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1University College London 2Adobe Research

Abstract

Vector graphics are widely used to represent fonts, lo-
gos, digital artworks, and graphic designs. But, while a
vast body of work has focused on generative algorithms
for raster images, only a handful of options exists for vec-
tor graphics. One can always rasterize the input graphic
and resort to image-based generative approaches, but this
negates the advantages of the vector representation. The
current alternative is to use specialized models that require
explicit supervision on the vector graphics representation
at training time. This is not ideal because large-scale high-
quality vector-graphics datasets are difficult to obtain. Fur-
thermore, the vector representation for a given design is
not unique, so models that supervise on the vector repre-
sentation are unnecessarily constrained. Instead, we pro-
pose a new neural network that can generate complex vec-
tor graphics with varying topologies, and only requires in-
direct supervision from readily-available raster training im-
ages (i.e., with no vector counterparts). To enable this, we
use a differentiable rasterization pipeline that renders the
generated vector shapes and composites them together onto
a raster canvas. We demonstrate our method on a range
of datasets, and provide comparison with state-of-the-art
SVG-VAE and DeepSVG, both of which require explicit vec-
tor graphics supervision. Finally, we also demonstrate our
approach on the MNIST dataset, for which no groundtruth
vector representation is available. Source code, datasets
and more results are available at http://geometry.
cs.ucl.ac.uk/projects/2021/Im2Vec/.

1. Introduction

In vector graphics, images are represented as collections
of parametrised shape primitives rather than a regular raster
of pixel values. This makes for a compact, infinitely scal-
able representation with appearance that may be varied at
need simply by modifying stroke or colour parameters. As
a result, it is favoured by graphic artists and designers.

Unfortunately, creating vector graphics still remains a
difficult task largely limited to manual expert workflows,
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Figure 1: We present Im2Vec that can be trained with
only image supervision to produce a latent space for vector
graphics output. The learned space supports reprojection,
sampling (i.e., generation), and interpolation.

because the same irregular structure makes it ill-suited for
today’s convolution-based generative neural architectures.
There is demand for a generative approach suitable for this
domain, but it is not yet well served by research because
of the difficult design requirements. Suitable approaches
should: (i) produce output in vector format; (ii) estab-
lish correspondence across elements of the same family;
(iii) support reconstruction, sampling, and interpolation;
(iv) give user control over accuracy versus compactness of
the representation; and finally, (v) be trainable directly us-
ing images without the need for vector supervision.

SVG-VAE [24] and DeepSVG [5], the two leading gen-
erative algorithms for vector graphics, cast synthesis as a se-
quence prediction problem, where the graphic is a sequence
of drawing instructions, mimicking how common formats
actually represent vector art. Training these methods there-
fore requires supervision from ground truth vector graphics
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sequences, which are difficult to collect in large volumes.
Furthermore, the mapping from sequences of parametrised
drawing instruction to actual images is highly non-linear
with respect to the parameters and also non-injective, al-
lowing a variety of different sequences to produce the same
visual result. This makes it difficult to consider appearance
as a criterion, and also causes the produced results to inherit
any structural bias baked into the training sequences.

An approach aiming to do away with such vector su-
pervision would need to overcome a number of challenges.
First, the relationship between the representation and its ap-
pearance must be made explicit and differentiable. Sec-
ond, it must operate on an internal representation that di-
rectly maps to a vector graphics representation and is flexi-
ble enough to support a large range of topologies and shape
complexities. Finally, it should extract correspondences be-
tween related shapes, directly from unlabelled images.

In this paper, we propose such a method, called Im2Vec,
based on a representation that mimics the compositing be-
haviour of complex vector graphics. It uses a variable-
complexity closed Bézier path as the fundamental primi-
tive, with the capability to composite a variable number of
these to create shapes of arbitrary complexity and topology
(shown in Figure 2).

