(CS348n: Computer Graphics Homework 1
Neural Representations and Generative Models for 3D Geometry

Stanford University 12 April 2023
Homework #1: 3D Basics; Auto-encoder; Variational Auto-encoder [50 points]
Due Date: Wednesday, 19 April 2023

Homework policies

Collaboration in solving the problems is encouraged in this class—you have a lot to learn from
your fellow students. However, in order to make grading the homeworks a meaningful way to
measure your effort and your understanding of the material, we allow collaboration groups of
at most three students. A single write-up is sufficient for a collaboration group.

Please be sure to respect the honor code in all assignments: the work you present must be
your own, or obtained jointly with your team partner. Other than that, it is not permitted to give
or receive help from others in doing the assignments. Please be sure to reference all sources
and resources used in obtaining your solution, as you would when publishing a scientific paper.

Assignments in this class must be submitted in digital form through Gradescope. Solution
write-ups must be properly typeset in LaTleX or Microsoft Word and the PDF uploaded to
Gradescope. No hand-written assignments will be accepted, or scans/photos of such. For
programming problems, in your write-up please include (i) the relevant code snippet, and (ii) a
link where the full source code can be downloaded (preferably as a zip file, e.g., Google Drive).

It is very important in this course that every homework be turned in on time. We recognize
that occasionally there are circumstances beyond your control that prevent an assignment from
being completed on time. You will be allowed two classes of grace during the quarter. This
means that you can either hand in two assignments each late by one class, or one assignment
late by two classes. Any further assignments handed in late will be penalized by 20% for each
class that they are late and by 100% after that, unless special arrangements have been made
previously with the instructor or the CA due to extenuating circumstances (e.g., serious illness).
However, no assignment may be handed in later than Wednesday, 7 June 2023.

Goals of This Assignment

This assignment is a short one-week warmup assignment to help you:
« earn basic skills for processing and visualizing 3D data;
* get started with training an auto-encoder using 3D point cloud shapes as input;

* adapt the auto-encoder to a variational version that can be used for 3D shape generation.

Instructions

This assignment contains three programming problems that require access to a machine with
decent CPUs and one GPU to train the neural networks on big scale 3D data. Please use
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Google CoLab (check https://www.youtube.com/watch?v=I72Uz4pRYlus for in-
structions) or the Cloud Credits (check https://github.com/cs231n/gcloud forin-
structions; ask the TAs for coupons) to get access to a GPU. All necessary files for this as-
signment can be found in the folder code. Please follow the instructions in the README . md,
provided in the code folder, to install all necessary dependencies for running the provided
codes. Although this is a short warmup assignment, we recommend to start as early as possible
and definitely not wait until the last days to begin, as the network training will take some time.

Problem 1. 3D Basics: Data Processing and Visualization [20 points]

Unlike 2D images, when it comes to representing 3D data, we have several available represen-
tations such as 3D voxel-grids, point clouds, meshes, implicit fields, etc.), each of them has its
own merits and drawbacks. In the first problem, you will learn how to process and visualize
3D data that are represented either as point clouds or voxel-grids. In your final report, please
also include your implementations in the probl . ipynb.

(a) (4 points). For this question, we want you to load a ShapeNet [ |] chair, represented using
three different ways — the original 3D CAD model mesh (chair_example.obj), the
sampled point cloud shape (chair_example.ply), and the processed voxelized shape
(chair_example.binvox). You can find all these files in the data folder. Starting
from the probl.ipynb, use the provided code for loading the different 3D represen-
tations (see the 1oad_obJj, load_ply, and load_binvox functions in utils.py)
and load the 3D data formats. In your final report, please show the data structure for each
of three data files: what matrices are there? what is the shape for each matrix? what does
each dimension of the matrix denote? what information does each matrix contain? For the
volumetric data, what percentage of voxels are occupied?

(b) (4 points). We have provided code utilities to help you visualize each of the three data for-
mats in the prob1l . ipynb. You can also use external tools such as Meshlab (https://
www.meshlab.net/)and Drububu (https://drububu.com/miscellaneous/
voxelizer/) to visualize the data. Obviously, as the data is in 3D, you can rotate the
shapes to view them from different angles. For this task, report one image showing the
default view using the provided visualization code, a second image from a different view,
and an image using a third-party tool (e.g. Meshlab) for the data visualization, for each of
the three data formats.

