLP consists of three layers with 1,024 units each, one layer
with 512 units, one layer with 256 units, one layer 128 units, and an
output layer with a single unit. We use Dropout [Srivastava et al.
2014] with a keep probability of 0.85 and ReLU after each hidden
layer. We train the networks using Adam [Kingma and Ba 2014]
with a learning rate of 10−4, optimizing the cross-entropy loss for
binary classification.

We attain classification accuracy 86.12% for self-intersections and
87.94% for pairwise intersections. While our regression problem
is in principle binary, the real-valued score predicted by the MLPs
roughly corresponds to the “severity” of intersection. We demon-
strate this phenomenon in Figure 4, where we linearly interpolate

Fig. 4. Intersection scores predicted by the self-intersection MLP evaluated
on 50 patches linearly interpolated between a flat patch and a patch with
several self-intersections. The score increases as the patch becomes “more
self-intersecting." Six out of the 50 patches, including the initial and final
patches, are displayed.

Fig. 5. Example patches misclassified by the self-intersection MLP. Two
false positives (incorrectly predicted to be self-intersecting) are shown in
green, and two false negatives are shown in orange.

between a flat patch and highly self-intersecting patch, plotting the
scores for each patch in between. Note that the scores are nearly
monotonically increasing. In Figure 5, we show some misclassified
examples—typically the the false negatives have only minor self-
intersections, and the false positives are close to self-intersection.
We use these trained classifiers as fixed functions (with frozen

weights) to define a self-intersection loss Lself-x({Pi }) =
∑
i f (Pi )

and pairwise intersection loss Lpair-x({Pi }) =
∑
i,j д(Pi , Pj ) in our

main training procedure.

4.2.4 Template initialization. As described in §4.1.2, we employ a
system of templates not only for constraining the Coons patch topol-
ogy but also for providing an initialization for their geometry. Thus,
following Smirnov et al. [2019], we add a template initialization loss
term, which initializes the network output to the template patch
parameters and decays exponentially as training progresses:

Ltemplate({Pi }) =
∑
i
γ (t/s)∥Pi −Ti ∥22 , (12)

where γ ∈ (0, 1) and s > 0 are decay parameters, t is the current
training iteration, and Ti is the template for the ith Coons patch. In
our experiments, we set γ = 0.4 and s = 600.
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Fig. 6. An overview of our deep learning pipleine. We encode a sketch image with a series of convolutions and residual blocks. Following a fully connected
layer, we get back a series of parameters defining a collection of Coons patches. We then compute five loss values based on the predicted patches and the
ground truth 3D model as well as a template. We optimize the overall loss using backpropagation.

4.3 Deep learning pipeline
The final loss that we optimize is

L({Pi },M) =αChLCh({Pi },M)
+ αnormalLnormal({Pi },M)
+ αtemplateLtemplate({Pi })
+ αself-xLself-x({Pi })
+ αpair-xLpair-x({Pi }).

(13)

To do so, we train a CNN, which takes as input a 128 × 128 raster
image of a sketch. We use an encoder-style architecture, consisting
of seven convolutional layers followed by seven residual blocks
[He et al. 2016], two additional alternating convolutional layers and
residual blocks, two fully-connected layers with 512 and 256 units,
respectively, and a final fully-connected layer with size equal to
the appropriate output dimension. We use the ELU nonlinearity
[Clevert et al. 2015] after each layer except for the last; LayerNorm
[Ba et al. 2016] after each convolutional and residual layer, except
for the first; and dilated convolutions in the residual blocks [Yu and
Koltun 2016]. We train each network on a single Tesla K80 GPU,
using Adam [Krizhevsky et al. 2012] with learning rate 10−4 and
batch size 16. At each iteration, we sample 5,000 points from the
predicted and target shapes. Training the model takes approximately
12 hours, and a forward pass takes approximately 270 milliseconds.
Our entire pipeline is illustrated in Figure 6.

5 EXPERIMENTAL RESULTS
We demonstrate the efficacy of our method with a series of experi-
ments. First, we show 3D reconstruction results both on synthetic
sketches from our dataset as well as natural human-drawn sketches.
We also perform an ablation study, demonstrating the necessity of
each component of our system. Finally, we compare our results to
existing methods.

5.1 Results on Real and Synthetic Sketches
We evaluate our method on synthetic sketches from our test dataset
for each object category in Figure 7. Our method is able to con-
vey distinctive features and details of the sketches from various
viewpoints in the 3D reconstructions.