I L1, d1 L2, d2 L3, d3 . . . LT , dT

Figure 2: Im2Vec encodes a shape as a layered set of filled
curves (or shapes). Each shape is obtained by deformation
of a topological disk, differentiably rasterized into images
Li, then differentiably composited back-to-front according
to scalar depth variables di.

The key insight that allows the handling of arbitrary
complexity is that we can treat any primitive closed shape as
a deformation of a unit circle, which is modelled as 1D con-
volution on samples from this circle conditioned on a com-
mon latent vector. By recombining these primitive paths
through a differentiable rasterizer [22] and differentiable
compositing [28], we can natively represent vector art while
learning to generate it purely based on appearance, obviat-
ing the need for vector supervision.

We evaluate Im2Vec on a variety of examples with vary-
ing complexity and topology including fonts, emojis, and
icons. We demonstrate that Im2Vec, even without any vec-
tor supervision, consistently performs better reconstruction
compared to SVG-VAE and DeepSVG when trained on the
same dataset. We also compare our approach to a purely
raster-based autoencoder, which we dub ImageVAE. While
ImageVAE and Im2Vec produce comparable reconstruction

quality, Im2Vec outputs vector graphics and hence enjoys
the associated editability and compactness benefits. Finally,
we quantify the compactness versus approximation power
of our method, and demonstrate Im2Vec can be used to vec-
torize the MNIST dataset for which no groundtruth vector
representation is available.

2. Related Work
Deep learning techniques for parametric vector shapes

have recently garnered significant interest from the machine
learning community [19, 11, 13, 40, 27].

Learning-based image vectorization. Our autoencoder
encodes raster images. It can therefore address the single-
image vectorization problem [3, 9, 31, 20, 1, 17], for which
learning-based solutions have been proposed. Egiazar-
ian et al. [7] vectorize technical line drawings. They pre-
dict the parameters of vector primitives using a transformer-
based network, and refine them by optimization. Deep-
Spline [11] produces parametric curves of variable lengths
from images using a pre-trained VGG network [33] for fea-
ture extraction followed by a hierarchical recurrent network.
Guo et al. [14] use neural networks sub-divide line drawings
and reconstruct the local topology at line junctions. The net-
work predictions are used in a least squares curve fitting step
to estimate Bézier curve parameters. Liu et al. [23] focus on
vectorization of rasterized floorplans. They use a network
to extract and label wall junctions, and use this information
to solve an integer program that outputs the vectorized floor
plans as a set of architectural primitives. These works pro-
duce high-quality vectorizations but, unlike ours, focus on
the single image case. In contrast, our objective is to train a
latent representation which can serve both for vectorization
of existing raster images, and for generating new graphics
by sampling with no post-processing.

Parametric shape estimation. Deep learning methods
for parametric shape estimation typically encode shapes as
an assembly of primitives, often with fixed topology and
cardinality [13]. Smirnov et al. [36] fit rasterized fonts us-
ing quadratic Bézier curves, and 3D signed distance fields
using cuboids. Their outputs have predetermined, fixed
topologies that are specified as class-dependent templates.
Zou et al. [41] train a recurrent network that predict shapes
as a collection of cuboids from depth maps; they super-
vise directly on the shape parameters. Tulsiani et al [39]
also use hierarchies of cuboids, but from occupancy vol-
umes. Similar techniques have explored other primitives
like superquadrics [27] and Coon patches [35] as primi-
tives. Sinha et al. [34] represents watertight 3D shapes as
continuous deformation of a sphere. This is analogous to
our representation of closed 2D curves.



Shape-generating programs. Ganin et al. [10],
Huang et al. [18], and Nakano [25] train Reinforce-
ment Learning (RL) drawing agents. They circumvent
the need for direct supervision on the drawing program
by simulating a rendering engine to produce images from
which they compute a reward signal. Ellis et al. [8] use
program synthesis to generate graphics expressed using a
subset of the LATEX language from hand drawings. They
do not work with complex parametric shapes like Bézier
curves, which are the basic building block of most vector
designs. Another notable work is the CSGNet [32] that
present impressive performance in estimating constructive
solid geometry programs. It uses the REINFORCE [37]
algorithm to learn in an unsupervised manner, but runs into
issues like drawing over previous predictions in the later
stages of the generation process. Further, it can only output
32 × 32 raster images, which lacks the flexibility of vector
graphics and is insufficient for applications that require
high fidelity. Strokenet [40] trains an agent that draws
strokes after observing a canvas image and a generator that
maps stroke parameters to a new image.

