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Figure 1: Examples of chair and animal shapes assembled by composing simple volumetric primitives (cuboids). The
obtained reconstructions allows an interpretable representation for each object and provides a consistent parsing across shapes
e.g. chair seats are captured by the same primitive across the category.

Abstract

We present a learning framework for abstracting com-
plex shapes by learning to assemble objects using 3D vol-
umetric primitives. In addition to generating simple and
geometrically interpretable explanations of 3D objects, our
framework also allows us to automatically discover and ex-
ploit consistent structure in the data. We demonstrate that
using our method allows predicting shape representations
which can be leveraged for obtaining a consistent parsing
across the instances of a shape collection and constructing
an interpretable shape similarity measure. We also examine
applications for image-based prediction as well as shape
manipulation.

1. Introduction
“Treat nature by means of the cylinder, the sphere, the
cone, everything brought into proper perspective”

Paul Cezanne

Cezanne’s insight that an object can be conceived as as-
sembled from a set of volumetric primitives has resurfaced

multiple times in the vision and graphics literature. In com-
puter vision, generalized cylinders were introduced by Bin-
ford back in 1971, where a cross-sectional area is swept
along a straight or curved axis while possibly being shrunk
or expanded during the process [2]. One of the key moti-
vations was parsimony of description – an object could be
described by relatively few generalized cylinders, each of
which in turn requiring only a few parameters. Volumet-
ric primitives remained popular through the 1990s as they
provided a coherent framework for explaining shape infer-
ence from a single image, perceptual organization, as well
as recognition of a 3D object from 2D views. However,
fitting generalized cylinders to image data required consid-
erable hand crafting, and as machine learning techniques
for object recognition came to the fore in the 1990s, this
paradigm faded from the main stage.

Of course, finding parsimonious explanations for com-
plex phenomena lies at the core of learning-based visual
understanding. Indeed, machine learning is only possible
because our visual world, despite its enormous complexity,
is also highly structured – visual patterns don’t just happen
once, but keep on repeating in various configurations. In
contemporary computer vision, this structure is most often
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modeled via human supervision: the repeating patterns are
labeled as objects or object parts, and supervised learning
methods are employed to find and name them in novel im-
agery. However, it would seem more satisfying if complex
structures could be explained in terms of simpler underlying
structures.

In this paper we return to the classic problem of explain-
ing objects with volumetric primitives, but using the mod-
ern tools of unsupervised learning and convolutional neural
networks (CNNs). We choose the simplest possible primi-
tives, rigidly transformed cuboids, and show how deep con-
volutional networks can be trained to assemble arbitrary 3D
objects out of them (at some level of approximation). The
main reason we succeed where the classic approaches failed
is because we aim to explain the entire dataset of 3D ob-
jects jointly, allowing us to learn the common 3D patterns
directly from the data.

While the representation of the 3D object shapes e.g.
as meshes or voxel occupancies, is typically complex and
high-dimensional, the resulting explanation in terms of ba-
sic primitives is parsimonious, with a small number of pa-
rameters. As examples of their applicability, we lever-
age the primitive based representation for various tasks e.g.
part discovery, image based abstraction, shape manipula-
tion etc. Here we do not wish to reprise the classic de-
bates on the value of volumetric primitives – while they
were oversold in the 70s and 80s, they suffer from com-
plete neglect now, and we hope that this demonstration of
feasibility of learning how to assemble an object from volu-
metric primitives will reignite interest. Code is available at
https://shubhtuls.github.io/volumetricPrimitives.

2. Related Work

3D Representation and Reconstruction. The classic ap-
proaches for modeling objects and scenes dating to the
very beginnings of the computer vision discipline, such as
blocks world [27], generalized cylinders [2], and geons [1],
emphasized the compactness of representation as the cen-
tral goal. In a similar spirit, a few modern approaches
have attempted to reconstruct objects/scenes using sim-
ple primitives, including Lego pieces [34] and qualitative
3D blocks [11]. Apart from these attempts, most main-
stream methods for representing and reconstructing objects
typically use much higher-dimensional representations e.g.
objects as point clouds [19, 35] or exemplar CAD mod-
els [23, 24, 38]. The success of the latter set of approaches
has been largely driven by the data-driven reasoning which
the classical methods did not leverage. Our work aims to
combine the two – we aim for a parsimonious representa-
tion but discover the underlying parsimony in a data-driven
manner instead of relying on hand-crafted cues and priors.
Similar to our approach, Yumer and Kara [39, 40] showed

that parsimonious modelling with data-driven reasoning can
allow consistent geometry simplifications or deformations
in shape collections but our learning based approach allows
efficient test time inference for novel shapes. An additional
property of our approach, compared to classical methods, is
the consistency of representation across instances. Classi-
cal approaches solve a per-instance optimization and obtain
an unordered set of primitives whereas our our approach
outputs a consistent indexed set of primitives – this allows
several applications examined in Section 5.

