(CS348n: Computer Graphics Homework 3
Neural Representations and Generative Models for 3D Geometry
Stanford University 3 May 2023

Homework #3: Structured 3D Shape Generative Models [100 points]
Due Date: Wednesday, 17 May 2023

Goals of This Assignment

This assignment is a two-week assignment on shape generation from structured representa-
tions. The learning objectives of this assignment are to:

* get familiar with representing 3D shapes with parts and structure;

* implement and train a structured generative model.

Instructions

This assignment contains three programming problems. It requires decent CPUs and one
GPU to train neural networks over big scale 3D data. Please use Google CoLab (check
https://www.youtube.com/watch?v=1ZUz4pRYlus for instructions) or the Cloud Credits to ac-
cess a GPU. All the code you need to start this assignment will be found in the code .zip. Please
read the README . md for setup instructions.

We use Python 3.6.9 and PyTorch 1.5.1 for the codebase, but it should be nearly issue-free,
though not guaranteed, if you use more latest versions. We recommend you start as early as
possible and definitely should not to wait until the last day or two to begin as the network
training may take time. Please contact TA or ask on Edstem if you have any question.

Problem 1. Structured Representations for 3D Shapes [20 points]

The space of 3D data is exceptionally rich and diverse. It is a very difficult task to learn
generative models that can generate everything in our 3D world. Fortunately, 3D shapes and
scenes can be naturally decomposed into small components, which are usually much simpler to
model and largely reusable across different data. Each 3D shape and scene is then structurally
organized as a composition of such sub-units in some semantically meaningful ways. For
example, in 3D objects, this could be a decomposition of an object into spatially localized
parts (e.g., chair is composed of a back, a seat, and four legs) and a sparse set of relationships
between them (e.g., chair legs are of equal length and symmetric), or in scenes, it could be
a scene graph with the 3D objects as the nodes and their rich inter-object relationships as
the edges (e.g., adjacency, co-occurrence, supporting). For the 3D data, compositionality and
structure can also enable compact representations, which has become key not only for vision
tasks, but also for developing advanced 3D generative models.

In this problem, we will get you familiar with structured 3D shape representations. Specif-
ically, consider a family of shapes from the same object category (e.g., chairs), we can break
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all the different shapes into semantically consistent parts where each part has more easy geom-
etry to generate. There are also relationships among parts, such as two parts are adjacent or
symmetric (e.g., the chair back and seat are adjacent, legs are symmetric to each other).

We use the PartNet dataset [2] for this assignment, where each shape is decomposed into
a set of parts and is organized using a part hierarchy representing parts at different segmen-
tation granularity. We provide a web page to visualize the part hierarchy for each shape.
See https://partnet.cs.stanford.edu/visu_htmls/2230/tree_hier_after_merging for the visualisa-
tion for shape ID 2230. You may modify the ID in the link to other shape IDs to check other
shapes. We have provided 8176 PartNet chairs as the data for you to train structured generative
models for 3D shapes. Each data composes of a JSON file defining the part bounding boxes,
semantics, hierarchical structures, and the rich part relationships.

Before training over these data, let us get more understanding over the data.

(a) (10 points). We use a part hierarchy to represent the structure of a shape. Among these
parts, there are vertical relationships indicating that one part can be further decomposed
into children subparts, and horizontal ones among siblings describing adjacency and sym-
metry relationships. The provided JSON file encodes these information. You may use
some JSON visualization tools, such as https://jsonformatter.org/json-viewer, to visualize
and help you understand the JSON files.

Let us implement some utility functions to print the tree structure. In the code, we use the
Tree and Node classes in the data . py file to load the input JSON data. Read the code
and finish the implementation of Node ._to_str function. Then, you should be able to
print out a simple hierarchy structure by calling print (obJject) in probl.ipynb.
For simplicity, you do not need to worry about the horizontal edges.

Deliveriables: submit the code between STUDENT CODE START and STUDENT CODE
END in your solution PDF. And, for shapes with the ID 2230/2231/2233, take screen-
shots and submit the printed outputs for the tree structure.

