
January 23, 2004 15:13 WSPC/Guidelines normalEst

International Journal of Computational Geometry & Applications
c© World Scientific Publishing Company

Estimating Surface Normals in Noisy Point Cloud Data∗

NILOY J. MITRA

Stanford Graphics Laboratory, James H. Clark Center, Room S297,

318 Campus Drive, Stanford, CA 94305 USA

niloy@stanford.edu

AN NGUYEN

Stanford Graphics Laboratory, James H. Clark Center, Room S297,

318 Campus Drive, Stanford, CA 94305 USA

anguyen@cs.stanford.edu

LEONIDAS GUIBAS

Stanford Graphics Laboratory, James H. Clark Center, Room S293,

318 Campus Drive, Stanford, CA 94305 USA

guibas@cs.stanford.edu

Received 7 July 2003
Revised 16 November 2003

Communicated by Joe Mitchell

In this paper we describe and analyze a method based on local least square fitting

for estimating the normals at all sample points of a point cloud data (PCD) set, in the
presence of noise. We study the effects of neighborhood size, curvature, sampling density,

and noise on the normal estimation when the PCD is sampled from a smooth curve in
R2 or a smooth surface in R3, and noise is added. The analysis allows us to find the

optimal neighborhood size using other local information from the PCD. Experimental
results are also provided.
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1. Introduction

Modern range sensing technology enables us to make detailed scans of complex

objects generating point cloud data (PCD) consisting of millions of points. The data

acquired is usually distorted by noise arising out of various physical measurement

processes and limitations of the acquisition technologies.

∗A preliminary version of this paper appeared in the Proc. of the 19th ACM Symp. on Computa-

tional Geometry, 2003. The work was supported by NSF CARGO grant 0138456 and a Stanford

Graduate Fellowship.
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The traditional way to use PCD is to reconstruct the underlying surface model

represented by the PCD, for example as a triangle mesh, and then apply well known

methods on that underlying manifold model. However, when the size of the PCD is

large, such methods may be expensive. To do surface reconstruction on a PCD, one

would first need to filter out the noise from the PCD, usually by some smoothing

filter 15. Such a process may remove sharp features as well, and this may be unde-

sirable. A reconstruction algorithm, such as those proposed by Amenta et al. 2,4,

then computes a mesh that approximates the noise free PCD. Both the smooth-

ing and the surface reconstruction processes may be computationally expensive.

For certain applications like rendering or visualization, such a computation is often

unnecessary and direct rendering of PCD has been investigated by the graphics

community 17,18.

Alexa et al. 1 and Pauly et al. 17 have proposed to use PCD as a new modeling

primitive. Algorithms for such a paradigm often require information about the

normal at each of the points. For example, normals are used in rendering PCD,

making visibility computation, answering inside–outside queries, etc. Also some

curve (or surface) reconstruction algorithms 6,7 need to have the normal estimates

as a part of the input data.

The normal estimation problem has been studied by various communities such

as computer graphics, image processing, and mathematics, but mostly in the case

of manifold representations of the surface. We would like to estimate the normal at

each point in a PCD, given to us only as an unstructured set of points sampled from

a smooth curve in R2 or a smooth surface in R3, without any additional manifold

structure.

Hoppe et al. 13 proposed an algorithm where the normal at each point is es-

timated as the normal to the fitting plane obtained by applying the total least

square method to the k-nearest neighbors of the point. This method is robust in

the presence of noise due to the inherent low pass filtering. In this algorithm, the

value of k is a parameter and is chosen manually based on visual inspection of the

computed estimates of the normals, and different trial values of k may be needed

before a good selection of k is found. Furthermore, the same value of k is used for

the normal estimation at all points in the PCD ignoring the variation in curvature

and sampling density along the PCD.

