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Figure 1: Our model transforms points sampled from a simple prior to realistic point clouds through continuous normalizing
flows. The videos of the transformations can be viewed on our project website: https://www.guandaoyang.com/
PointFlow/.

Abstract

As 3D point clouds become the representation of choice
for multiple vision and graphics applications, the ability to
synthesize or reconstruct high-resolution, high-fidelity point
clouds becomes crucial. Despite the recent success of deep
learning models in discriminative tasks of point clouds,
generating point clouds remains challenging. This paper
proposes a principled probabilistic framework to gener-
ate 3D point clouds by modeling them as a distribution of
distributions. Specifically, we learn a two-level hierarchy
of distributions where the first level is the distribution of
shapes and the second level is the distribution of points
given a shape. This formulation allows us to both sam-
ple shapes and sample an arbitrary number of points from
a shape. Our generative model, named PointFlow, learns
each level of the distribution with a continuous normaliz-
ing flow. The invertibility of normalizing flows enables the
computation of the likelihood during training and allows

∗Euqal contribution.

us to train our model in the variational inference frame-
work. Empirically, we demonstrate that PointFlow achieves
state-of-the-art performance in point cloud generation. We
additionally show that our model can faithfully reconstruct
point clouds and learn useful representations in an unsu-
pervised manner. The code will be available at https:
//github.com/stevenygd/PointFlow .

1. Introduction
Point clouds are becoming popular as a 3D represen-

tation because they can capture a much higher resolution
than voxel grids and are a stepping stone to more sophis-
ticated representations such as meshes. Learning a gen-
erative model of point clouds could benefit a wide range
of point cloud synthesis tasks such as reconstruction and
super-resolution, by providing a better prior of point clouds.
However, a major roadblock in generating point clouds is
the complexity of the space of point clouds. A cloud of
points corresponding to a chair is best thought of as sam-
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ples from a distribution that corresponds to the surface of
the chair, and the chair itself is best thought of as a sample
from a distribution of chair shapes. As a result, in order to
generate a chair according to this formulation, we need to
characterize a distribution of distributions, which is under-
explored by existing generative models.

In this paper, we propose PointFlow, a principled gen-
erative model for 3D point clouds that learns a distribution
of distributions: the former being the distribution of shapes
and the latter being the distribution of points given a shape.
Our key insight is that instead of directly parametrizing the
distribution of points in a shape, we model this distribution
as an invertible parameterized transformation of 3D points
from a prior distribution (e.g., a 3D Gaussian). Intuitively,
under this model, generating points for a given shape in-
volves sampling points from a generic Gaussian prior, and
then moving them according to this parameterized transfor-
mation to their new location in the target shape, as illus-
trated in Figure 1. In this formulation, a given shape is then
simply the variable that parametrizes such transformation,
and a category is simply a distribution of this variable. In-
terestingly, we find that representing this distribution too as
a transformation of a prior distribution leads to a more ex-
pressive model of shapes. In particular, we use the recently
proposed continuous normalizing flow framework to model
both kinds of transformations [40, 5, 16].

This parameterization confers several advantages. The
invertibility of these transformations allows us to not just
sample but also estimate probability densities. The ability
to estimate probability densities in turn allows us to train
these models in a principled manner using the variational
inference framework [27], where we maximize a variational
lower bound on the log likelihood of a training set of point
clouds. This probabilistic framework for training further
lets us avoid the complexities of training GANs or hand-
crafting good distance metrics for measuring the difference
between two sets of points. Experiments show that Point-
Flow outperforms previous state-of-the-art generative mod-
els of point clouds, and achieves compelling results in point
cloud reconstruction and unsupervised feature learning.

2. Related work
Deep learning for point clouds. Deep learning has been
introduced to improve performance in various point cloud
discriminative tasks including classification [38, 39, 51, 55],
segmentation [38, 43], and critical points sampling [10].
Recently, substantial progress has been made in point cloud
synthesis tasks such as auto-encoding [1, 51, 17], single-
view 3D reconstruction [12, 22, 29, 31, 13], stereo recon-
struction [45], and point cloud completion [54, 53] Many
point cloud synthesis works convert a point distribution to
a N × 3 matrix by sampling N (N is pre-defined) points
from the distribution so that existing generative models are

readily applicable. For example, Gadelha et al. [13] ap-
ply variational auto-encoders (VAEs) [27] and Zamorski
et al. [56] apply adversarial auto-encoders (AAEs) [34] to
point cloud generation. Achlioptas et al. [1] explore gen-
erative adversarial networks (GANs) [15, 2, 19] for point
clouds in both raw data space and latent space of a pre-
trained auto-encoder. In the above methods, the auto-
encoders are trained with heuristic loss functions that mea-
sure the distance between two point sets, such as Cham-
fer distance (CD) or earth mover’s distance (EMD). Sun et
al. [44] apply auto-regressive models [47] with a discrete
point distribution to generate one point at a time, also using
a fixed number of points per shape.

