(CS348n: Computer Graphics Homework 2
Neural Representations and Generative Models for 3D Geometry
Stanford University 19 April 2023

Homework #2: Neural Implicit 3D Representations [100 points]
Due Date: Wednesday, 3 May 2023

Goal of this Assignment

This assignment is a two-week project on neural implicit representations for 3D shape mod-
elling. The goal of this assignment is to:

* Familiarize with neural implicit 3D representations.

 Use neural implicit representations to represent 3D shapes for shape reconstruction and
completion.

Instructions

This assignment contains three programming problems that require access to a machine with
decent CPUs and one GPU to train the neural networks on big scale 3D data. Please use
Google CoLab (check https://www.youtube.com/watch?v=I7ZUz4pRYlus for in-
structions) or the Cloud Credits (check https://github.com/cs231n/gcloud forin-
structions; ask the TAs for coupons) to get access to a GPU. All necessary files for this as-
signment can be found in the folder code. Please follow the instructions in the README . md,
provided in the code folder, to install all necessary dependencies for running the provided
codes. Please make sure to start as early as possible and definitely not wait until the last days
to begin, as the network training will take some time.

For this exercise you need to download a subset of 100 Shapenet Chairs from this link and
add them within the data folder. In case the data folder was renamed, please rename it to
03001627.

Problem 1. Representing a Single Scene with a NIR [50 points]

Existing 3D representations can be categorized to explicit representations such as voxels, point-
clouds and meshes and implicit representations that capture the 3D object geometry implicitly
in the weights of a neural network. Voxel-based representations are a straightforward general-
ization of pixels in 3D, as they directly discretize the 3D space into a regular grid. However,
their high memory footprint that grows cubically with the resolution size makes them imprac-
tical for several applications. Pointclouds are more memory efficient but lack surface connec-
tivity, thus post-processing is necessary for extracting the final 3D mesh from the model. On
the other hand, mesh-based representations naturally yield smooth reconstructions but as they
often require a deformable template mesh or represent the geometry as an atlas of multiple
mapping, they cannot capture arbitrary topologies. To address these limitations, implicit rep-
resentations have recently gained more popularity. These representations capture the 3D shape


https://www.youtube.com/watch?v=IZUz4pRYlus
https://github.com/cs231n/gcloud
https://drive.google.com/drive/folders 1mZuj-H6wXeyUNV37hKbtQp8s39aImXhW?usp=share_link
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geometry as the level-set of a distance or occupancy field implemented as a neural network,
that takes a context vector and a query point and predicts either a signed distance value [3] or
a binary occupancy value [2, 1] for the query point.

For the case of occupancy fields, we define the 3D shape geometry as the decision bound-
ary of a binary classifier. The network takes a query 3D position x € R> as input and classifies
whether this point is inside or outside of a watertight mesh, namely a mesh without holes.
Similarly, one can consider modeling a signed distance field (SDF) whose sign indicates occu-
pancy, and whose magnitude describes the distance to its closest surface. For SDFs the surface
is implicitly represented as the zero-level-set, where the sign flips. In the first problem, we will
learn how to represent shapes using SDF-based implicit representations.

(a) (15 points) We approximate the shape’s SDF at all locations in a target volume Q C R?,
using a neural network fp(-) with parameters 6, as follows:

fo(x) = SDF (x),Vx € Q. (1)

For the first assignment, we have prepared a dataset X composed of 3D locations x and
their precomputed SDFs s:

X :={(x,s) : SDF (x) = s}. (2)

Using this dataset, we want to optimize the network parameters of fg to approximate the
SDF using the sampled points of X, by minimizing the loss:

2 (Fg,x.5) = [f(x) — clamp(s, 8)). 3)

where clamp(s,d) := min(8, max(—38,x)) clamps the SDF absolute value to be within
0 = 0.1, because we are more interested in SDF values near zero-crossing.

For the first question, your task is to complete the missing code in function t rain_epoch ()
in the single_scene.py script that computes the loss of Eq. 3. In your report, please
provide your loss implementation and also attach the loss curve, along with the visualiza-
tion of the cross section. Note that both images are automatically generated by the script.