We note that the accuracy of the normal estimation using a total least square

method depends on (1) the noise in the PCD, (2) the curvature of the underlying

manifold, (3) the density and the distribution of the samples, and (4) the neigh-

borhood size used in the estimation process. In this paper, we make precise such

dependencies and study the contribution of each of these factors on the normal

estimation process. This analysis allows us to find the optimal neighborhood size to

be used in the method. The neighborhood size can be computed adaptively at each

point based on local information, given some estimates about the noise, the local

sampling density, and bounds on the local curvature. The computational complexity

of estimating all normals of a PCD with m points is only O(m logm).
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1.1. Related Work

In this section, we summarize some of the previous works that are related to the

computation of the normal vectors of a PCD. Many current surface reconstruction

algorithms 2,4,10 can either compute the normals as part of the reconstruction, or

the normals can be trivially approximated once the surface has been reconstructed.

As the algorithms require that the input is noise free, a raw PCD with noise needs

to go through a smoothing process before these algorithms can be applied.

Fleishman et al. 9 and Jones et al. 14 have independently proposed the use of

edge-preserving filters for designing fast feature-preserving mesh denoising tech-

niques. These methods can be easily extended to PCDs using neighborhood graphs

to approximate connectivity information. However, these denoising algorithms have

parameters that have to be manually adjusted for good results.

The work of Hoppe et al. 13 for surface reconstruction suggests a method to

compute the normals for the PCD. The normal estimate at each point is done by

fitting a least square plane to its k-nearest neighbors. The value of k is selected

experimentally. The same approach has also been adopted by Zwicker et al. 20

for local surface estimation. Higher order surfaces have been used by Welch and

Witkin 19 for local parameterization. However, as pointed out by Amenta and

Bern 3 such algorithms can fail even in cases with arbitrarily dense set of samples.

This problem can be resolved by assuming uniformly distributed samples which

prevents errors resulting from biased fits. As noted before, all these algorithms

work well even in presence of noise because of the inherent filtering effect. The

success of these algorithms depends largely on selecting a suitable value for k, but

usually little guidance is provided for the selection of this crucial parameter.

1.2. Paper Overview

In section 2, we study the normal estimation for PCD which are samples of curves

in R2, and the effects of different parameters of the normal estimation algorithm

on the resulting error. In section 3, we derive similar results for PCD which come

from surfaces in R3. In section 4, we provide simulations to illustrate the results

obtained in sections 2 and 3. We also provide an algorithm for using our theoretical

results on practical data. We conclude in section 5.

2. Normal Estimation in R2

In this section, we consider the problem of approximating the normals for a point

cloud in R2. Given a set of points, which are noisy samples of a smooth curve in R2,

we can use the following method to estimate the normal to the curve at each of the

sample points. For each point O, we find all the points of the PCD inside a circle

of radius r centered at O, and then compute the total least square line fitting those

points. The normal to the fitting line gives us an approximation to the undirected

normal of the curve at O. Note that the orientation of the normals is a global
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property of the PCD and thus cannot be computed locally. Once all the undirected

normals are computed, an approximation algorithm like the one suggested by Hoppe

et al. 13 can be applied to obtain a consistent global orientation for all the normals.

For the rest of this paper, we only consider the computation of the undirected

normals.

We analyze the error of the approximation when the noise is small and the

sampling density is high enough around O. Under these assumptions, which we will

make precise later, the computed normal approximates well the true normal. We

observe that if r is large, the neighborhood of the point cannot be well approximated

by a line in the presence of local curvature in the data and we may incur large

error. On the other hand, if r is small, the noise in the data can result in significant

estimation error. We aim for the optimal r that strikes a balance between these

opposing sources of error.

2.1. Modeling

Without loss of generality, we consider O as the origin, and the y-axis to be along

the normal to the curve at O. We assume that the points of the PCD around O come

from a segment of a smooth curve (a 1-D topological disk) of bounded curvature.

More precisely, we assume that the segment of the curve near O is locally a graph

of a single valued C2 continuous function y = g(x) defined over some interval R

containing [−r, r], and that |g′′(x)| < κ for all x ∈ R where κ is some positive

constant.