However, treating a point cloud as a fixed-dimensional
matrix has several drawbacks. First, the model is restricted
to generate a fixed number of points. Getting more points
for a particular shape requires separate up-sampling mod-
els such as [54, 53, 52]. Second, it ignores the permuta-
tion invariance property of point sets, which might lead to
suboptimal parameter efficiency. Heuristic set distances are
also far from ideal objectives from a generative modeling
perspective since they make the original probabilistic in-
terpretation of VAE/AAE no longer applicable when used
as the reconstruction objective. In addition, exact EMD is
slow to compute while approximations could lead to biased
or noisy gradients. CD has been shown to incorrectly favor
point clouds that are overly concentrated in the mode of the
marginal point distribution [1].

Some recent works introduce sophisticated decoders
consisting of a cascade [51] or a mixture [17] of smaller
decoders to map one (or a mixture of) 2-D uniform distribu-
tion(s) to the target point distribution, overcoming the short-
comings of using a fixed number of points. However, they
still rely on heuristic set distances that lack a probabilistic
guarantee. Also, their methods only learn the distribution
of points for each shape, but not the distribution of shapes.
Li et al. [30] propose a “sandwiching” reconstruction objec-
tive that combines a variant of WGAN [2] loss with EMD.
They also train another GAN in the latent space to learn
shape distribution, similar to Achlioptas et al. [1]. In con-
trast, our method is simply trained end-to-end by maximiz-
ing a variational lower bound on the log-likelihood, does
not require multi-stage training, and does not have any in-
stability issues common for GAN based methods.

Generative models. There are several popular frameworks
of deep generative models, including generative adversar-
ial networks [15, 2, 23], variational auto-encoders [27,
41], auto-regressive models [35, 47], and flow-based mod-
els [8, 40, 9, 25]. In particular, flow-based models and
auto-regressive models can both perform exact likelihood
evaluation, while flow-based models are much more effi-
cient to sample from. Flow-based models have been suc-
cessfully applied to a variety of generation tasks such as



image generation [25, 9, 8], video generation [28], and
voice synthesis [37]. Also, there has been recent work
that combines flows with other generative models, such
as GAN [18, 7], auto-regressive models [20, 36, 26], and
VAEs [26, 46, 6, 40, 46, 5, 16].

Most existing deep generative models aim at learning the
distribution of fixed-dimensional variables. Learning the
distribution of distributions, where the data consists of a set
of sets, is still under-explored. Edwards and Storkey [11]
propose a hierarchical VAE named Neural Statistician that
consumes a set of sets. They are mostly interested in the
few-shot case where each set only has a few samples. Also,
they are focused on classifying sets or generating new sam-
ples from a given set. While our method is also applica-
ble to these tasks, our focus is on learning the distribution
of sets and generating new sets (point clouds in our case).
In addition, our model employs a tighter lower bound on
the log-likelihood, thanks to the use of normalizing flow in
modeling both the reconstruction likelihood and the prior.

3. Overview

Consider a set of shapes X = {Xi}Ni=1 from a particular
class of object, where each shape is represented as a set of
3D points Xi = {xij}

Mi
j=1. As discussed in Section 1, each

point xij ∈ R3 is best thought of as being sampled from
a point distribution Qi(x), usually a uniform distribution
over the surface of an object Xi. Each shape Xi is itself a
sample from a distribution over shapes Q(X) that captures
what shapes in this category look like.

Our goal is to learn the distribution of shapes, each itself
being a distribution of points. In other words, our generative
model should be able to both sample shapes and sample an
arbitrary number of points from a shape.

We propose to use continuous normalizing flows to
model the distribution of points given a shape. A continuous
normalizing flow can be thought of as a vector field in the
3-D Euclidean space, which induces a distribution of points
through transforming a generic prior distribution (e.g., a
standard Gaussian). To sample points from the induced dis-
tribution, we simply sample points from the prior and move
them according to the vector field. Moreover, the contin-
uous normalizing flow is invertible, which means we can
move data points back to the prior distribution to compute
the exact likelihood. This model is highly intuitive and in-
terpretable, allowing a close inspection of the generative
process as shown in Figure 1.

We parametrize each continuous normalizing flow with
a latent variable that represents the shape. As a result, mod-
eling the distribution of shapes can be reduced to modeling
the distribution of the latent variable. Interestingly, we find
continuous normalizing flow also effective in modeling the
latent distribution. Our full generative model thus consists

of two levels of continuous normalizing flows, one model-
ing the shape distribution by modeling the distribution of
the latent variable, and the other modeling the point distri-
bution given a shape.

In order to optimize the generative model, we construct
a variational lower bound on the log-likelihood by introduc-
ing an inference network that infers a latent variable distri-
bution from a point cloud. Here, we benefit from the fact
that the invertibility of the continuous normalizing flow en-
ables likelihood computation. This allows us to train our
model end-to-end in a stable manner, unlike previous work
based on GANs that requires two-stage training [1, 30]. As
a side benefit, we find the inference network learns a useful
representation of point clouds in an unsupervised manner.

In Section 4 we introduce some background on contin-
uous normalizing flows and variational auto-encoders. We
then describe our model and training in detail in Section 5.