Generative vector graphics model. Our goal is to obtain
a generative model for vector graphics. Previous works in
this area have focused predominantly on the case where di-
rect vector supervision is available. In contrast, our model
can be trained from raster data alone. SketchRNN [15] in-
troduces a model for both conditional and unconditional
sketch generation. Sketches are encoded as a sequence of
pen position and on/off states. An LSTM is then trained
to predict the parameters of a density function over the
sketch parameter space, which can then be sampled to pro-
duce a new sketches. Similarly, Sketchformer [29] pro-
posed a transformer based architecture for encoding vector
form sketches. They show how the encoding can be used
for sketch classification, image retrieval, and interpolation.

SVG-VAE [24] is the first method that attempts to esti-
mate vector graphics parameters for generative tasks. They
follow a two stage training process. First, they train an im-
age Variational Auto Encoder (VAE). Second, they freeze
the VAE’s weights and train a decoder that predicts vector
parameters from the latent variable learned on images. They
show a style-transfer application from one vector graphic to
another. Unlike ours, their method is not end-to-end, and it
requires vector supervision. More recently, DeepSVG [5]
showed that models operating on vector graphics benefit
from a hierarchical architecture; they demonstrate interpo-
lation and generation tasks. Prior works [2, 12] can gen-
erate new font glyphs from partial observations, but they
only work in a low-resolution raster domain. Li et al. [22]
have recently proposed a differentiable rasterizer that en-
ables gradient based optimization and learning on vector
graphics, using raster-based objectives. This is a key build-

ing block for our method. However, we go beyond the gen-
erative models they demonstrate. In particular, our network
can generate graphics made up of closed curves with com-
plex and varying topologies; it does not produce artifacts
like overlapping paths.

3. Method

Our goal is to build a generative model for vector graph-
ics that does not require vector supervision, i.e., that only
requires raster images at training time. Our model follows
an encoder–decoder architecture (Fig. 3). The encoder has
a standard design [16]; it maps a raster image I to a la-
tent variable z ∈ Rd, which is then decoded into a vector
graphic structure. Our decoder has been carefully designed
so that it can generate complex graphics, made of a variable
number T of paths, with varying lengths and no predeter-
mined topology (§ 3.1). We also train an auxiliary model to
predict the optimal number of control points for each path
(§ 3.2). Finally, each vector shape is rasterized using a dif-
ferentiable rasterizer [22] and composited into a final ren-
dering [28], which we compare to a raster ground truth for
training (§ 3.3).

3.1. Vector Graphics Decoder

We choose to represent a vector graphic as a depth-
ordered set of T closed Bézier paths, or equivalently, a set
of T simply connected solid 2D shapes. The first opera-
tor in our decoder is a recurrent neural network (RNN) that
consumes the global latent code z representing the graphic
as a whole (§ 3.1.3). At each time step t, the RNN outputs
a per-path latent code zt. This mechanism lets us gener-
ate graphics with arbitrary numbers of paths, and arbitrary
topology (using fill rules to combine the shapes). The path-
specific codes are then individually processed by a path de-
coder module (§ 3.1.1) which outputs the parameters of a
closed path of arbitrary length using cubic Bézier segments.

3.1.1 Single path decoder with circular convolutions

To ensure the individual paths are closed, we obtain them
by continuous deformation of the unit circle. Specifically,
for each shape, we sample 3k points along the circle, corre-
sponding to the control points of k cubic Bézier segments.
We compute the 2D cartesian coordinates pi of each of these
points, and annotate them with a 1-hot binary variable ci to
distinguish between the segment endpoints — every third
point, which the Bézier path interpolates — and the other
control points.