Let pi = (xi, yi) for 1 ≤ i ≤ k be the points of the PCD that lie inside a circle of

radius r centered at O. We assume the following probabilistic model for the points

pi. Assume that xi’s are instances of a random variable X taking values in [−r, r],
and yi = g(xi)+ni, where the noise terms ni are independent instances of a random

variable N . X and N are assumed to be independent. We assume that the noise N

has zero mean and standard deviation σn, and takes values in [−n, n].
Using Taylor series, there are numbers ψi, 1 ≤ i ≤ k such that g(xi) =

g′′(ψi)x
2
i /2 with |ψi| ≤ |xi| ≤ r. Let γi = g′′(ψi), then the bounded curvature

assumption implies that |γi| ≤ κ.
Note that if κr is large, even when there is no noise in the PCD, the normal

to the best fit line may not be a good approximation to the tangent as shown in

Figure 1. Similarly, if σn/r is large and the noise is biased, this normal may not be

a good approximation even if the original curve is a straight line, see Figure 2. In

order to keep the normal approximation error low, we assume a priori that κr and

σn/r are sufficiently small.

We assume that the samples are evenly distributed; there is a radius r0 > 0

(possibly dependent on O) so that any neighborhood of size r0 in R contains at

least two points of the xi’s but no more than some small constant number of them.

We observe that the number of points k inside any disk of radius r is bounded from

above by Θ(1)rρ, and also is bounded from below by another Θ(1)rρ, where ρ is
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Fig. 1. Curvature causes error in the estimated normal

n

nr

Fig. 2. Noise causes error in the estimated normal

the sampling density of the point cloud. Throughout this paper, we use Θ(1) to

denote some positive constant, and for notational simplicity, different appearances

of Θ(1) may denote different constants. We note that distributions satisfying the

(ε, δ) sampling condition proposed by Dey et al. 8 are evenly distributed in our

sense.

Under the above assumptions, we would like to bound the normal estimation

error and study the effects of different parameters on the estimation error. The

analysis involves probabilistic arguments to account for the random nature of the

noise.

2.2. Total Least Square Method

The normal to the total least square fitting line (or hyper-plane) of a set of k

points pi, 1 ≤ i ≤ k in Rd for d ≥ 2 can be obtained by computing the eigenvector

corresponding to the smallest eigenvalue of the covariance matrix M defined as

M = 1
k

∑k
i=1 (pi − p̄)(pi − p̄)T 13, where p̄ = 1

k

∑k
i=1 pi. We observe that M is

always symmetric positive semi-definite, and thus M has non-negative eigenvalues

and non-negative diagonal entries.

2.3. Eigen-analysis of M

We can write the 2×2 symmetric matrix M defined in the previous section as
[

m11 m12

m12 m22

]

. Note that in the absence of noise and curvature, m12 = m22 = 0,

and thus zero is the smallest eigenvalue of M with [0 1]T as the corresponding

eigenvector. Under our assumption that the noise and the curvature are small, yi’s

are small, and thus m12 and m22 are small. Let α = (|m12|+m22)/m11. We would

like to estimate the smallest eigenvalue of M and its corresponding eigenvector

when α is small.

From the Gershgorin Circle Theorem 11 it follows that there is an eigenvalue λ1
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such that |m11 − λ1| ≤ |m12|, and an eigenvalue λ2 such that |m22 − λ2| ≤ |m12|.
When α < 1/2, we have that λ1 ≥ m11 − |m12| > m22 + |m12| ≥ λ2. It follows that

the two eigenvalues are distinct, and λ2 is the smallest eigenvalue of M . Let [v 1]T

be the eigenvector corresponding to λ2, then

[

m11 m12

m12 m22

] [

v

1

]

= λ2

[

v

1

]

,

[

m11 − λ2

m12

]

v = −
[

m12

m22 − λ2

]

.