Parsing Objects, Scenes and 3D Shapes. The idea of
exploiting repeating structures in large datasets has been
central to efforts on unsupervised object discovery and co-
segmentation [28, 30]. Data-driven compositionality, in
particular, has been used for co-segmentation [6], scene
parsing and novel scene generation [17, 29]. In the do-
main of 3D shapes, the idea of exploiting compositional-
ity has played a similarly important role for object rep-
resentation, parsing, and manipulation. Pre-labeled, part-
based shape representations were used for capturing the
category-specific shape manifold [7], generating novel ob-
jects [16, 18] or recovering 3D from 2.5D data [33]. Other
methods aim to automatically discover these components in
3D shape datasets [15], and their relative arrangements [41].
Similar to these shape and scene based methods, our frame-
work can automatically discover consistent components and
understand the structure of the data, but we do so by virtue
of learning to generate parsimonious explanations.

Deep Generative Models. The rapid recent progress in su-
pervised learning tasks by using deep learning techniques
has been accompanied by a growing interest in leveraging
similar methods to discover structure in the visual data. Us-
ing generative adversarial networks [9, 26] allows learning
the data distribution but the underlying latent space lacks
interpretability. Other generative methods aim to explicitly
decouple the underlying factors of variation [4, 22] but rely
on supervision for disentangling these factors. More closely
related to our work, some recent approaches use recurrent
networks to iteratively generate components to explain a
simple 2D input scene [5, 10, 14]. Our work uses sim-
ilar principles of learning component based explanations
of complex shapes where the components are interpretable
simple 3D primitives.

3. Learning Object Assembly
We formulate the problem of assembling a target object

O, given input signal I as that of predicting (up to) M
distinct parts which are then composed to output the final
shape. Towards this, we learn a CNN hθ parametrized by θ
which outputs a primitive based representation. The task of
learning this CNN is an unsupervised one – we do not have
any annotations for the primitive parameters that best de-
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Figure 2: Overview of our approach. Given the input volume corresponding to an objectO, we use a CNN to predict primitive
shape and transformation parameters {(zm, qm, tm)} for each part (Section 3.1). The predicted parameters implicitly define
transformed volumetric primitives {P̄m} whose composition induces an assembled shape. We train our system using a loss
function which attempts to minimize the discrepancy between the ground-truth mesh for O and the assembled shape which
is implicitly defined by the predicted parameters (Section 3.2).

scribe the target objects. However, even though there is no
direct supervision, one can measure if a predicted primitive
configuration is good by checking if the assembled object
matches the target object. Using this insight, we formulate
a loss function which informs us if the shape assembled us-
ing the predicted primitives matches the target shape and
optimize this loss to train the CNN.

An overview of our approach is presented in Figure 2.
Given a discretized representation of the target shape as in-
put, we use a CNN to predict a primitive representation (de-
scribed in Section 3.1). The predicted representation im-
plicitly defines an assembled shape by composing the pre-
dicted primitives. Section 3.2 describes a differentiable loss
function that allows using this representation in a learning
framework. While the initial presentation assumes the use
of a fixed number of primitives, Section 3.3 extends our ap-
proach to allow a variable number of primitives.

3.1. Primitive based Representation

We represent an assembled shape by composing the pre-
dicted simple transformed primitives. Each primitive is en-
coded in terms of a tuple (z, q, t) where z represents its
shape in a canonical frame and (q, t) represent the spatial
transformation (rotation and translation). The assembled
shape predicted by the neural network hθ can therefore be
written as below.