4. Background
4.1. Continuous normalizing flow

A normalizing flow [40] is a series of invertible map-
pings that transform an initial known distribution to a more
complicated one. Formally, let f1, . . . , fn denote a series of
invertible transformations we want to apply to a latent vari-
able y with distribution P (y). x = fn ◦fn−1 ◦ · · · ◦f1(y) is
the output variable. Then the density of the output variable
is given by the change of variables formula:

logP (x) = logP (y)−
n∑
i=1

log

∣∣∣∣det ∂fk
∂yk−1

∣∣∣∣ , (1)

where y can be computed from x using the inverse flow:
y = f−11 ◦ · · · ◦ f−1n (x). In practice, f1, . . . , fn are usu-
ally instantiated as neural networks with an architecture that
makes the determinant of the Jacobian

∣∣∣det ∂fk
∂yk−1

∣∣∣ easy to
compute. The normalizing flow has been generalized from a
discrete sequence to a continuous transformation [16, 5] by
defining the transformation f using a continuous time dy-
namic ∂y(t)

∂t = f(y(t), t), where f is a neural network that
has an unrestricted architecture. The continuous normal-
izing flow (CNF) model for P (x) with a prior distribution
P (y) at the start time can then be written as:

x = y(t0) +

∫ t1

t0

f(y(t), t)dt, y(t0) ∼ P (y)

logP (x) = logP (y(t0))−
∫ t1

t0

Tr

(
∂f

∂y(t)

)
dt (2)

and y(t0) can be computed using the inverse flow y(t0) =

x+
∫ t0
t1
g(y(t), t)dt. A black-box ordinary differential equa-

tion (ODE) solver can been applied to estimate the out-
puts and the input gradients of a continuous normalizing
flow [16, 5].



4.2. Variational auto-encoder

Suppose we have a random variableX that we are build-
ing generative models for. The variational auto-encoder
(VAE) is a framework that allows one to learn P (X) from
a dataset of observations of X [27, 41]. The VAE does the
generation via a latent variable z with a prior distribution
Pψ(z), and a decoder Pθ(X|z) which captures the (hope-
fully simpler) distribution of X given z. At test time, the
latent variable z is sampled from the prior Pψ(z) and then
the decoder is used to sample X conditioned on z.

The VAE is trained on a set of observations of X . Dur-
ing training, it additionally learns an inference model (or
encoder) Qφ(z|X). The encoder and decoder are jointly
trained to maximize a lower bound on the log-likelihood of
the observed variable

logPθ(X) ≥ logPθ(X)−DKL(Qφ(z|X)||Pθ(z|X))

= EQφ(z|x) [logPθ(X|z)]−DKL (Qφ(z|X)||Pψ(z))

, L(X;φ, ψ, θ) , (3)

which is also called the evidence lower bound (ELBO). One
can interpret ELBO as the sum of the negative reconstruc-
tion error (the first term) and a latent space regularizer (the
second term). In practice, Qφ(z|X) is usually modeled
as a diagonal Gaussian N (z|µφ(X), σφ(X)) whose mean
and standard deviation are predicted by a neural network
with parameter φ. To efficiently optimize the ELBO, sam-
pling from Qφ(z|X) can be done by reparametrizing z as
z = µφ(X) + σφ(X) · ε, where ε ∼ N (0, I ).

5. Model
We now have the paraphernalia needed to define our gen-

erative model of point clouds. Using the terminology of the
VAE, we need three modules: the encoder Qφ(z|X) that
encodes a point cloud into a shape representation z, a prior
Pψ(z) over shape representations, and a decoder Pθ(X|z)
that models the distribution of points given the shape rep-
resentation. We use a simple permutation-invariant encoder
to predict Qφ(z|X), following the architecture in Achliop-
tas et al. [1]. We use continuous normalizing flows for both
the prior Pψ(z) and the generator Pθ(X|z), which are de-
scribed below.

5.1. Flow-based point generation from shape repre-
sentations

We first decompose the reconstruction log-likelihood of
a point set into the sum of log-likelihood of each point

logPθ(X|z) =
∑
x∈X

logPθ(x|z) . (4)

We propose to model Pθ(x|z) using a conditional extension
of CNF. Specifically, a point x in the point setX is the result

of transforming some point y(t0) in the prior distribution
P (y) = N (0, I ) using a CNF conditioned on z:

x = Gθ(y(t0); z) , y(t0)+

∫ t1

t0

gθ(y(t), t, z)dt, y(t0) ∼ P (y) ,

where gθ is the continuous-time dynamics of the flow Gθ
conditioned on z. Note that the inverse of Gθ is given by
G−1θ (x; z) = x +

∫ t0
t1
gθ(y(t), t, z)dt with y(t1) = x. The

reconstruction likelihood of x given z follows equation (2):

logPθ(x|z) = logP (G−1θ (x; z))−
∫ t1

t0

Tr

(
∂gθ
∂y(t)

)
dt .

(5)
Note that logP (G−1θ (x; z)) can be computed in closed form
with the Gaussian prior.