Thus,

v = − (m11 − λ2)m12 +m12(m22 − λ2)

(m11 − λ2)2 +m2
12

,

|v| = |m12|(m11 +m22 − 2λ2)

(m11 − λ2)2 +m2
12

≤ α(1 + α)

(1− α)2 . (1)

Thus, the estimation error, which is the angle between the estimated normal and the

true normal (which is [0 1]T in this case), is less than tan−1(α(1+α)/(1−α)2) ≈ α,
for small α. Note that we could write the error explicitly in closed form, then

bound it. Our approach is more complicated, though as we will show later, it can

be extended to obtain the error bound for the 3D case. To bound the estimation

error, we need to bound α.

2.4. Estimating Entries of M

The assumption that the sample points are evenly distributed in the interval [−r, r]
implies that, given any number x in that interval, the number of points pi’s satisfy-

ing |xi−x| ≥ r/4 is at least Θ(1)k. It follows easily that m11 = 1
k

∑k
i=1 (xi − x̄)2 ≥

Θ(1)r2. The constant Θ(1) depends only on the distribution of the random variable

X.

For the entries m12 and m22, we use |xi| ≤ r and |yi| ≤ κr2/2+n to obtain the

following trivial bound:

|m12| =
∣

∣

∣

∣

∣

1

k

k
∑

i=1

xiyi −
1

k2

k
∑

i=1

xi

k
∑

i=1

yi

∣

∣

∣

∣

∣

≤ 2r(κr2/2 + n) ,

m22 ≤
1

k

k
∑

i=1

y2
i

≤ 2((κr2/2)2 + n2) .
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Thus,

α ≤ Θ(1)

(

κr +
n

r
+ κ2r2 +

n2

r2

)

≤ Θ(1)
(

κr +
n

r

)

. (2)

This bound illustrates the effects of r, κ and n on the error. For large values of r,

the error caused by the curvature κr dominates, while for small neighborhoods the

term n/r dictates the error. Nevertheless, the expression depends on the absolute

bound n of the noise N . This bound n can be unnecessarily large or unbounded

for many distribution models of N . We would like to use our assumption on the

distribution of the noise N to further improve our bound on α.

Note that,

|m12| =
∣

∣

∣

∣

∣

1

k

k
∑

i=1

xiyi −
1

k2

k
∑

i=1

xi

k
∑

i=1

yi

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

1

k

k
∑

i=1

(γix
3
i /2 + xini)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

k2

k
∑

i=1

xi

k
∑

i=1

(γix
2
i /2 + ni)

∣

∣

∣

∣

∣

≤ κr3 +

∣

∣

∣

∣

∣

1

k

k
∑

i=1

xini

∣

∣

∣

∣

∣

+ r

∣

∣

∣

∣

∣

1

k

k
∑

i=1

ni

∣

∣

∣

∣

∣

.

Furthermore, under the assumption that X and N are independent, we have

E[xini] = E[xi]E[ni] = 0 since E[ni] = 0, and Var(xini) = Θ(1)r2σ2
n since

Var(ni) = σ2
n. Let ε be some small positive number. Using the Chebyshev Inequal-

ity 16, the following bound on |m12| holds with probability at least 1− ε:

|m12| ≤ κr3 +Θ(1)

√

r2σ2
n

εk
+Θ(1)r

√

σ2
n

εk

≤ κr3 +Θ(1)

√

r2σ2
n

εrρ
+Θ(1)r

√

σ2
n

εrρ

≤ κr3 +Θ(1)σn

√

r

ερ
. (3)

For reasonable noise models, we also have that:

m22 ≤
1

k

k
∑

i=1

2(γ2
i x

4
i /4 + n2

i )

≤ Θ(1)κ2r4 +Θ(1)σ2
n .
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2.5. Error Bound for the Estimated Normal

From the previous estimates of the entries of M , we obtain the following bound on

α with probability at least 1− ε:

α ≤ c1κr + c2
σn

√

ερr3
+ c3

σ2
n

r2
(4)

for some small positive constants c1, c2, and c3 which depend only on the distribu-

tion of the points. Note that this bound depends on the standard deviation σn of

the noise N rather than its magnitude bound n.