We replicate the path’s latent code zt and concatenate it
with the sample position and point type label, so that each
sample on the circle is represented as a vector

[
pi ci zt

]
,

i ∈ {1, . . . , 3k}, which we call a fused latent vector. These
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Figure 3: Architecture overview. We train an end-to-end variational autoencoder that encodes a raster image to a latent
code z, which is then decoded to a set of ordered closed vector paths (top). We then rasterize the paths using DiffVG [22] and
composite them together using DiffComp to obtain a rasterized output, which we compare to the ground truth raster target
for supervision at training time. Our model can handle graphics with multiple component paths. It uses an RNN to produce
a latent code zt for each path, from the global latent code z representing the graphic as a whole. Our path decoder (bottom)
decodes the path codes into closed Bézier paths. Our representation ensures the paths are closed by sampling the path
control points uniformly on the unit circle. These control positions are then deformed using a 1D convolutional network with
circular boundary conditions to enable adaptive control over the point density. Finally, another 1D circular CNN processes
the adjusted points on the circle to output the final path control points in the absolute coordinate system of the drawing canvas.
The auxiliary network that predicts the optimal number of control points per path is trained independently from our main
model; it is not shown here.

are then arranged into a cyclic buffer, which is then pro-
cessed by a neural network performing 1D convolutions
with cyclic boundary conditions (along the sample dimen-
sion) to obtain the final spatial locations of the path’s control
points: x1, . . . , x3k. The cyclic convolution along the sam-
ple axis corresponds to convolution along the perimeter of
the unit circle. It is a crucial component of our method be-
cause it enables information sharing between neighbouring
samples, while respecting the closed topology of the shape.
We use 3-tap filters for all convolutions and ReLU activa-
tions.

Sampling the unit circle rather than using a fixed-length
input array allows us to adjust the complexity (i.e., the num-
ber of segments k) of the Bézier path by simply changing
the sampling density. In Section 3.2, we show this sampling
density can be determined automatically, based on com-
plexity of the shape to match, using an auxiliary network.
Figure 4 shows the impact of the number of segments on
the reconstruction quality.

3.1.2 Adaptive control point density

The most natural choice for our control point parameter-
ization would be to choose equally spaced sample points

along the unit circle (in angle). We found this uniform
control points allocation was often sub-optimal. Ideally,
more control points should be allocated to sections of the
path with higher complexity (e.g., sharp creases or serifs
for fonts). To address this, we propose an adaptive sam-
pling mechanism, which we call the sample deformation
subnetwork. This module is a 1D convolutional network
with cyclic boundary condition acting on the fused latent
vectors

[
pi ci zt

]
, where the pi are uniformly spaced

along the circle. It outputs a displacement δpi for each sam-
ple point. We parameterize this output in polar coordinates
so that pi + δpi remains on the circle.

With our adaptive sampling mechanism turned on, the
path decoder now operates on the fused latent vector with
sample deformation,

[
pi + δpi ci zt

]
, instead of the

regularly-spaced positions. In Figure 4b, we show the sam-
ple deformation module improves the reconstruction accu-
racy, especially when few segments are used. The benefit
over the uniform sampling distribution diminishes as more
curve segments are added.
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Figure 4: Uniform vs. adaptive sampling. Our decoder
provides a natural control over the complexity of the vec-
tor graphics it produces. By adjusting the sampling density
on the unit circle, we can increase the number of Bézier
segments and obtain a finer or vector representation of a
target raster image (a). Our adaptive sampling mechanism
(§ 3.1.2) improves reconstruction accuracy, compared to a
uniform distribution of the control points with the same
number of segments (b). This adaptive scheme achieves
good reconstructions with as few as 7–8 segments, while
uniform sampling requires 12–14.