{(zm, qm, tm)|m = 1, · · · ,M} = hθ(I) (1)

The motivation for this parametrization is to exploit the
compositionality of parts as well as the independence of
‘what’ and ‘where’ (part shape and spatial transformation
respectively). The representation of a shape as a set of
parts allows independent reasoning regarding semantically
separate units like chair legs, seat etc. The decomposition
in terms of part shape and transformation parameters fur-
ther decomposes factors of variation like ‘broad aeroplane
wing’ (captured by shape) and ‘tilted chair back’ (captured
by transformation).

3.2. Loss Function for Assembled Shape

We want to define a differentiable loss function
L({(zm, qm, tm)}, O) between the CNN prediction
{(zm, qm, tm)} and the target object O. This is a chal-
lenging task because the prediction and the groundtruth
have different 3D representations – the prediction is a
parametrized shape whereas the groundtruth is a mesh
consisting of triangles. To overcome this, we leverage the
fact that the parametrization in terms of simple primitives
allows efficient computation of some properties of the
shape induced by their composition. In particular, we can
compute the distance field (Section 3.2.1) of the assembled
shape as well as sample points on the surface of the
primitives. These allow us to define two complimentary
losses which together aim to minimize the discrepancy
between the predicted and ground-truth shape. The Cov-
erage Loss tries to enforce that the object O is subsumed
by the predicted assembled shape. The Consistency Loss
enforces the other direction – that the object O subsumes
the predicted shape. By optimizing these losses together,
we ensure that the assembled shape tries to be maximally
consistent with the target object.

3.2.1 Preliminaries

Notation. We represent by Pm, the untransformed prim-
itive as predicted according to zm and use P̄m to denote
the primitive Pm after rotation, translation according to
(qm, tm). Therefore, the final shape induced by the com-
position of the predicted primitives is ∪

m
P̄m.

We use the function S(·) to represent the surface of the
argument and p ∼ S(·) represents a random point sampled
on it e.g. p ∼ S(P̄m) corresponds to a point sampled on the
surface ofmth primitive. We also require notations for sim-
ple rigid transformations – we denote by R(p, q) result of
rotating a point p according to rotation specified by quater-
nion q and similarly, T (p, t) denotes the result of translating
a point p by t. Note that the operations R, T are both dif-
ferentiable.
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Distance Field. A distance field C( · ;O) corresponding to
an object O is a function R3 → R+ that computes the dis-
tance to the closest point of the object. Note that it evaluates
to 0 in the object interior.

C(p;O) = min
p′∈O

‖p− p′‖2 (2)

3.2.2 Coverage Loss : O ⊆ ∪
m
P̄m .

We want to penalize the CNN prediction if the target object
O is not completely covered by the predicted shape ∪

m
P̄m.

A sufficient condition to ensure this is that the distance field
of the assembled shape evaluates to zero for all points on
the surface of O.

L1({(zm, qm, tm)}, O) = Ep∼S(O)‖C(p;∪
m
P̄m)‖2 (3)

Computation can be simplified due to a nice property of
distance fields. It is easy to show that the distance field of
a composed shape equals to the pointwise minimum of the
distance fields of all composing shapes:

C(p;∪
m
P̄m) = min

m
C(p; P̄m) (4)

This decomposition rule boils the distance field of a
whole shape down to the distance field of a primitive. In
the following, we show how to efficiently compute C for
primitives as cuboids.

Distance field of Primitives. Given an origin-centred
cuboid represented by z ≡ (w, h, d) – its extent in the three
dimensions, its distance field Ccub( · ; z) can be computed
as below (using max(0, x) ≡ x+):

Ccub(p; z)2 = (|px| − w)2
+ + (|py| − h)2

+ + (|pz| − d)2
+

Consider an object O (with an associated field C( · ;O))
undergoing a rotationR (parametrized by quaternion q) fol-
lowed by a translation t. The distance field at a point p w.r.t.
the transformed object is the same as the distance field at p′

wrt. the canonical object where p′ = R−1(p− t). This ob-
servations allows us to complete the formulation by defining
C(p; P̄m) (required in Eq. 4) as below.

C(p; P̄m) = C(p′;Pm); p′ = R(T (p,−tm), q̄m) (5)
C( · ;Pm) = Ccub( · ; zm) (6)

3.2.3 Consistency Loss : ∪
m
P̄m ⊆ O.

We want to penalize the CNN prediction if the predicted
shape ∪

m
P̄m is not completely inside the target object O. A

sufficient condition is to ensure this is that the distance field

of the object O shape evaluates to zero for all points on the
surface of individual primitives P̄m.