5.2. Flow-based prior over shapes
Although it is possible to use a simple Gaussian prior

over shape representations, it has been shown that a re-
stricted prior tends to limit the performance of VAEs [6]. To
alleviate this problem, we use another CNF to parametrize
a learnable prior. Formally, we rewrite the KL divergence
term in Equation 3 as

DKL(Qφ(z|x)||Pψ(z)) = −EQφ(z|x) [logPψ(z)]−H[Qφ(z|X)] ,

(6)

where H is the entropy and Pψ(z) is the prior distribution
with learnable parameters ψ, obtained by transforming a
simple Gaussian P (w) = N (0, I ) with a CNF:

z = Fψ(w(t0)) , w(t0) +

∫ t1

t0

fψ(w(t), t)dt, w(t0) ∼ P (w) ,

where fψ is the continuous-time dynamics of the flow Fψ .
Similarly as described above, the inverse of Fψ is given by
F−1ψ (z) = z +

∫ t0
t1
fψ(w(t), t)dt with w(t1) = z. The log

probability of the prior distribution can be computed by:

logPψ(z) = logP
(
F−1ψ (z)

)
−
∫ t1

t0

Tr

(
∂fψ
∂w(t)

)
dt .

(7)

5.3. Final training objective
Plugging Equation 4, 5, 6, 7 into Equation 3, the ELBO

of a point set X can be finally written as

L(X;φ, ψ, θ) = EQφ(z|x) [logPψ(z) + logPθ(X|z)] +H[Qφ(z|X)]

= EQφ(z|X)[logP
(
F−1
ψ (z)

)
−
∫ t1

t0

Tr

(
∂fψ
∂w(t)

)
dt

+
∑
x∈X

(logP (G−1
θ (x; z))−

∫ t1

t0

Tr

(
∂gθ
∂y(t)

)
dt)]

+H[Qφ(z|X)] . (8)



Figure 2: Model architecture. (a) At training time, the encoder Qφ infers a posterior over shape representations given an
input point cloud X , and samples a shape representation z from it. We then compute the probability of z in the prior
distribution (Lprior) through a inverse CNF F−1ψ , and compute the reconstruction likelihood of X (Lrecon) through another
inverse CNF G−1θ conditioned on z. The model is trained end-to-end to maximize the evidence lower bound (ELBO), which
is the sum of Lprior, Lrecon, and Lent (the entropy of the posteriorQφ(z|X)). (b) At test time, we sample a shape representation
z̃ by sampling w̃ from a Gaussian prior and transforming it with Fψ . To sample points from the shape represented by z̃, we
first sample points from the 3-D Gaussian prior and then move them according to the CNF parameterized by z̃.

Our model is trained end-to-end by maximizing the ELBO
of all point sets in the dataset

φ∗, ψ∗, θ∗ = arg max
φ,ψ,θ

∑
X∈X

L(X;φ, ψ, θ). (9)

We can interpret this objective as the sum of three parts:

1. Prior: Lprior(X;ψ, φ) , EQφ(z|x)[logPψ(z)] encour-
ages the encoded shape representation to have a high
probability under the prior, which is modeled by a CNF
as described in Section 5.2. We use the reparameteri-
zation trick [27] to enable a differentiable Monte Carlo
estimate of the expectation:

EQφ(z|x)[logPψ(z)] ≈
1

L

L∑
l=1

logPψ(µ+ εl � σ) ,

where µ and σ are mean and standard deviation of the
isotropic Gaussian posterior Qφ(z|x) and L is simply
set to 1. εi is sampled from the standard Gaussian dis-
tribution N (0, I ).

2. Reconstruction likelihood: Lrecon(X; θ, φ) ,
EQφ(z|x)[logPθ(X|z)] is the reconstruction log-
likelihood of the input point set, computed as de-
scribed in Section 5.1. The expectation is also esti-
mated using Monte Carlo sampling.

3. Posterior Entropy: Lent(X;φ) , H[Qφ(z|X)] is the
entropy of the approximated posterior:

H[Qφ(z|X)] = d
2 (1 + ln (2π)) +

∑d
i=1 lnσi .

All the training details (e.g., hyper-parameters, model ar-
chitectures) are included in Section B of the appendix.

5.4. Sampling
To sample a shape representation, we first draw w̃ ∼

N (0, I ) then pass it through Fψ to get z̃ = Fψ(w̃). To gen-
erate a point given a shape representation z̃, we first sample
a point ỹ ∈ R3 fromN (0, I ), then pass ỹ throughGθ condi-
tioned on z̃ to produce a point on the shape : x̃ = Gθ(w̃; z).
To sample a point cloud with size M̃ , we simply repeat it for
M̃ times. Combining these two steps allows us to sample a
point cloud with M̃ points from our model:

X̃ = {Gθ(ỹj ;Fψ(w̃))}1≤j≤M̃ , w̃ ∼ N (0, I ), ∀j, ỹj ∼ N (0, I ) .

6. Experiments
In this section, we first introduce existing metrics for

point cloud generation, discuss their limitations, and intro-
duce a new metric that overcomes these limitations. We
then compare the proposed method with previous state-of-
the-art generative models of point clouds, using both previ-
ous metrics and the proposed one. We additionally evaluate



the reconstruction and representation learning ability of the
auto-encoder part of our model.