We also test our method on real sketches drawn by four artists
using pencil and paper as well as an iPad with an Apple Pencil.
Each artist was shown a rendering of a sample 3D model (airplane
and bathtub) rendered from each of our supported viewpoints and
was told to sketch an object in the same category from one of the
viewpoints. The artists were never shown the contours or synthetic
sketches used in our training procedure.
The 3D results that we recover are similar to those on the syn-

thetic sketches. This demonstrates that our dataset is reflective of
the choices that humans make when sketching 3D objects.

5.2 Ablation Study
Weperform an ablation study of ourmethod.We demonstrate results
on a human-drawn airplane sketch for a network trained without
each of the loss terms, with a template using fewer patches, and with
training data generated without several steps of our data generation
procedure. The results are shown in Figure 9.

The ablation study demonstrates the contribution of each compo-
nent of our system method to the final result. Training without each
of the intersection loss results in predictions containing pairwise or
self-intersections. Omitting the normal loss causes the 3D surface to
suffer in smoothness. Using a simpler template with fewer patches
(we show the full and simple templates in Figure 10) is at the expense
of details captured in the 3D prediction, e.g. the tail of the airplane.
Finally, removing the pencil sketch filter and/or the vector contour
augmentation results in less realistic reconstructions.
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Fig. 7. Results on synthetic sketches taken from our test datasets for bathtubs, guitars, and knives.

5.3 Comparisons
In Figure 11, we compare our method to the sketch-based 3D re-
construction methods of Lun et al. [2017] and Delanoy et al. [2018].
Our comparisons are generated using the species of input used to
train these two methods, rather than attempting to re-train their
models for our input. Moreover, both of these methods perform 3D
reconstruction frommultiple sketches, while we are able to produce
similar results from a single sketch.
Although we train on a different dataset, the visual quality and

fidelity of our predictions is comparable to the output of [Lun et al.
2017] and [Delanoy et al. 2018]. Moreover, our method offers some
distinct advantages. In particular, we output a 3D representation
that sparsely captures smooth and sharp features, independent of
resolution. In contrast, Delanoy et al. [2018] produce a 643 voxel
grid—a dense representation at a fixed resolution, which cannot be
edited directly and offers no topological guarantees. In Figure 12, we
show results of their system evaluated on contours from our dataset.

These inputs were not processed with the pencil sketch model, to
more closely resemble the data used to train their system. We show
their results (orange) on two inputs alongside our results (green).
These results largely demonstrate that our task of reconstructing
single-viewpoint sketches with a prior on class (airplane) rather
than geometric structure (cylinders and cuboids) is misaligned with
theirs: Since our training data is not well-approximated by CSG
models, their method is unable to extract meaningful output.
Although the method of Lun et al. [2017] ultimately produces a

mesh, it is only after a computationally expensive post-processing
and fine-tuning procedure, since a forward pass through their net-
work returns a labeled point cloud from which the mesh is extracted.
Our method directly outputs the parameters for surface patches with
no further optimization or post-processing. Additionally, the final
mesh from their technique contains more components (triangles)
than our output representation (patches), making it less useful for
editing. Finally, their fine-tuning approach is fundamentally incom-
patible with the goal of parsing human-drawn sketches, since they
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Fig. 8. Results on real human-drawn sketches. The top two rows are sketches are drawn on pencil and paper and scanned while the bottom two rows are
drawn on iPad. Each artist was shown the sample sample 3D models rendered from several viewpoints but was not provided with sample sketches or given
instructions on how to draw the sketches.

(d)

(b) (c)

(e) (f )(f )

(a)

(g) (h) (i)

Fig. 9. For a human-drawn sketch (a), we perform an ablation study of
our algorithm, training the network (b) without the self-intersection loss,
(c) without pairwise intersection loss, (d) without normal loss, or using a
simple template (e). We also study the effects of various data augmentation
stages (§3) by training the network: (f) only on contour renders without any
augmentation, (g) with the sketch filter, but no vector augmentation. In (h),
we overlay (g, shown in brown) with the final result (i).

rely on propagating changes to the 3D mesh back to the raster im-
age. The inherent ambiguity and noise of our input precludes this
procedure.

In Figure 13, we compare our method to AtlasNet [Groueix et al.
2018]. Since AtlasNet does not operate on sketch-based input, we
retrain our model with the renderings used for AtlasNet. While our
3D reconstructions capture the same amount of detail, they do not

Fig. 10. The template used for our main airplane model (left) and the simple
airplane template used for the ablation study (right). The simple airplane
template contains fewer patches than the main template, and, consequently,
yields less expressive results.