L2({(zm, qm, tm)}, O) =
∑
m

Ep∼S(P̄m)‖C(p;O)‖2 (7)

Additionally, we observe that to sample a point p on
the surface of P̄m, one can equivalently sample p′ on the
surface of the untransformed primitive Pm and then rotate,
translate p′ according to (qm, zm).

p ∼ S(P̄m) ≡ T (R(p′, qm), tm); p′ ∼ S(Pm)

An aspect for computing gradients for the predicted param-
eters using this loss is the ability to compute derivatives for
zm given gradients for a sampled point on the canonical
untransformed primitive p′ ∼ S(Pm). We do so by using
the re-parametrization trick [21] which decouples the pa-
rameters from the random sampling. As an example, con-
sider a point being sampled on a rectangle extending from
(−w,−h) to (w, h). Instead of sampling the x-coordinate
as x ∼ [−w,w], one can use u ∼ [−1, 1] and x = uw. This
re-parametrization of sampling allows one to compute ∂x

∂w .
We provide the details for applying the re-parametrization
trick for a cuboid primitive in the appendix.

3.3. Allowing Variable Number of Primitives

The framework we have presented so far reconstructs
each instance in an object category using exactly M primi-
tives. However, different instances in an object category can
be explained by different number of primitives e.g. some
chairs have handles, others don’t. To incorporate this, in
addition to predicting the shape and transformation of each
primitive, we also predict the probability of its existence
pm. We first discuss the modified representation predicted
by the CNN and discuss how the loss function can incorpo-
rate this.

Primitive Representation. As we mentioned above, the
primitive representation has an added parameter pm – the
probability of its existence. To incorporate this, we factor
the primitive shape zm into two components – (zsm, z

e
m).

Here zsm represents the primitive’s dimensions (e.g. cuboid
height, width, depth) as before and zem ∼ Bern(pm) is a
binary variable which denotes if the primitive actually ex-
ists i.e. if zem = 0 we pretend as if the mth primitive does
not exist. The prediction of the CNN in this scenario is as
below.

{(zsm, qm, tm, pm)|m = 1 · · ·M} = hθ(I) (8)
∀m zem ∼ Bern(pm); zm ≡ (zsm, z

e
m) (9)

Note that the CNN predicts pm – the parameter of the
Bernoulli distribution from which the part existence vari-
able zem is sampled. This representation allows the predic-
tion of a variable number of parts e.g. if a chair is best ex-
plained using k < M primitives, the network can predict a
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high pm for only k primitives and a low pm for the remain-
ing M − k primitives.

Learning. Under the reformulated representation of prim-
itives, the CNN output does not induce a unique assem-
bled shape – it induces a distribution of possible shapes
where the mth primitive stochastically exists with proba-
bility pm. In this scenario, we want to minimize the ex-
pected loss across the possible assemblies. The first step is
to modify the consistency and coverage losses to incorpo-
rate zm ≡ (zsm, z

e
m). Towards this, we note that the un-

transformed primitive Pm is either a cuboid (if zem = 1) or
empty (if zem = 0). In case it is empty, we can simply skip
it the the consistency loss (Section 3.2.3) for this primitive
and can incorporate this in the coverage loss (Section 3.2.2)
by modifying Eq. 6 as follows -

C( · ;Pm) =

{
∞, if zem = 0

Ccub( · ; zsm), if zem = 1
(10)

We can now define the final loss L(hθ(I), O) using the
concepts developed. Note that this is simply the expected
loss across possible samplings of zem according to pm.

L({(zm, qm, tm)}, O) = L1({(zm, qm, tm)}, O)

+ L2({(zm, qm, tm)}, O) (11)

L(hθ(I), O) = E∀m zem∼Bern(pm)L({(zm, qm, tm)}, O)

Under this loss function, the gradients for the continu-
ous variables i.e. {(zsm, qm, tm)} can be estimated by av-
eraging their gradients across samples. However, to com-
pute gradients for the distribution parameter pm, we use the
REINFORCE algorithm [37] which basically gives positive
feedback if the overall error is low (reward is high) and neg-
ative feedback otherwise. To further encourage parsimony,
we include a small parsimony reward (reward for choosing
fewer primitives) when computing gradients for pm.