For a given set of parameters κ, σn, ρ, and ε, we can find the optimal r that

minimizes the right hand side of the inequality (4). As this optimal value of r is

not easily expressed in closed form, let us consider a few extreme cases:

• When there is no curvature (κ = 0) we can make the bound on α arbitrarily

small by increasing r. For sufficiently large r, the bound is linear in σn and

it decreases as r−3/2.

• When there is no noise, we can make the error bound small by choosing r

as small as possible, say r = r0.

• When both noise and curvature are present, the error bound cannot

be arbitrarily reduced. When the density ρ of the PCD is sufficiently

high, α ≤ c1κr + (c2 + c3)σ
2
n/r

2. This error bound is minimized when

r = Θ(1)σ
2/3
n κ−1/3, in which case α ≤ Θ(1)κ2/3σ

2/3
n .

• When there are both noise and curvature, and the density ρ is sufficiently

low, α ≤ c1κr + (c2 + c3)σn/
√

ερr3. This bound is minimized when r =

Θ(1)(σ2
n/(ερκ

2))1/5, in which case, α ≤ Θ(1)(κ3σ2
n/(ερ))

1/5.

3. Normal Estimation in R3

We can extend the results obtained for curves in R2 to surfaces in R3. Given a point

cloud obtained from a smooth 2-manifold in R3 and a point O on the surface, we

can estimate the normal to the surface at O as follows: find all the points of the

PCD inside a sphere of radius r centered at O, then compute the total least square

plane fitting those points. The normal vector to the fitting plane is our estimate of

the undirected normal at O.

Given a set of k points pi, 1 ≤ i ≤ k, let M = 1
k

∑k
i=1(pi − p̄)(pi − p̄)T

where p̄ = 1
k

∑k
i=1 pi. As pointed out in subsection 2.2, the normal to the total

least square plane for this set of k points is the eigenvector corresponding to the

minimum eigenvalue of the covariance matrix M . Again, we would like to bound

the angle between this eigenvector and the true normal to the surface at O.

3.1. Modeling

We model the PCD in a similar fashion as in the R2 case. We assume that O is

the origin, the z-axis is the normal to the surface at O, and that the points of the
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PCD in the sphere of radius r around O are samples of a topological disk on the

underlying surface that has bounded curvature. We locally represent the surface

as the graph of a smooth single valued C2 continuous function z = g(x) where

x = [x, y]T . Using Taylor Theorem, we can write g(x) = 1
2
xTHx where H is the

Hessian of g at some point ψ such that |ψ| ≤ |x|.
The assumption that the surface has bounded curvature in some neighborhood

around O implies that there exists a positive constant κ such that the Hessian H

of g satisfies ||H||2 ≤ κ in that neighborhood.

We write the points pi as pi = (xi, yi, zi) = (xi, zi). We assume that zi =

g(xi) + ni, where the ni’s are independent instances of some random variable N

with zero mean and standard deviation σn. We similarly assume that the points

xi’s are evenly distributed in the xy-plane on a disk D of radius r centered at O,

i.e. there is a radius r0 such that any disk of size r0 inside D contains at least three

points among the xi’s but no more than some small constant number of them. We

also assume that the noise and the surface curvature are both small.

3.2. Eigen-analysis in R3

We write the covariance matrix M as





m11 m12 m13

m12 m22 m23

m13 m23 m33



 ,

[

M11 M13

MT
13 m33

]

. As pointed

out in subsection 2.2,M is symmetric and positive semi-definite. Under the assump-

tion that the noise and the curvature are small, and that the points xi are evenly

distributed, m11 and m22 are the two dominant entries in M . We assume, without

loss of generality, that m11 ≤ m22. Let α = (|m13| + |m23| +m33)/(m11 − |m12|).
As in the R2 case, we would like to bound the angle between the computed normal

and the true normal to the point cloud in term of α.