6.1. Evaluation metrics

Following prior work, we use Chamfer distance (CD)
and earth mover’s distance (EMD) to measure the similarity
between point clouds. Formally, they are defined as follows:

CD(X,Y ) =
∑
x∈X

min
y∈Y
‖x− y‖22 +

∑
y∈Y

min
x∈X
‖x− y‖22,

EMD(X,Y ) = min
φ:X→Y

∑
x∈X
‖x− φ(x)‖2,

where X and Y are two point clouds with the same number
of points and φ is a bijection between them. Note that most
previous methods use either CD or EMD in their training
objectives, which tend to be favored if evaluated under the
same metric. Our method, however, do not use CD or EMD
during training.

Let Sg be the set of generated point clouds and Sr be
the set of reference point clouds with |Sr| = |Sg|. To eval-
uate generative models, we first consider the three metrics
introduced by Achlioptas et al. [1]:

• Jensen-Shannon Divergence (JSD) are computed be-
tween the marginal point distributions:

JSD(Pg, Pr) =
1

2
DKL(Pr||Pg) +

1

2
DKL(Pg||Pr) ,

where Pr and Pg are marginal distributions of points
in the reference and generated sets, approximated by
discretizing the space into 283 voxels and assigning
each point to one of them. However, it only considers
the marginal point distributions but not the distribution
of individual shapes. A model that always outputs the
“average shape” can obtain a perfect JSD score without
learning any meaningful shape distributions.

• Coverage (COV) measures the fraction of point
clouds in the reference set that are matched to at least
one point cloud in the generated set. For each point
cloud in the generated set, its nearest neighbor in the
reference set is marked as a match:

COV(Sg, Sr) =
|{argminY ∈Sr D(X,Y )|X ∈ Sg}|

|Sr|
,

where D(·, ·) can be either CD or EMD. While cover-
age is able to detect mode collapse, it does not eval-
uate the quality of generated point clouds. In fact, it
is possible to achieve a perfect coverage score even if
the distances between generated and reference point
clouds are arbitrarily large.

• Minimum matching distance (MMD) is proposed to
complement coverage as a metric that measures qual-
ity. For each point cloud in the reference set, the dis-
tance to its nearest neighbor in the generated set is
computed and averaged:

MMD(Sg, Sr) =
1

|Sr|
∑
Y ∈Sr

min
X∈Sp

D(X,Y ) ,

where D(·, ·) can be either CD or EMD. However,
MMD is actually very insensitive to low-quality point
clouds in Sg , since they are unlikely to be match to real
point clouds in Sr. In the extreme case, one can imag-
ine that Sg consists of mostly very low-quality point
clouds with one additional point cloud in each mode
of Sr, yet having a reasonably good MMD score.

As discussed above, all existing metrics have their limi-
tations. As will be shown later, we also empirically find all
these metrics sometimes give generated point clouds even
better scores than real point clouds, further casting doubt
on whether they can ensure a fair model comparison. We
therefore introduce another metric that we believe is better
suited for evaluating generative models of point clouds:

• 1-nearest neighbor accuracy (1-NNA) is proposed
by Lopez-Paz and Oquab [32] for two-sample tests,
assessing whether two distributions are identical. It
has also been explored as a metric for evaluating
GANs [50]. Let S−X = Sr ∪ Sg − {X} and NX
be the nearest neighbor of X in S−X . 1-NNA is the
leave-one-out accuracy of the 1-NN classifier:

1-NNA(Sg, Sr)

=

∑
X∈Sg I[NX ∈ Sg] +

∑
Y ∈Sr I[NY ∈ Sr]

|Sg|+ |Sr|
,

where I[·] is the indicator function. For each sample,
the 1-NN classifier classifies it as coming from Sr or
Sg according to the label of its nearest sample. If Sg
and Sr are sampled from the same distribution, the
accuracy of such a classifier should converge to 50%
given a sufficient number of samples. The closer the
accuracy is to 50%, the more similar Sg and Sr are,
and therefore the better the model is at learning the
target distribution. In our setting, the nearest neigh-
bor can be computed using either CD or EMD. Unlike
JSD, 1-NNA considers the similarity between shape
distributions rather than between marginal point distri-
butions. Unlike COV and MMD, 1-NNA directly mea-
sures distributional similarity and takes both diversity
and quality into account.

6.2. Generation

We compare our method with three existing generative
models for point clouds: raw-GAN [1], latent-GAN [1], and



Table 1: Generation results. ↑: the higher the better, ↓: the lower the better. The best scores are highlighted in bold. Scores
of the real shapes that are worse than some of the generated shapes are marked in gray. MMD-CD scores are multiplied by
103; MMD-EMD scores are multiplied by 102; JSDs are multiplied by 102.