4. Experiments

Dataset. We perform our experiments primarily using the
ShapeNet [3] dataset which has a large collection of 3D
models. In particular, we use the ‘airplane’ and ‘chair’
object categories which have thousands of meshes avail-
able. The ShapeNet models are already aligned in a canon-
ical frame and are of a fixed scale. Additionally, in order
to demonstrate applicability beyond rigid objects, we also
manually download and similarly preprocess a set of around
100 models corresponding to four-legged animals.

Network Architecture and Training. The dataset de-
scribed above gives us a set of 3D objects {Oi}. Cor-
responding to Oi, the input to our CNN is a discretized

representation as a volumetric occupancy grid Ii of size
32 ∗ 32 ∗ 32 (we later experiment with rendered images as
input in Section 5.3). The encoder used in our shape assem-
bler, as shown in Figure 2, takes in as input an occupancy
grid and passes it through 3D convolutional and fully con-
nected layers with intermediate non-linearities to output the
primitive parameters {(zsm, qm, tm, pm)|m = 1 · · ·M} ≡
hθ(Ii). In this work, we use cuboid primitives and zsm
represents the width, height and thickness of cuboids. We
use ADAM [20] to train our network according to the loss
L(hθ(Ii), Oi) described in Section 3 which aims to make
the assembled shape predicted using Ii match to the target
object Oi.

Implementation Details. The coverage and consistency
loss functions are both defined using expectations over sam-
pled points. In practice, we randomly sample 1000 points
on S(O) to implement Eq. 3 and 150 points from each
S(P̄m) to implement Eq. 7. To efficiently compute the dis-
tance field of the target object O at an arbitrary point p in
Eq. 7, we precompute the distance field and its derivatives
for samples in a dense regular grid and use it to obtain effi-
cient but approximate gradients ∂C(p,O)

∂p .
Another practical difficulty is that the gradients for the

primitive existence probabilities pm are extremely noisy in
the initial training stages – e.g. in the initial stages if a prim-
itive is incorrectly placed, the CNN may learn to predict a
very small pm instead of learning to align the primitive cor-
rectly. To overcome this, we use a two-stage training pro-
cess. We first train the network using a fixed high value
of pm across primitives and later allow the network to also
learn pm while also encouraging simplicity by the external
parsimony reward. As shown in Figure 5, this has the ef-
fect of first using a large number of primitives and in later
stages, merging them together and using fewer primitives.

After the CNN has been trained, when computing the
assembled representation for an object, we use MLE esti-
mates instead of sampling i.e. zem = 1(pm > 0.5). The
final shape predictions using the CNN may still have redun-
dant parts used and we use a simple post-processing step to
refine the prediction by removing the parts which signifi-
cantly overlap with others.

Results and Analysis. We show the results of our method
for three object categories – chairs, aeroplanes and animals
in Figure 3. We observe that the predictions successfully
capture the coarse structure and are consistent across ob-
jects. The results indicate that the we can handle structural
variations within a category e.g. the objects in the right side
of Figure 3 have a different structure than those on the left
which occur more commonly in the dataset.

We visualize in Figure 5 the training error across itera-
tions. We observe that in the initial training stage (up to
20000 iterations), the loss rapidly decreases as the correct
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Figure 3: Final predictions of our method on chairs, animals and aeroplanes. We visualize the more commonly occurring
modes on the left and progressively towards the right show rarer configurations predicted.

Figure 4: Visualization of the training progression. We vi-
sualize the prediction for two instances (shown in column 1)
after every 10,000 iterations (left to right, in columns 2-6).
The last column shows the result after post-processing to
remove redundant parts that overlap significantly with oth-
ers. The initial training stage (up to 20,000 iterations) uses
all primitives but we later allow the network to learn to use
fewer primitives and the predictions gradually become more
parsimonious.

configuration is being learned. In the second stage of train-
ing, when we allow pm to be learned, the error initially in-
creases – this is because some primitives, encouraged by
the parsimony reward, now start disappearing and the net-
work eventually learns to use fewer primitives better. Even
though the reconstruction error in the initial stages is lower,
the reconstructions using fewer primitives, are more parsi-
monious. This provides an insight regarding the tradeoff
between representation parsimony and reconstruction accu-
racy – and that we should not judge the former by the latter.