3.1.3 Decoding multi-part shapes using an RNN

So far, we have discussed a decoder architecture for a single
shape, but our model can represent vector graphics made
of multiple parts. This is achieved using a bidirectional
LSTM [30] that acts on the graphic’s latent code z. To syn-
thesize a graphic with multiple component shapes, we run
the recurrent network for T steps, in order to obtain shape
latent codes for each shape: z1, . . . , zT . We set T to a fixed
value, computed before training, equal to the maximum
number of components a graphic in our training dataset can
have. When a graphic requires fewer than T shapes, the ex-
tra paths produced by the RNN are degenerate and collapse
to a single point; we discard them before rendering.

In addition to the shape latent codes zi, the recurrent net-
work outputs an unbounded scalar depth value di for each
path which is used by our differentiable compositing mod-
ule when rasterizing the shapes onto the canvas.

3.2. Predicting the number of path control points

Each path (shape) in our vector output can be made of a
variable number of segments. Figure 4a shows how the re-
construction loss decreases as we increase the number of
curve segments from 6-25, for multiple designs. It also
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Figure 5: Latent space correspondences. Im2Vec en-
codes shapes as deformation of a topological disk. This
naturally gives a point-to-point correspondence between
shapes across graphics design once we encode them in our
latent space. Graphics can be made of a single path (top),
or multiple paths (bottom). In both cases, our model es-
tablish meaningful geometric correspondences between the
designs, indicated by the blue–orange color coding.

shows that, depending on the design’s complexity, not all
paths need many segments to be represented accurately. We
train an auxiliary network conditioned on a path latent vari-
able zt to model the complexity–fidelity trade-off and au-
tomatically determine the optimal number of segments for
a path. This auxiliary network has 3 fully connected lay-
ers. It outputs 3 parameters a, b, and c of a parametric
curve x 7→ ae−bx + c that approximates the loss graph of a
given shape, with respect to the number of segments. Given
this parametric approximation, we allow the user to set the
quality trade-off as a threshold on the derivative of the para-
metric curve. Specifically, we solve for x in the derivative
expression and round up to obtain the number of segments
to sample. This threshold defines what improvement in the
reconstruction error is worth the added complexity of an ad-
ditional Bézier segment. Please refer to our supplementary
for more information on the auxiliary network.

3.3. Multi-resolution raster loss

Given a raster input image I , our model encodes the de-
sign into a global latent code z, which the RNN decomposes
into path latent codes z1, . . . , zT . Our path decoder maps
each path latent code to a closed Bézier path. We rasterize
each path individually, as a solid shape using the differen-
tiable rasterizer of Li et al. [22], and composite them to-
gether into a final raster image O using the differentiable
compositing algorithm of Reddy et al [28]. Since every
step of the pipeline is differentiable, we can compute a
loss between input image I and raseterized generated vector
graphic O, and backpropagate the error to train our model
using gradient descent.

When we differentiate O with respect to the Bézier pa-
rameters, the gradients have a small area of influence, corre-
sponding to the support of the rasterization prefiltering ker-
nel. This adversely affects convergence especially when the
mismatch between I and O is high (e.g., at the early stages



of the training). We alleviate this issue by rasterizing our
graphics at multiple resolutions. That is, we render an im-
age pyramid instead of a single image, and aggregate the
loss at each pyramid level. We obtain the ground truth su-
pervision for each level by decomposing the target image
into a Gaussian pyramid, where each level is downsampled
by a factor 2 along each dimension from the previous level.
The gradients at the coarsest level are more stable and pro-
vide a crucial signal when the images differ significantly,
while the fine-scale gradients are key to obtaining high spa-
tial accuracy. The loss we minimize is given by:

EI∼D

L∑
l=1

‖pyrl(I)−Ol‖2, (1)

where L is the number of pyramid levels, pyrl(I) the l-th
pyramid level,Ol our output rasterized at the corresponding
spatial resolution, and D the training dataset.