# Parameters (M)
JSD (↓) MMD (↓) COV (%, ↑) 1-NNA (%, ↓)

Category Model Full Gen CD EMD CD EMD CD EMD

Airplane

r-GAN 7.22 6.91 7.44 0.261 5.47 42.72 18.02 93.58 99.51
l-GAN (CD) 1.97 1.71 4.62 0.239 4.27 43.21 21.23 86.30 97.28
l-GAN (EMD) 1.97 1.71 3.61 0.269 3.29 47.90 50.62 87.65 85.68
PC-GAN 9.14 1.52 4.63 0.287 3.57 36.46 40.94 94.35 92.32
PointFlow (ours) 1.61 1.06 4.92 0.217 3.24 46.91 48.40 75.68 75.06

Training set - - 6.61 0.226 3.08 42.72 49.14 70.62 67.53

Chair

r-GAN 7.22 6.91 11.5 2.57 12.8 33.99 9.97 71.75 99.47
l-GAN (CD) 1.97 1.71 4.59 2.46 8.91 41.39 25.68 64.43 85.27
l-GAN (EMD) 1.97 1.71 2.27 2.61 7.85 40.79 41.69 64.73 65.56
PC-GAN 9.14 1.52 3.90 2.75 8.20 36.50 38.98 76.03 78.37
PointFlow (ours) 1.61 1.06 1.74 2.42 7.87 46.83 46.98 60.88 59.89

Training set - - 1.50 1.92 7.38 57.25 55.44 59.67 58.46

Car

r-GAN 7.22 6.91 12.8 1.27 8.74 15.06 9.38 97.87 99.86
l-GAN (CD) 1.97 1.71 4.43 1.55 6.25 38.64 18.47 63.07 88.07
l-GAN (EMD) 1.97 1.71 2.21 1.48 5.43 39.20 39.77 69.74 68.32
PC-GAN 9.14 1.52 5.85 1.12 5.83 23.56 30.29 92.19 90.87
PointFlow (ours) 1.61 1.06 0.87 0.91 5.22 44.03 46.59 60.65 62.36

Training set - - 0.86 1.03 5.33 48.30 51.42 57.39 53.27

PC-GAN [30], using their official implementations that are
either publicly available or obtained by contacting the au-
thors. We train each model using point clouds from one
of the three categories in ShapeNet [3] dataset: airplane,
chair, and car. The point clouds are obtained by sampling
points uniformly from the mesh surface. All points in each
category are normalized to be zero-mean per axis and unit-
variance globally. Following prior convention [1], we use
2048 points for each shape during both training and testing,
although our model is able to sample an arbitrary number
of points. We additionally report the performance of point
clouds sampled from the training set, which is considered as
an upper bound since they are from the target distribution.

In Table 1, we report the performance of different mod-
els, as well as their number of parameters in total (full) or in
the generative pathways (gen). We first note that all the pre-
vious metrics (JSD, MMD, and COV) sometimes assign a
better score to point clouds generated by models than those
from the training set (marked in gray). The 1-NNA metric
does not seem to have this problem and always gives a bet-
ter score to shapes from the training set. Our model outper-
forms all baselines across all three categories according to
1-NNA and also obtains the best score in most cases as eval-
uated by other metrics. Besides, our model has the fewest
parameters among compared models. In Section C of the
appendix, we perform additional ablation studies to show

Figure 3: Examples of point clouds generated by our model.
From top to bottom: airplane, chair, and car.

the effectiveness of different components of our model. Fig-
ure 3 shows some examples of novel point clouds generated
by our model. Figure 4 shows examples of point clouds
reconstructed from given inputs.

6.3. Auto encoding

We further quantitatively compare the reconstruction
ability of our flow-based auto-encoder with l-GAN [1] and



Figure 4: Examples of point clouds reconstructed from in-
puts. From top to bottom: airplane, chair, and car. On each
side of the figure we show the input point cloud on the left
and the reconstructed point cloud on the right.

Table 2: Unsupervised feature learning. Models are first
trained on ShapeNet to learn shape representations, which
are then evaluated on ModelNet40 (MN40) and Model-
Net10 (MN10) by comparing the accuracy of off-the-shelf
SVMs trained using the learned representations.

Method MN40 (%) MN10 (%)

SPH [24] 68.2 79.8
LFD [4] 75.5 79.9

T-L Network [14] 74.4 -
VConv-DAE [42] 75.5 80.5

3D-GAN [48] 83.3 91.0
l-GAN (EMD) [1] 84.0 95.4
l-GAN (CD) [1] 84.5 95.4
PointGrow [44] 85.7 -

MRTNet-VAE [13] 86.4 -
FoldingNet [51] 88.4 94.4

l-GAN (CD) [1] † 87.0 92.8
l-GAN (EMD) [1] † 86.7 92.2
PointFlow (ours) 86.8 93.7
† We run the official code of l-GAN on our pre-

processed dataset using the same encoder ar-
chitecture as our model.

AtlasNet [17]. Following the setting of AtlasNet, the state
of the art in this task, we train our auto-encoder on all shapes
in the ShapeNet dataset. The auto-encoder is trained with
the reconstruction likelihood objective Lrecon only. At test
time, we sample 4096 points per shape and split them into
an input set and a reference set, each consisting of 2048
points. We then compute the distance (CD or EMD) be-

Table 3: Auto-encoding performance evaluated by CD and
EMD. AtlasNet is trained with CD and l-GAN is trained on
CD or EMD. Our method is not trained on CD or EMD. CD
scores are multiplied by 104; EMD scores are multiplied by
102.