5. Applications
We observe in Figure 1 and Figure 3 that the inferred

representations are consistent across a category – chair seat

Figure 5: We plot the Coverage (L1) and Consistency (L2)
losses over training iterations. The losses both decreases
in the initial stage of training (up to 20,000 iterations) but
when we allow the use of varying number of primitives
along with parsimony reward, the losses initially increase.
This reveals a tradeoff between representation parsimony
and reconstruction accuracy.

is explained consistently using the same primitive. They
are also descriptive of the underlying shape and are, by con-
struction, interpretable. Therefore, our framework allows us
to automatically discover descriptive, consistent and inter-
pretable shape abstractions using a collection of 3D models.
By virtue of these properties, our representation can enable
several applications related to shape similarity, part discov-
ery, perception and shape manipulation.

5.1. Unsupervised Parsing and Correspondence

The learned primitive decomposition is useful for obtain-
ing part-level correspondences across instances. Since we
use a common network across an object category, simple
and consistent solutions are preferred to explain the data i.e.
the same primitive explains the chair back across the cate-
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Figure 6: Projection of the predicted primitives onto the original shape. We assign each point p in the original shape to the
corresponding primitive with lowest distance field C(p, P̄m). We visualize the parsing by coloring each point according to
the assigned primitive. We see that similar parts e.g. aeroplane wings, chair seat, etc. are consistently colored.

Figure 7: Embeddings computed using various distance measures - a) Voxel IoU based distance b) Ours (all primitives) c)
Ours (chair back, seat primitives) d) Ours (chair back orientation). While the IoU based embedding conflates chairs different
fine level structure (e.g. with/without handles), our embedding using all primitives encodes them separately. Additionally,
unlike common shape representations, our inferred abstractions give us control over similarity measures – we can choose
to consider only specific primitives if required e.g. chair back and seat which, as expected, results in ignoring existence of
chair handles. We can also focus on specific properties e.g. chair back orientation and observe a 1D manifold emerge in this
scenario. See appendix for high-resolution images.

gory. We can leverage this observation to extract correspon-
dences across the category by assigning labels to points ac-
cording to the primitive that explains them – we assign each
point to the primitive that has the lowest C(p, P̄m), giving
preference to larger primitives to break ties. We therefore
obtain a consistent labelling of all points across instances
using the predicted primitive decomposition – some exam-
ples are depicted in Figure 6.

We also evaluate this parsing on the Shape COSEG [36]
dataset by measuring the accuracy using annotated ground-
truth. While the ground-truth only has 3 clusters (chair
back, seat, legs), our method as well as previous unsuper-
vised approaches [31, 36] cluster shapes into a larger num-
ber of partitions (number of primitives in our case) and as-

sign each partition a ground-truth label to evaluate. We ob-
tain a mean accuracy of 89.0% whereas [31] reports 78.6%
and 84.8% accuracy with initial and refined parsings respec-
tively1. See appendix for qualitative results.

5.2. Interpretable Shape Similarity

The trained CNN of our shape assembler maps ev-
ery 3D shape to corresponding primitive parameters
{(zm, qm, tm)}. These parameters succinctly capture the
geometry of the underlying object. We find that a simple

1Unfortunately, we found that [31] used a preliminary version of the
Shape COSEG dataset [36]. We were unable to obtain this preliminary
version, therefore the results are not exactly comparable. The algorithm in
[36] does use the current dataset but reports no quantitative results.
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euclidean distance in the embedding space is a reliable mea-
sure of shape similarity. We use this distance to compute a
t-sne [25] embedding of shapes and visualize 1000 random
instances in Figure 7 . We observe that the automatically
discovered structure captures similarity better than a sim-
ple voxel IoU based metric and that clusters correspond to
natural sub-categories e.g. sofa etc.

One aspect unique to our approach is that the shape em-
bedding is interpretable and instead of using primitive pa-
rameters for all parts, we can modify the distance measure
to focus on specifics of interest for the application. As an
example, we show the resulting t-sne embedding if only
2 primitives, which correspond to back and seat, are used
to compute the distance across shapes. We observe that
the embedding reflects the desired similarity e.g. unlike in
the case of using all primitives to measure shape similar-
ity, chairs with and without handles are now embedded to-
gether. We also compute the embedding for the distance
measure which only measures the difference in the orienta-
tion (qm) for a specific part (chair back) and observe that
this is a 1D manifold with the tilt increasing as we traverse
it. Therefore, unlike common shape representations, our in-
ferred abstractions give us control over similarity measures.