Denote by λ1 ≤ λ2 the eigenvalues of the 2 × 2 symmetric matrix M11. Using

again the Gershgorin Circle Theorem, it is easy to see that m11 − |m12| ≤ λ1 ≤
λ2 ≤ m22 + |m12|.

Let λ be the smallest eigenvalue of M . From the Gershgorin Circle Theorem

we have λ ≤ |m13| + |m23| + m33 = α(m11 − |m12|) ≤ αλ1. Let [vT 1]T be the

eigenvector of M corresponding to the eigenvalue λ. Then, as with Equation (1),

we have that:

v = −
(

(M11 − λI)2 +M13M
T
13

)−1
((M11 − λI)M13 +M13(m33 − λ))

= −(M11 − λI)−2
(

I + (M11 − λI)−2M13M
T
13

)−1 ×
((M11 − λI)M13 +M13(m33 − λ)) ,

||v||2 ≤ ||(M11 − λI)−2||2
∣

∣

∣

∣

∣

∣

(

I + (M11 − λI)−2M13M
T
13

)−1
∣

∣

∣

∣

∣

∣

2
×

(||(M11 − λI)||2||M13||2 + ||M13||2|m33 − λ|) .
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Note that,

||(M11 − λI)−2M13M
T
13||2 ≤ ||(M11 − λI)−2||2||M13||2||MT

13||2
≤ (λ1 − λ)−2(m2

13 +m2
23)

≤ (1− α)−2α2 .

Thus,
∣

∣

∣

∣

∣

∣

(

I + (M11 − λI)−2M13M
T
13

)−1
∣

∣

∣

∣

∣

∣

2
≤ 1

1− (1− α)−2α2

≤ (1− α)2
1− 2α

.

It follows that:

||v||2 ≤
1

(1− α)2λ2
1

(1− α)2
1− 2α

(λ2αλ1 + αλ1αλ1)

≤ α(1 + α)

1− 2α

λ2

λ1

.

When α is small, the right hand side is approximately (λ2/λ1)α, and thus the

angle between the computed normal and the true normal, tan−1 ||v||2, is approxi-

mately bounded by (λ2/λ1)α ≤ ((m22 + |m12|)/(m11 − |m12|))α.

3.3. Estimation of the entries of M

As in the R2 case, from the assumption that the samples are evenly distributed, we

can show that Θ(1)r2 ≤ m11,m22 ≤ r2. We can also show that m33 ≤ Θ(1)κ2r4 +

Θ(1)σ2
n. Let ρ be the sampling density of the PCD at O, then k = Θ(1)ρr2. Again,

let ε be some small positive number. Using the Chebyshev inequality, we have that

m13,m23 ≤ Θ(1)κr3 +Θ(1)σnr/
√
εk ≤ Θ(1)κr3 +Θ(1)σn/

√
ερ with probability at

least 1 − ε. For the term m12, we note that E[xiyi] = 0 and V ar(xiyi) = Θ(1)r4,

and so, by the Chebyshev inequality, m12 ≤ Θ(1)r/
√
ερ with probability at least

1− ε.

3.4. Error Bound for the Estimated Normal

Let β = m12/m11. We restrict our analysis to the cases when β is sufficiently less

than 1, say β < 1/2. This restriction simply means that the points xi’s are not

degenerate, i.e. not all of the points xi’s are lying on or near any given line on the

xy-plane. With this restriction, it is clear that (λ2/λ1)α ≤ (m22/m11)((1+β)/(1−
β))α = Θ(1)α.

From the estimations of the entries of M , we obtain the following bound with

probability at least 1− ε:
λ2

λ1

α ≤ Θ(1)κr +Θ(1)
σn

r2
√
ερ

+Θ(1)κ2r2 +Θ(1)
σ2

n

r2

≤ Θ(1)κr +Θ(1)
σn

r2
√
ερ

+Θ(1)
σ2

n

r2
.
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This is an approximate bound on the angle between the estimated normal and

the true normal. To minimize this error bound, it is clear that we should pick

r =

(

1

κ

(

d1

σn√
ερ

+ d2σ
2
n

))1/3

, (5)

for some constants d1, d2. The constants d1 and d2 are small and they depend only

on the distribution of the PCD.