(¢c) (4 points). Now, we will try to generate your own point cloud and voxelized shapes
from the input 3D mesh chair_example2.obj. For sampling point cloud shapes,
we use the utility function trimesh.sample.sample_surface_even provided by
trimesh (https://github.com/mikedh/trimesh), which returns samples which
are approximately evenly spaced. You can use any online shape voxelizer (e.g. Drububu)
for generating your voxelized shapes in different resolutions. For this question, please sub-
mit two figures of the generated point cloud shapes with 1000 and 10000 points (note that
since the trimesh function does not return exactly the specified numbers of points, generate
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as close as you can); submit two figures for the volumetric shapes of resolutions 16> and
323 and write a few sentences to explain your findings

(d) (4 points). 3D data are more easily manipulatable than images. For example, we can
translate the shapes in space, rotate them, or scale them to make them bigger or smaller.
For this question, you need to implement two functions: the first should take as input a
mesh and rotate it and the second should take as input a mesh and scale it. For this task
you have to use the chair_example.obj and chair_example.ply and submit
one figure that rotates the shape along the up-axis by 45 degree clock-wise if you view
from the top and one figure that doubles the scales of the shape along the other two axes
(not the up-axis); please also show a reference image without performing any operation
and make sure that all the figures share the same viewing angle.

(e) (4 points). Given two shapes, we may be interested in computing their difference quanti-
tatively in order to use it for several downstream applications, such as shape retrieval. For
the case of point clouds and voxel-grids, this can be easily done. In particular, to measure
the distance between two binary voxel-grids (i.e. 1 for occupied, O for empty), it suffices to
compute what percentage of voxels has different values between the two. To measure the
geometric distance between two point clouds, we can use the Chamfer distance, as intro-

duced in the class lecture. Formally, given two point clouds O1 = {p1, p2,---, pu||pi € R*}
and Oy = {q1,92, - ,qm||q; € R*}, we define the Chamfer distance as
1 ({1 & m 1 & n
CD(01,0,) := 5 Z;I}E?Hpi = ajl, + %j_zlrilll}l lpi=aill, | - )

For this task, compute and report the distances between two shapes (chair_example.ob]
and chair_example2.obj), after you have converted them to voxel-grid and point
clouds (please sample 2000 points per point cloud and use resolution 32> for the volumet-
ric grids).

Problem 2. Auto-Encoders for 3D Shapes [14 points]

For the second problem, we will train an auto-encoder (AE) for reconstructing 3D shapes and
use the point cloud representation, as it is easier to implement and faster to train. The data for
training the auto-encoder can be downloaded from http://download.cs.stanford.
edu/orion/cs348n/chair_dataset.zip.

(a) (10 points). Implement a vanilla PointNet [2] (without the two T-Nets) as the encoder
and a simple Multilayer Perceptron (MLP) decoder, by adding the missing parts in the
model.py. Once you have implemented PointNet, you can train your network using
train_ae.py. By default, this script outputs the training and validation curves, as well
as the reconstruction performance evaluations using the Chamfer-distance metric. Finally,
it also outputs result visualizations over a batch of validation data. You need to check the
curves and the dumped result visualization for tuning your network. For this problem,


http://download.cs.stanford.edu/orion/cs348n/chair_dataset.zip
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(b)
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please provide the code you wrote (model .py and any other files you edited) and also
visualize the training and validation curves, as well as the reconstruction performance num-
bers on both data splits. Notice that there is no single answer to this question and you will
get a full grade if the submitted code, the curves, and the CD distances look reasonable.

(4 points). In this problem, we want to test how well the network is actually doing w.r.t.
reconstructing the 3D point cloud shapes. In your report, please show three good and three
bad reconstruction results, by showing the ground-truth and your prediction images from
the validation set. Please also make sure to discuss your findings, e.g. on what shapes
your network performs well and on which it fails? What are the failure patterns? What is
the potential reason for the failures?

Problem 3. Variational Auto-Encoders for 3D Shape Generation [16 points]

Although auto-encoders are not generative models, we can easily modify the auto-encoder by
adding a KL-divergence regularization over shape latent codes to make it a generative model,
which is typically referred to as a variational auto-encoder (VAE). The data for training the
variational auto-encoder are the same that we used to train the auto-encoder.

(a)

(b)

(c)

(8 points). Finish the KL-divergence implementation in the Sampler classinmodel . py
and train the VAE network until convergence using the provided t rain_vae.py script.
In your report, please provide the code you wrote for computing the the KL-Divergence,
submit the training and validation curves, as well as the reconstruction performance num-
bers on both data splits. Notice that there is no standard answer to this question and you
will get a full grade if the submitted code, the curves, and the CD distances look reasonable.

(4 points). Let us first check how well the network performs for shape reconstruction and
how does the results compare to the AE results. In this problem, pick three shapes and show
the corresponding ground-truth shapes from the validation set, your reconstruction results
when you use the autoencoder that we implemented in Problem 2, and the reconstruction
results using the VAE. Please write a few sentences discussing your results, e.g., how does
the variational auto-encoder performs to comparing to the auto-encoder results?

(4 points). Using the VAE that we just trained, we now want to use it to generate novel
shapes. The idea is that you can remove the encoder and only use the decoder that take
as input random Gaussian noises, as the latent codes, and generates new 3D point cloud
shapes. We have provided the code for the generation in randgen . py, so you only have
to show 3 randomly generated 3D point cloud shapes that are good and 3 that are bad.
Please also make sure to explain your findings.
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