(b) (25 points) In this question, instead of directly training from precomputed SDFs, we can
solve for a differential equation to indirectly learn SDF only from the surface points and
their surface normals. As we explained before, in the case of SDFs, the surface is defined as
the zero-level-set, thus SDFs at the surface points are equal to 0. Remember the definition
of SDF: distance to the closest surface boundary (sign indicates inside-outside state). The
gradient of SDF at a point x, from gradient definition of fastest changing direction, is
directed away from the closest surface point in surface normal direction. Therefore, when
x is a surface point V, fp(x) = n(x), where n is surface normal. For non-surface points, the
derivative V, fg(x) can be expressed as the direction of the fastest changing SDF, which
has magnitude of 1 for all locations:

|| Vafo(x) [l2=1, )
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Your task is to add the missing code in function train () inthe Eikonal/train.py
script, that implements the loss function to train the network to fit to the bunny model from
the provided oriented point cloud. The overall loss function that you need to implement is:

Y 1 fo(®)| +[Vafo(x) —nil|+ Y [[[Vifo(x)]| -1, (5)

XeS X€eR

where S is the provided surface points and R C Q is a set of randomly selected points
within the target volume Q. For simplicity, you do not need to implement the normal loss
and only need to implement the first and the third term of Eq. 5. In your report, please
provide your loss implementation and also attach the loss curves generated by the script.

Hint: Use the following automatic gradient computation from PyTorch to compute gradi-
ent of SDF with respect to a 3D point x.

import torch.autograd as autograd

> g = autograd.grad

(c)

outputs=SDF,

inputs=xyz,
grad_outputs=torch.ones (SDF.size()) .to(device),
create_graph=True,

retain_graph=True,

only_inputs=True

) [0]

(10 points) To extract a mesh from an SDF, we use an algorithm called Marching Cubes
(https://en.wikipedia.org/wiki/Marching_ cubes). Your task is to com-
plete the function compute_SDFs() fromthe Eikonal /marching_cubes.py script
to evaluate your network fg () at points within a grid of resolution 128 in our target volume
(ranges from -1.5 to 1.5). In your report, please provide yoru marching cubes implemen-
tation and also show the bunny rendering using the model that you trained for the previous
question.

Problem 2. Training a SDF Generative Model [50 points]

In this problem, instead of focusing on a single shape, we will implement a generative model
using SDFs, using and auto-decoder architecture. An auto-decoder is an encoder-less auto-
encoder. Namely, an auto-decoder takes as input a per-instance feature vector, as opposed
to raw data such as pointclouds or voxels. To generate the per-instance feature vectors, we
associate each sample in the training set with a random latent code, namely, assuming our
training set consists of 1000 shapes, we will associate each shape with a single latent vector.
At training time, the auto-decoder jointly optimizes the latent vectors and the decoder network
weights to minimize the reconstruction error of corresponding data points. The advantage of an
auto-decoder algorithm is that we do not need to devise an encoder network, as we are directly
optimizing the latent vectors.


https://en.wikipedia.org/wiki/Marching_cubes
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(a) (25 points) In this problem you need to add the missing code in function t rain_epoch ()
of the decoder_deepsdf. py script that is used for training an autode-coder, by mini-
mizing the following loss:

N

K 1
argming f;3 Z ( «iﬂ(fe,ziyxj,sj) 4‘g||zi||2 ) (6)
i=1 \j=1

where the second term regularizes the latent vectors z; to follow a zero-mean Gaussian. The
loss function . := |fg(X;,z;) — clamp(s;,6)|. Run the above optimization step for 1,000
iterations. In your report, please provide your loss implementation and also visualize of
the first code z; that is generated, as you run the code.

(b) (25 points) Using our generative model, now we want to try to generate novel shapes
conditioned on partial or complete point clouds of shapes, not seen during training. To
do this, we try to find a latent code that produces SDF most similar to the given shape
via gradient-based optimization, typically referred to as test time optimization. Since we
trained our generative model using only 100 shapes, the learned latent space might not be
rich enough, therefore we provide a pre-trained model (weights.pth) that is trained
with 600 chairs. With the oriented point clouds from the data/point_test folder, use
the differential equation loss from Problem 1 (c), to conduct the following optimization:

A . 1
t=argmin; Y |fo(x,2)| +|[Vafo(x,2) —ml |+ Y [IVefo (x| = 1|+ =5 |lz]*, (D)
xeS XER o

where S is the provided depth points, and R is randomly sampled points within the target
volume. Note that the decoder network weights are fixed and only the latent code is opti-
mized. For this task, you need to complete the missing code in function t rain_epoch ()
in the shape_completion_deepsdf.py script. In your report, please provide your
implementation and also show the shape completion results on the two point clouds as well
as the extracted meshes.
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