Model # Parameters (M) CD EMD

l-GAN (CD) [1] 1.77 7.12 7.95
l-GAN (EMD) [1] 1.77 8.85 5.26
AtlasNet [17] 44.9 5.13 5.97
PointFlow (ours) 1.30 7.54 5.18

tween the reconstructed input set and the reference set 1.
Although our model is not directly trained with EMD, it ob-
tains the best EMD score, even higher than l-GAN trained
with EMD and AtlasNet which has more than 40 times more
parameters.

6.4. Unsupervised representation learning

We finally evaluate the representation learning ability of
our auto-encoders. Specifically, we extract the latent repre-
sentations of our auto-encoder trained in the full ShapeNet
dataset and train a linear SVM classifier on top of it on Mod-
elNet10 or ModelNet40 [49]. Only for this task, we nor-
malize each individual point cloud to be zero-mean per axis
and unit-variance globally, following prior works [55, 1].
We also apply random rotations along the gravity axis when
training the auto-encoder.

A problem with this task is that different authors have
been using different encoder architectures with a different
number of parameters, making it hard to perform an apple-
to-apple comparison. In addition, different authors may use
different pre-processing protocols (as also noted by Yang et
al. [51]), which could also affect the numbers.

In Table 2, we still show the numbers reported by previ-
ous papers, but also include a comparison with l-GAN [1]
trained using the same encoder architecture and the exact
same data as our model. On ModelNet10, the accuracy of
our model is 1.5% and 0.9% higher than l-GAN (EMD)
and l-GAN (CD) respectively. On ModelNet40, the per-
formance of the three models is very close.

7. Conclusion and future works
In this paper, we propose PointFlow, a generative model

for point clouds consisting of two levels of continuous nor-
malizing flows trained with variational inference. Future
work includes applications to other tasks such as point cloud
reconstruction from a single image.

1We use a separate reference set because we expect the auto-encoder
to learn the point distribution. Exactly reproducing the input points is ac-
ceptable behavior, but should not be given a higher score than randomly
sampling points from the underlying point distribution.
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A. Overview
In the appendix, we first describe the detailed hyper-

parameters and model architectures for our experiments in
Section B. We then compare our model with additional
baselines to understand the effect of different model com-
ponents in Section C. Limitations and typical failure cases
are discussed in Section D. Finally, additional visualizations
of latent space t-SNE, interpolations and flow transforma-
tions are presented in Section E, Section F, and Section G
respectively.

B. Training details
In this section, we provide details about our network ar-

chitectures and training hyper-parameters. We will release
the code to reproduce our experiments.

Encoder. The architecture of our encoder follows that of
Achlioptas et al. [1]. Specifically, we first use 1D Convolu-
tion with filter size 128, 128, 256, and 512 to process each
point independently and then use max pooling to create a
512-dimension feature as done in PointNet [38]. Such a fea-
ture is invariant to the permutation of points due to the max-
pooling. Finally, we apply a three-layer MLP with 256 and
128 hidden dimensions to convert the permutation invariant
feature to a Dz-dimension one. For the unsupervised repre-
sentation learning experiment, we set Dz = 512 following
convention. For all other experiments, Dz is set to 128.

CNF prior. The CNF prior models the distribution
Pψ(z). We follow FFJORD [16]’s released code to use
three concatsquash layers to model the dynamics fψ .
A concatsquash layer is defined as:

CS(x, t) = (Wxx+ bx)σ(Wtt+ bt) + (Wbt+ bbt),
(10)

where Wx, bx, Wt, bt, Wb, and bb are all trainable pa-
rameters and σ(·) is the sigmoid function. fψ uses three
concatsquash layers with a hidden dimension 256.
Tanh is used as the non-linearity between layers.

We use a Moving Batch Normalization layer to learn the
scale of each dimension before and after the CNF, following
FFJORD’s released code [16]. Specifically, Moving Batch
Normalization is defined as

MBN(x) =
x− µ
σ

γ + β, (11)

where γ and β are trainable parameters, Different from
batch normalization proposed by Ioffe and Szegedy [21], µ
and σ are running averages of the batch mean and standard
deviation. MovingBatchNorm is invertible : MBN−1(y) =
y−β
γ σ + µ. Its log determinant is given as:

log det

∣∣∣∣∂MBN(x)

∂x

∣∣∣∣ =∑
i

log |γi| − log |σi|. (12)

CNF decoder. The CNF decoder models the reconstruc-
tion likelihood Pθ(X|z). We extend the concatsquash
layer to condition on the latent vector z:

CCS(x, z, t) = (Wxx+ bx)σ(Wttt+Wtzz + bt)

+ (Wbtt+Wbzz + bbt), (13)

where Wx,Wtt,Wtz,Wbt,Wbz, bt, bb are all learnable pa-
rameters. The CNF decoder uses four conditional
concatsquash layers with a hidden dimension 512 to
model the dynamic gθ. The non-linearity between layers is
Tanh. Similar to the CNF prior model, we also add a Mov-
ing Batch Normalization layer before and after the CNF. In
this case, all 3D points (from different shapes) from a batch
are used to compute the batch statistics.

Hyper-parameters. We use an Adam optimizer with
an initial learning rate 0.002, β1 = 0.9, and β2 = 0.999.
The learning rate decays linearly to 0 starting at the 2000th

epoch and ends at the 4000th epoch. We do not use any
weight decay. We also learn the integration time t1 during
training by back-propogation [5].