Figure 8: Inferred abstractions using real image inputs.

Figure 9: We deform the source mesh (top) to have a shape
similar to the target mesh (bottom) by using the inferred
primitive representation. Each source mesh point is as-
signed a local coordinate in the closest primitive’s frame.
A deformation of the primitives from the source to target
configuration induces a deformed mesh (shown on right).

5.3. Image based Abstraction

Given our trained model hθ which infers primitive rep-
resentation using volume inputs, we can train an image
based prediction model gθ′ . We obtain volume-image pairs

(Vi, Ii) by rendering ShapeNet models with random light-
ing and background (as suggested in [32]) and train the im-
age based network to mimic the volume based network’s
predictions i.e. we train gθ′ to minimize ‖hθ(Vi)−gθ′(Ii)‖2.
This distillation technique [13] for using paired data to train
a model for predicting outputs similar to a pre-trained CNN
is common [12] and has previously also been used for learn-
ing shape embeddings [8]. We find that we can successfully
apply this to our scenario and learn an image-based pre-
diction model that outputs the abstraction of the underlying
shape given a single image. We show some results in Fig-
ure 8. This demonstrates that one can learn to predict shape
abstractions using varying inputs and this might enable ap-
plications in robotics settings where such inference might
help in grasping, planning etc.

5.4. Shape Manipulation

The inferred primitive based shape abstractions can be
used as a skeleton to guide manipulation of the underlying
objects. We can assign each mesh point a local coordinate
in the frame of its corresponding primitive (as computed in
Section 5.1). A rotation, translation or scaling of the cor-
responding primitive can thereby induce a change in the
global coordinates of the associated mesh points. We show
some examples in Figure 9 where we deform a source mesh
to have a similar configuration as a target mesh. While the
transformation used in this example is defined using a target
mesh, one can also use our representation for other transfor-
mation e.g. making the legs longer or tilting the back etc.

6. Conclusion
In this work, we take an unsupervised, data-driven ap-

proach to explain visual information in terms of simpler
primitives. Taking inspiration from the classic work on gen-
eralized cylinders [2] and geons [1], we too argue that any
visual explanation must be in terms of 3D volumetric enti-
ties, not 2D pixel patches. However, unlike the earlier work
in this area we firmly believe in being data-driven and let-
ting the data itself discover the best representation.

We demonstrated the applicability of data-driven 3D un-
derstanding of the visual world in a very simple setting –
that of explaining objects from cuboidal primitives. This
merely represents the first steps towards the goal of gener-
ating parsimonious descriptions of the visual input and hope
that this will motivate further efforts, including the use of a
wider catalogue of basic parametrized primitives, to under-
stand the underlying 3D structure of the world.
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Appendix
A1. Consistency Loss via Differentiable Surface
Sampling

We first re-iterate the consistency loss which aims for the
assembled shape to be subsumed by ground-truth object and
does so by sampling points on the surface of each primitive
and penalizing the squared distance field w.r.t the ground-
truth object at the sampled points.

L2({(zm, qm, tm)}, O) =
∑
m

Ep∼S(P̄m)‖C(p;O)‖2

Recall that to sample a point p on the surface of P̄m, one
can equivalently sample p′ on the surface of the untrans-
formed primitive Pm and then rotate, translate p′ according
to (qm, zm).

p ∼ S(P̄m) ≡ T (R(p′, qm), tm); p′ ∼ S(Pm)

Note that the untransformed primitive Pm is an origin-
centered cuboid parametrized by zm ≡ (wm, hm, dm) – the
dimensions along the three canonical axes. We now aim to
show that we can derive gradients for zm given gradients
for a p′ ∼ S(Pm). We do so using a re-parametrization
trick where we aim to decouple the random sampling pro-
cess from the parameters. The process of sampling from a
cuboid’s surface requires developing tow aspects. The first
concerns how to sample from a particular face. The second
required component is to decide which face to sample from
– we show that we can sample equally from all faces if we
assign sample importance weights.