3.4. Shape correspondences by segmentation

When specializing a generative models to a single class,
e.g., the same glyph or digit across multiple fonts, it is often
desirable that the model’s latent space capture correspon-
dences between parts of the instance, like the opening in the
capital letter ‘A’, or the eyes and mouth of an emoji face.
To enable this, we segment our raster training dataset us-
ing an automatic off-the-shelf tool [20]. We cluster these
segments across the dataset based on spatial position, and
assign to each cluster a unique RGB colour. This consis-
tent labeling helps learn a more interpretable latent space
for purposes of interpolation, but is not itself critical; we
show in supplementary material that our reconstruction is
robust to inconsistent labeling thanks to the differentiable
compositing step.

3.5. Training details

We train our model end-to-end for 100 – 1000 epochs,
using a batch size between 2 – 256 and the Ranger opti-
mizer [38] with learning rate between 10−3 and 10−4, de-
pending on the dataset. To evaluate path decoder’s general-
ization to variable number of segments, we randomly chose
the number of segments k ∈ {7, . . . , 25} at every iteration.

4. Evaluation
We demonstrate Im2Vec’s quantitative performance in

3 tasks: reconstruction, generation, and interpolation. We
compare it with raster based ImageVAE and vector based
SVG-VAE, DeepSVG on all the tasks.

Reconstruction We measure the reconstruction perfor-
mance of the baselines and Im2Vec using L2 loss in image
space. This quantifies how accurately the latent space of the

Target ImageVAE SVG-VAE DeepSVG Ours

Figure 6: Reconstructions on FONTS. Our model,
Im2Vec, captures complex topologies and produces vector
outputs. ImageVAE has good fidelity but produces raster
outputs with limited resolution (see Table 1). SVG-VAE
and DeepSVG produce vector outputs but often fail to ac-
curately reproduce complex fonts. All the methods were
trained on the same set of fonts. Please use digital zoom to
better appreciate the quality of the vector graphics.

Table 1: Reconstruction quality. Comparison of
pixel-space reconstruction losses for various methods and
datasets. Note that neither SVG-VAE nor DeepSVG oper-
ate on datasets without vector supervision.

FONTS MNIST EMOJIS ICONS

ImageVAE 0.0116 0.0033 0.0016 0.0002
SVG-VAE 0.1322 5 - -
DeepSVG 0.0938 5 - -

Im2Vec (Ours) 0.0284 0.0036 0.0014 0.0003

different methods captures the training dataset. Since SVG-
VAE and DeepSVG work in vector domain, we rasterize
their vector estimates using CairoSVG [4].

Table 1 shows reconstruction quality of the Im2Vec and
other baselines on FONTS [24], MNIST [21], EMOJIS [26],
and ICONS [6]. While vector based methods have the ad-
vantage of being able reproduce the exact intended vec-
tor parametrization, they are adversely effected by the non-
linear relationship between vector parameters and image ap-
pearance. Therefore what seems like a small error in the
vector parameters estimated by SVG-VAE and DeepSVG
may result in dramatic changes in appearance. Unlike vec-
tor domain methods, Im2Vec is not affected by the ob-
jective mismatch between the vector parameter and pixel
spaces, thereby achieving significant improvement in the re-
construction task.

Refer to our supplementary for a chamfer distance based
reconstruction comparison between SVG-VAE, DeepSVG
and our method.

We show qualitative comparisons of input shape re-
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Figure 7: MNIST results. The MNIST dataset only pro-
vides raster data. Since no vector graphics ground truth is
available, neither SVG-VAE nor DeepSVG can be trained
on this dataset. We trained both ImageVAE and Im2Vec on
the full dataset, with no digit class specialization or con-
ditioning. Our model produces vector outputs, while Im-
ageVAE is limited to low-resolution raster images (top).
Both models produce convincing interpolation (bottom).

construction between methods in Figures 6 and 7a. We
also show reconstruction output of Im2Vec on EMOJIS and
ICONS in Fig. 8.