We notice from the above result, when there is no noise, we should pick the radius

r to be as small as possible, say r = r0. When there is no curvature, the radius

r should be as large as possible. When the sampling density is high, the optimal

value of r that minimizes the error bound is approximately r = d
1/3
2 (σ2

n/κ)
1/3. This

result is similar to that for curves in R2, and it is not that intuitive.

4. Experiments

In this section, we describe simulations to validate our theoretical results. We then

show how to use the theoretical results to obtain good neighborhood sizes for the

normal computation using the least square method.

4.1. Validation

We consider a family of PCDs whose points are noisy samples of the curves

(x, κx3/6), for x ∈ [−1, 1] for different choices of κ. We estimate the normals to

the curves at the origin by applying the least square method on their correspond-

ing PCD. As the y-axis is known to be the true normal to the curves, the angles

between the computed normals and the y-axis give the estimation errors.

To obtain the PCDs in our experiments, we let the sampling density ρ be 100

points per unit length, and x to be uniformly distributed in the interval [−1, 1].
The y-components of the data have been polluted with uniformly random noise in

the interval [−n, n], for some value n.

Figure 3(a) shows the error as a function of the neighborhood size r when

n = 0.05 for three different values of κ, κ = 0.4, 0.8, and 1.2. As predicted by Equa-

tion (4) for large values of r, the error increases as r increases. In the experiments,

it can be seen that the error increases as κr for r > 0.4.

Figure 3(b) shows the estimation error as a function of the neighborhood size

r for small r when κ = 1.2 for three different values of n, n = 0.017, 0.033, and

0.05. We observe that the error tends to decrease as r increases for r < 0.15. This

is expected as from Equation (4), the bound on the error is a decreasing function

of r when r is small. To factor out the random effect of noise, the estimation error

curves have been averaged over 50 runs of the experiment.

4.2. Estimating Neighborhood Size for the Normal Computation

In this section, we use the results obtained in Section 3 to estimate the normals at

all the sample points of a PCD. The data points in the PCD are assumed to be noisy



January 23, 2004 15:13 WSPC/Guidelines normalEst

12 Niloy J. Mitra, An Nguyen, Leonidas Guibas

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

Radius

E
rr

or
 A

ng
le

0.4
0.8
1.2

(a) Error due to curvature dominates for r >
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Fig. 3. Effects of curvature and noise on estimation error for different choices of r.

samples of a smooth surface in R3. This is the case, for example, for PCD obtained

by range scanners. We would like to use Equation (5) to obtain the neighborhood

size for the normal computation using the least square method.

We assume that the standard deviation σn of the noise has been provided as

a part of the input. We estimate the other local parameters in Equation (5), then

compute r. Note that this value of r minimizes the bound of the normal computation

error, and there is no guarantee that this would minimize the error itself. The

constants d1 and d2 in the equation depend on the sampling distribution of the

PCD. While we can attempt to compute the exact values of d1 and d2, we try to

estimate the values of d1 and d2.

Given a PCD, we estimate the local sampling density ρ as follows. For a given

point p in the PCD, we use the approximate nearest neighbor library ANN 5 to

find the distance s from p to its k0-th nearest neighbor for some small number k0.

The local sampling density at p can then approximated as ρ = k0/(πs
2) samples

per unit area.

To estimate the maximum local curvature κ, we use the method proposed by

Gumhold et al. 12. Let pj , 1 ≤ j ≤ k be the k-nearest sample points around p,

and let µ be the average distance from p to all the points pj . We compute the best

fit least square plane for those k points, and let d be the distance from p to that

best fit plane. The local curvature at p can then be approximated as κ = 2d/µ2.

This method gives an estimate of the local curvature without any guarantees on

the approximation quality.