Sampling Along a Face. Let us assume we want to to sam-
ple a point from a given cuboid face – say the one on the
plane x = w. The process of sampling a point on this face
can be written as -

ux = 1;uy ∼ [−1, 1];uz ∼ [−1, 1];

p′ = (uxwm, uyhm, uzdm)

We can similarly define a sampling process for the other
cuboid faces. Note that the coordinates of the sampled point
p′ are linear the primitive parameters and that given the ran-
dom coefficients (ux, uy, uz), it is straightforward to com-
pute ∂p′

∂zm
.

Importance Weights per Sample. To sample uniformly on
the cuboid surface, we need to sample on each face with a
probability proportional to its area. Unfortunately, it is un-
clear how this sampling process can be decoupled from the
parameters pm. Instead, we can simply sample equally from
all faces and assign each sample an importance weight pro-
portional to the area of the face it was sampled from. Under

this implementation, the consistency loss as previously de-
fined can be implemented as:

L2({(zm, qm, tm)}, O) =
∑
m

∑
p,wp∼S(P̄m)

wp‖C(p;O)‖2

Herewp is the importance weight of the corresponding sam-
ple and is proportional to the area of the face where it was
drawn from. Note that wp is also differentiable w.r.t zm,
therefore making consistency loss described differentiable
w.r.t the predicted primitive parameters.

A2. Gradient computation for primitive existence
probabilities pm

We provide more details on how we use the REIN-
FORCE algorithm to compute gradients for the primitive
existence probabilities pm. We discuss a more general im-
plementation compared to the text – we assume pm ≡
(p0
m, p

1
m) represents the probability of the available choices

for the primitive – p0
m is the probability that the primitive

does not exist and p1
m is the probability that it is a cuboid.

Note that this can be modified to add other choices e.g. a
third choice that the primitive is a cylinder.

Let l denote the loss L({(zm, qm, tm)}, O) incurred for
the particular sampling of zem. Let r denote the external
parsimony reward obtained if a primitive is sampled as not
existing. Using these, the gradient for the predicted proba-
bility pm is computed as -

∂L

∂pim
=


l − 1(zem = 0)r

pim
, if zem = i

0, otherwise

It is typically also advised to subtract a ‘baseline’ (mean
reward in the ideal scenario) to reduce the variance of the
estimated gradients so we incorporate it using l − b instead
of l in the equation above where b is the running average of
the losses incurred.

A3. Architecture and Initialization

Architecture and Hyper-parameters. Our network has
five 3D convolution layers (with ReLU) of kernel 3, padding
1, stride 2. The number of channels (initially 4) are doubled
after every layer. These are followed by 2 fc layers (with
ReLU) with 100 units each, followed by a final layer to pre-
dict primitive parameters. We use ADAM for optimization
and choose M to be more than the double the number of ex-
pected parts. M=20 for chairs, but was reduced to 15, 12 for
planes, animals (to reduce iteration time).

Initialization. We initially bias zm s.t. primitives are small
cubes and pm = 0.9 so every primitive is initially used but
all other layer parameters/weights (and primitive positions,
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rotations etc.) are initialized randomly (our training dis-
covers consistent solutions despite a random initialization
because of commonalities in the data).

A4. Visualization

Shape COSEG Results. We visualize our parsings ob-
tained on the ‘chairs’ subset of the Shape COSEG data.
Figure 10 shows the meshes in the dataset and Figure 11
shows our inferred representations for these. Figure 12 vi-
sualizes the obtained unsupervised parsing of the original
mesh. Figure 13 shows the annotated ground-truth labels
and Figure 14 shows our predictions obtained by assign-
ing each primitive a label from the available ground-truth
labels.

Shape Embedding. We show in Figure 15, Figure 16,
Figure 17 and Figure 18 the high-resolution images corre-
sponding to the embeddings shown in the original text.
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Figure 10: Meshes in the Shape COSEG dataset.

Figure 11: Inferred primitive based representations using our learned CNN on ShapeNet.

Figure 12: Primitive labels projected onto the original mesh.

Figure 13: Annotated Ground-truth part labels.

Figure 14: Our inferred part labels on the Shape COSEG dataset, obtained by assigning each primitive to a ground-truth
label.
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Figure 15: Embedding using voxel IoU as distance metric.
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Figure 16: Embedding using squared euclidean distance in primitive based representation space.
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Figure 17: Embedding using configurations of two specific primitives (chair back, seat) to compute the distances.
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Figure 18: Embedding using the orientation of a specific primitive (chair back) to compute distances.
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