C. Additional comparisons
In this section, we compare our model to more baselines

to show the effectiveness of the model design. The first
baseline is Neural Statistician (NS) [11], a state-of-the-art
generative model for sets. We modify its official code for
generating 2D spatial coordinates of MNIST digits to make
it work with 3D point cloud coordinates. We use the same
encoder architecture as our model, and use the VAE decoder
provided by authors with the input dimension changed from
2 to 3. It differs from our model mainly in 1) using VAEs
instead of CNFs to model the reconstruction likelihood, and
2) using a simple Gaussian prior instead of a flow-based
one. The second baseline is VAECNF, where we use the
CNF to model the reconstruction likelihood but not prior.
Specifically, the VAECNF optimizes ELBO in the following
form:

L(X;φ, θ) =
∑
x∈X

(
logP (G−1

θ (x; z))−
∫ t1

t0

Tr

(
∂gθ
∂y(t)

)
dt

)
+DKL(Qφ(z|X)||P (z)) , (14)

where P (z) is a standard GaussianN (0, I) and DKL is the
KL-divergence. As another baseline, we follow l-GAN [1]
to train a WGAN [19] in the latent space of our pretrained
auto-encoder. Both the discriminator and the generator are
MLP with batch normalization between layers. The gen-
erator has three layers with hidden dimensions 256. The
discriminator has three layers with hidden dimensions 512.

The results are presented in Table 4. Neural Statisti-
cian [11] is able to learn the marginal point distribution but
fails to learn the correct shape distribution, as it obtains the
best marginal JSD but very poor scores according to metrics
that measure similarities between shape distributions. Also,



Table 4: Ablation studies. ↑: the higher the better, ↓: the lower the better. The best scores are highlighted in bold. MMD-CD
scores are multiplied by 103; MMD-EMD scores are multiplied by 102; JSDs are multiplied by 102.

# Parameters (M)
JSD (↓) MMD (↓) COV (%, ↑) 1-NNA (%, ↓)

Category Model Full Gen CD EMD CD EMD CD EMD

Airplane

NS [11] 2.29 1.00 1.74 0.655 4.51 7.81 4.51 99.61 99.61
VAECNF 1.47 0.92 6.30 0.261 3.35 41.98 46.17 88.64 82.72
WGAN-CNF 1.75 1.06 4.29 0.254 3.23 42.47 48.40 75.80 75.68
PointFlow (ours) 1.61 1.06 4.92 0.217 3.24 46.91 48.40 75.68 75.06

Training set - - 6.61 0.226 3.08 42.72 49.14 70.62 67.53

using a flexible prior parameterized by a CNF (PointFlow)
is better than using a simple Gaussian prior (VAECNF) or
a prior learned with a latent GAN (WGAN-CNF) that re-
quires two-stage training.

D. Limitation and failure cases
In this section, we discuss the limitation of our model

and present visualizations of difficult cases where our model
fails. As mentioned in FFJORD [16], each integration re-
quires evaluating the neural networks modeling the dynam-
ics multiple times. The number of function evaluations
tends to increase as the training proceeds since the dynamic
becomes more complex and more function evaluations are
needed to achieve the same numerical precision. This is-
sue limits our model size and makes the convergence slow.
Grathwohl et al. indicate that using regularization such as
weight decay could alleviate such an issue, but we em-
pirically find that using regularization tends to hurt per-
formance. Future advances in invertible models like CNF
might help improve this issue. Typical failure case appears
when reconstructing or generating the rare shape or shapes
with many thin structures as presented in Figure 5.

E. Latent space visualizations
We provide visualization of the sampled latent vectors

z ∈ R128 in Figure 6. We sample 1000 latent vectors
and run t-SNE [33] to visualize these latent vectors in 2D.
Shapes with similar styles are close in the latent space.

F. Interpolation
In this section, we present interpolation between two dif-

ferent shapes using our model. For two shapes X1 and X2,
we first compute the mean of the posterior distribution using
Qθ(z|X). Let µ1 and µ2 be the means of the posterior dis-
tribution for X1 and X2 respectively. We use µ1 and µ2 as
the latent representation for these two shapes. We then use
the inverse prior flow F−1ψ to transform µ1 and µ2 back to
the prior space. Let w1 = F−1ψ (µ1) and w2 = F−1ψ (µ2) be
the corresponding vectors for µ1 and µ2 in the prior space.

Figure 5: Difficult cases for our model. Rare shapes or
shapes that contain many thin structures are usually hard
to reconstruct in high quality.

Figure 6: Visualization of latent space.

We use spherical interpolation between w1 and w2 to re-
trieve a series of vectors wi. For each wi, we use the CNF
prior Fψ and the CNF decoder Gθ to generate the corre-
sponding shape Xi. Figure 7 contains examples of the in-
terpolation.

G. More flow transformation
Figure 8 presents more examples of flow transformations

from the Gaussian prior to different shapes.



Figure 7: Feature space interpolation. The left-most and the right-most shapes are sampled from scratch. The shapes in
between are generated by interpolating the two shapes in the prior space.



Figure 8: Additional visualizations on the process of transforming prior to point cloud.