Once all the parameters are obtained, we compute the neighborhood size r using

Equation (5). Note that the estimated value of r can be used to obtain a good value
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Algorithm 1 Estimates good normals for all the points of a noisy PCD

1: estimate d1, d2

2: choose ε

3: for each point p do

4: k ← k0

5: count← MaxCount

6: repeat

7: rold ≈ distance from p to its k-th nearest neighbor

8: ρ← k/πr2old

9: given k, compute κ locally (Gumhold et al. 12)

10: compute rnew using Equation (5)

11: k ← dπρr2newe
12: if k > kthreshold then

13: break

14: end if

15: count← count− 1

16: until count 6= 0

17: the normal to the least square fit plane to the k-nearest neighbors of p gives

a good estimate of the normal at p

18: end for

for k, which, in turn, can be used to re-estimate the local density and the local

curvature. This suggests an iterative scheme in which we repeatedly estimate the

local density, the local curvature, and the neighborhood size. In our experiments,

we found that only a small number of iterations were enough to obtain good values

for all the quantities. Algorithm 1 illustrates this iterative scheme. For the following

experiments, k0 was set to 15, and MaxCount was set to 10. The value of ε was

fixed at 0.1.

We still have the problem of obtaining good estimates for the constants d1 and

d2. Fortunately, we only have to estimate the constants once for a given PCD, and

we can use the same constants for other PCDs with a similar point distribution. We

used Figure 6(a) for choosing d1 and d2. The PCD was created such that underlying

model and hence the exact normals at all points (except those on the edges) are

known. Estimation errors can then be computed exactly at almost all the points

and this information used to estimate the constants. We found that d1 = 1, d2 = 4

is a good pair of values and the same pair has been be used for the other data sets.

Noisy PCD used in our experiments were obtained by adding noise to the original

data. The x, y, and z components of the noise were chosen independently and

uniformly random. The magnitude of the added noise was measured in a scale

where the average spacing between neighboring points in the mesh representation

of the original data was taken as one unit.

Figure 4 shows the effects of curvature and noise on the choice of neighborhood
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(a) 1x noise level (b) 2x noise level

Fig. 4. Effects of curvature and noise on the choice of neighborhood size under different amounts
of noise in the input data. The neighbors determined by Algorithm 1 for a few points on the bunny
have been highlighted.

size. The neighborhood of a few points are shown in the figures. Figure 4(a) demon-

strates that bigger neighborhoods have been selected in flatter regions compared

to neighborhoods in regions with more local curvature. Figure 4(b), in compari-

son to Figure 4(a), shows that a higher noise level results in selection of larger

neighborhoods.

(a) 1x noise level (b) 2x noise level

Fig. 5. Normal estimation errors for the bunny PCD with noise added. Points with more than 5◦

estimation error have been highlighted.

We compute the normals of the noisy PCD, and use the angles between those

normals and the normals of the original PCD as estimates of the normal compu-
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tation errors. The normals computed from the mesh representation of the original

data set are considered to be the true normals. The mesh representation of the

original data sets is not available to Algorithm 1. In Figure 5, we highlight the

points with estimation error more than 5◦ under two different amounts of noise.

Figure 6 shows the performance of the algorithm under different noise condi-

tions. In Figure 6(c), we observe that even in presence of significant noise, the

algorithm performs well in flat faces of the object. As noted before, since the un-

derlying surface model is known for this PCD, the true normals used for computing

the estimation errors, are specified at almost all the points.

(a) 1x noise (b) 2x noise (c) 4x noise

Fig. 6. Performance of the algorithm under various noisy conditions. Points with more than 5◦

estimation error have been highlighted.

5. Conclusions

We have analyzed the method of least square fitting to a neighborhood in estimat-

ing the normals to a point cloud data derived either from a smooth curve in R2

or a smooth surface in R3, with noise added. In both cases, we provided theoret-

ical bounds on the maximum angle between the estimated normal and the true

normal of the underlying manifold. This theoretical study allowed us to find an

optimal neighborhood size to be used in the least square method. Application of

the theoretical study on practical data resulted in satisfactory behavior.
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