Generation and Interpolation We present a random
sample of font glyphs generated using Im2Vec in Figure 10.
A qualitative comparison of latent space interpolation be-
tween baselines and Im2Vec is presented in Figures 9b
and 7b. We also present latent space interpolation between
4 input images of EMOJIS and ICONS in Fig. 9a.

Table 2: Generation and Interpolation quality. Results
on the FONTS and the MNIST are more accurate than both
previous techniques that require vector supervision, and an
image-based baseline autoencoder.

Generation Interpolation
FONTS MNIST FONTS MNIST

ImageVAE 0.171 0.058 0.184 0.072
SVG VAE 0.206 5 0.206 5
DeepSVG 0.210 5 0.202 5

Im2Vec (Ours) 0.187 0.069 0.188 0.0872

To quantitatively evaluate our generation results with
others, we quantify how realistic the intermediate shapes in
the latent shape as the average closest distance between the
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Figure 8: Reconstructions. Results on the EMOJIS and
the ICONS datasets. In each case, we show the input image
(128 × 128) and the corresponding vector graphics output,
which can be rasterized at arbitrary resolutions.

intermediate shapes to any sample in the training dataset:∑
O∈OG

minI∈dataset(‖I,O‖2), (2)

where OG is the set of all generated shapes. We variation-
ally sample 1000 shapes from all the methods and present
the quality of the generated shapes in Table 2.

We perform similar evaluation to quantify the quality
of our interpolations. For comparison we sample 4 evenly
spaced interpolations between 250 random pairs of images
from the training dataset to create interpolation samples.
The results of the quality of interpolation between different
methods is presented in Table 2.

5. Limitations
The raster-based nature of the training imposes the prin-

cipal limitations of our method (see Figure 11). It is pos-
sible for some very fine features to underflow the training
resolution, in which case they may be lost. This could be
addressed by increasing the resolution at the expense of
computational efficiency, or perhaps by developing a more
involved image-space loss. Secondly, in particularly diffi-
cult cases it is possible for the generated shape to go to a
local optimum that contains degenerate features or semanti-



(a) EMOJIS and ICONS interpolations using Im2Vec
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Figure 9: Interpolations. Our learned latent space enables plausible interpolation between samples. In (a), we show
interpolations between source–target pairs on the EMOJIS and ICONS datasets. In (b) we show interpolations on the FONTS
dataset. Unlike previous work, Im2Vec enables plausible interpolation even across significant changes in shape. For instance,
the stem of the digit ‘9’ naturally curls along the interpolation path.

Figure 10: Random samples. We show a random selection
of digits generated by Im2Vec. The latent space was trained
on the full Fonts dataset. Our model is capable of gener-
ating samples with significant topological variations across
the different font types. In the supplemental material, we
include 1000 random samples from the latent space. Please
use digital zoom to better evaluate the quality.

Input Reconstruction Input Reconstruction

Figure 11: Limitations. Im2Vec is only supervised by an
image-space loss, so it can sometimes miss small topologi-
cal features (Left), or produce semantically meaningless or
degenerate geometries (Right). While the former can be re-
solved by providing higher resolution supervision, the later
could be mitigated by using local geometric priors.

cally non-meaningful parts which nonetheless still result in
a plausible rasterised image. This is a consequence of lack

of vector supervision, but could possibly be addressed by
imposing geometric constraints on the generated paths.

6. Conclusion
We presented Im2Vec as a generative network that can be

trained to produce vector graphics output of varying com-
plexity and topology using only image supervision, with-
out requiring vector sequence guidance. Our generative
setup supports projection (i.e., converting images to vec-
tor sequences), sampling (i.e., generating new shape varia-
tions directly in vector form), as well as interpolation (i.e.,
morphing from one vector sequence to another, even with
topological variations). Our evaluations show that Im2Vec
achieves better reconstruction fidelity compared to methods
requiring vector supervision.

We hope that this method can become the fundamental
building block for neural processing of vector graphics and
similar parametric shapes.
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