(b) (10 points). We can assemble the geometry of parts to obtain the final shape geometry.
The JSON file defines a bounding box for each part. Understand the provided data and im-
plement the Node . get_part_hierarchy function to assemble the bounding boxes of
leaf-level nodes to form the final shape. Then, you can call the draw_partnet_objects
function in probl . ipynb to visualize the assembled shapes.

Deliverables: submit the code between STUDENT CODE START and STUDENT CODE
END in your solution PDF; for the shape ID 2230/2231/2233, take screenshots and
submit the visualization for the assembled shapes.


https://partnet.cs.stanford.edu/visu_htmls/2230/tree_hier_after_merging
https://jsonformatter.org/json-viewer
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Problem 2. Structured Generative Networks for 3D shapes [80 points]

StructureNet [ 1] introduces a way to learn structured generative models for 3D shapes using
the PartNet [2] part tree representation. It employs a Recursive Neural Network (RvNN) to
encode and decode the input part hierarchy and trains a VAE for obtaining a generative model.

In this problem, you are given the codebase implementing the StructureNet system. Since
different shapes have different part hierarchical structures, it is a bit difficult to form batches
for GPU training, which is a common issue for such RvNN architecture. Therefore, we use
batch size 1 and require modern CPUs, such as Intel i5/i7/i9 CPUs, for the training. GPU is
also used for speeding up the matrix computation, but you will see that most jobs are done with
batch size 1. We do not consider the horizontal edges in this problem. Also, we only train the
StructureNet models with bounding boxes as the part geometry.

(a) (50 points). We have provided the codebase for data loading, training, and most parts of
the model. Read the code and finish the implementation for the encoder and decoder parts,
namely, the SymmetricChildEncoder. forward, ConcatChildDecoder. forward
and RecursiveDecoder.node_recon_loss functions. Then, train a StructureNet
VAE network for 10 epochs (roughly 2-3 hours). During training, you will see a few
results on the validation set being dumped to the val_visu directory. If you have im-
plemented the code correctly for problem 1, the code will output the ground-truth and
predicted part hierarchy and assembled boxes at the leaf level, after each training epoch.

Deliverables: submit the three pieces of code between STUDENT CODE START and
STUDENT CODE END for the encoder and decoder of StructureNet in your solution PDF;
submit the training and validation curves; and, show the ground-truth and your VAE re-
constructed results for five structurally different shapes.

(b) (10 points). Unfortunately, the StructureNet VAE model takes 1-3 days of training until
converging to good results. So, we provide our pre-trained models pretrained_encoder.ckpt
and pretrained_decoder.ckpt (trained for 143 epochs and 30 hours). Implement
recon.py and report the reconstruction performances of the pretrained models.

Deliverables: submit the code between STUDENT CODE START and STUDENT CODE
END; pick five shapes in different structures and show the ground-truth and your VAE
reconstruction result (show three good ones and two bad ones); and, write a few sentences
what you find about the results (e.g., in what cases the network performs well and in what
cases it does not? what are the possible reasons? do you have any idea to further improve
the results?).

(¢) (10 points). The trained StructureNet VAE is a generative model, so we can sample random
Gaussian noises and use the decoder to generate novel 3D structured shapes. Implement
randgen . py and use the pretrained mdoels to generate several shapes using your model.

Deliverables: submit the code between STUDENT CODE START and STUDENT CODE
END; visualize five shapes you randomly generate (show three good ones and two bad
ones); and, write a few sentences what you find.
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(d) (10 points). The StructureNet VAE also allows us to interpolate between two shapes over
the learned latent space. The interpolation involves both discrete structural changes and
concrete geometry deformations. Using the pretrained StructureNet VAE models, please
finish the implementation in interp.py and perform part-aware shape interpolation a
given pair of shapes. Basically, you simply need to encode the two shapes, obtain their
latent codes, perform linear interpolations between the codes, and decode the interpolated
shapes as the outputs.

Deliverables: submit the code between STUDENT CODE START and STUDENT CODE
END; submit the interpolation results for pairs (1282, 721), (2333, 2436), and
(2368, 2821); and, write a few sentences about your findings (e.g. which cases work
well and which work badly? why? any ideas to improve?).
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