(a) (b)

(d)(c)

(b)

(d)

Fig. 11. Compared to the previous multi-view approaches, [Delanoy et al.
2018] (a) and [Lun et al. 2017] (c), we (b and d) produce results of comparable
quality with just a single sketch. Furthermore, unlike voxelization-based
approaches [Delanoy et al. 2018] or smooth mesh-based [Lun et al. 2017],
our models don’t depend on resolution and can represent sharp and smooth
regions explicitly.
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Fig. 12. Comparison to [Delanoy et al. 2018] for single-view reconstruction
on inputs from our dataset. Their predictions (graciously generated by the
authors) are in orange, and ours are in green. This experiment demonstrates
that their method does not generalize to arbitrary single-view sketches.

(b) (c)(a)

Fig. 13. 3D reconstructions using AtlasNet [Groueix et al. 2018] (b) and
our method (c) given a single rendering as input (a). Compared to Atlas-
Net, we produce a result without topological defects (holes and overlaps).
Additionally, each of our patch primitives is easily editable and has a low
dimensional, interpretable parameterization.

suffer from the topological defects of AtlasNet’s representation. In
particular, AtlasNet’s reconstruction contains many patch intersec-
tions as well as holes in the surface. Extracting a watertight mesh
would require significant post-processing. Additionally, each patch
in our representation is parameterized sparsely by control points
on its boundary. This is in contrast to AtlasNet’s patches, which
come from a learned latent space and must be sampled using a deep
decoder network.

6 DISCUSSION AND CONCLUSION
Sketch-based modeling is a singularly challenging task representa-
tive of the difficulties that arise when coupling learning and graphics.
A system for this task must infer clean features from rough curves,
depth from 2D, and missing features from a single view. But the
potential payoff is singular as well: As algorithms in this area reach
higher and higher levels of practicality, sketch-based modeling holds
potential to change how we design 3D shapes fundamentally.
While many difficult problems remain on the path toward this

goal, our system represents a significant step toward practical 3D
modeling from sketches. Our use of a sparse patch-based representa-
tion is closer to what is used in artistic and engineering practice, and
we accompany this representation with new geometric and learned
regularizers that greatly improve the reconstruction process. Unlike
meshes or voxel occupancy functions, this representation can easily
be edited and tuned after 3D reconstruction, and it captures a trade-
off between smoothness and sharp edges reasonable for man-made
shapes. Furthermore, our synthetic sketch data generation pipeline
fills a gap in data sets needed to train modern machine learning
systems for this task.

Our work suggests several avenues for future research. Currently
our technique uses pre-trained networks to generate sketch training
data and to penalize patch intersection; inspired by recent genera-
tive adversarial networks (GAN), we could couple together train-
ing of these different pieces to alleviate dependence on matched
sketch–3D model pairs. We also could explore coupling with other
representations, leveraging the rich literature in computer-aided

geometric design (CAGD) to identify other structures amenable to
learning with relatively few parameters. Of particular interest are
multiresolution representations (e.g., subdivision surfaces), which
might enable the system to learn both high-level smooth structure as
well as geometric details like filigree independently. It also may be
beneficial to incorporate additional modalities such as photographs
to further regularize our learned output.

Other extensions of our work might be oriented on the end user.
Capturing and learning from the sequence of strokes might be fruit-
ful for disambiguating depth information in 3D reconstruction. Fur-
thermore, we should close the loop between learning system and
artist, allowing the artist to edit the 3D model or to edit the sketch
and have the changes propagate to the other side.

Perhaps the most important challenge remaining from our work—
and others, such as [Kanazawa et al. 2018; Smirnov et al. 2019; Wang
et al. 2019]—involves inference of the topology of a shape. Currently
we rely on a per-class template to determine connectivity of patch
vertices. Although this limitation is reasonable for the classes of
shapes we consider—and likely for parts of shapes, as explored
in [Mo et al. 2019]—reconstruction of a sketch of a generic full
shape will require algorithms that automatically add and connect
patches in a flexible and adaptive fashion. The technical issue here
is that introduction of patches or couplings between control points
is fundamentally a discrete decision, which can be incompatible
with conventional deep learning methods.

Even without the improvements above, our system remains an
effectivemeans of 3D shape recovery from sketches. It can be used as-
is as ameans of extracting an initial 3Dmodel that can be tuned by an
artist or engineer. Moreover, our architecture and loss functions can
be incorporated as building blocks into larger pipelines connecting
artistic imagery to the 3D world.
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