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Abstract

We introduce tensor field neural networks, which are locally equivariant to 3D
rotations, translations, and permutations of points at every layer. 3D rotation
equivariance removes the need for data augmentation to identify features in arbitrary
orientations. Our network uses filters built from spherical harmonics; due to the
mathematical consequences of this filter choice, each layer accepts as input (and
guarantees as output) scalars, vectors, and higher-order tensors, in the geometric
sense of these terms. We demonstrate the capabilities of tensor field networks with
tasks in geometry, physics, and chemistry.

1 Motivation

Convolutional neural networks are translation-equivariant, which means that features can be identified
anywhere in a given input. This capability has contributed significantly to their widespread success.

In this paper, we present a family of networks that enjoy richer equivariance: the symmetries of 3D
Euclidean space. This includes 3D rotation equivariance (the ability to identify a feature in any 3D
rotation and its orientation) and 3D translation equivariance.
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Equivariance confers three main benefits: First, this is more efficient than data augmentation to obtain
3D rotation-invariant output, making computation and training less expensive. This is significantly
more important in 3D than in 2D: Without equivariant filters like those in our design, achieving an
angular resolution of δ would require a factor ofO(δ−1) more filters in 2D butO(δ−3) more filters in
3D.2 Second, a 3D rotation- and translation-equivariant network can identify local features in different
orientations and locations with the same filters, which can simplify interpretation. Finally, the network
naturally encodes geometric tensors (such as scalars, vectors, and higher-rank geometric objects),
mathematical objects that transform predictably under geometric transformations of rotation and
translation. In this paper, the word “tensor” refers to geometric tensors, not generic multidimensional
arrays.

Our network differs from a traditional convolutional neural network (CNN) in three ways:

• We operate on point clouds using continuous convolutions. Our layers act on 3D coordinates
of points and features at those points.

• We constrain our filters to be the product of a learnable radial function and a spherical
harmonic.

• Our filter choice requires the structure of our network to be compatible with the algebra of
geometric tensors.

We call these tensor field networks because every layer of our network inputs and outputs tensor
fields: scalars, vectors, and higher-order tensors at every geometric point in the network. Tensor
fields are ubiquitous in geometry, physics, and chemistry, and we expect tensor field neural networks
to have applications in each of these areas.

Our initial motivation was to design a universal architecture for deep learning on atomic systems
(such as molecules or materials). Tensor field networks could also be used to process 3D images in a
rotation- and translation-equivariant way. We mention other potential applications in Section 6.

In this paper, we explain the mathematical conditions that such a 3D rotation- and translation-
equivariant network must satisfy, provide several examples of equivariant-compatible network com-
ponents, and give examples of tasks that this family of networks can perform.

2 Related work

Our work builds upon Harmonic Networks [1], which achieves 2D rotation equivariance using
discrete convolutions and filters composed of circular harmonics, and SchNet [2], which presents a
rotation-invariant network using continuous convolutions. The networks presented in these papers
can be emulated by tensor field networks. However, the mathematics of rotation equivariance in
3D is much more complicated than in 2D because rotations in 3D do not commute; that is, for 3D
rotation matrices A and B, AB 6= BA in general (see Reisert and Burkhardt [3] for more about the
mathematics of tensors under 3D rotations).

Other authors have investigated the problems of rotation equivariance in 2D, such as Zhou et al.
[4], Gonzalez et al. [5], Li et al. [6]. Most of these work by looking at rotations of a filter; they differ
in exactly which rotations and how that orientation information is preserved (or not) as it is passed
through the network.

Previous work has dealt with similar issues of invariance or equivariance under particular input
transformations. G-CNNs [7] guarantee equivariance with respect to finite symmetry groups (unlike
the continuous groups in this work). Cohen et al. [8] use spherical harmonics and Wigner D-matrices
but only address spherical signals (2D data on the surface of a sphere). Kondor et al. [9] use tensor
algebra to create neural network layers that extend Message Passing Neural Networks [10], but
they are permutation group tensors (operating under permutation of the indices of the nodes), not
geometric tensors. The networks presented in Qi et al. [11, 12] operate on point clouds and use
symmetric functions to encode permutation invariance, but these networks do not include rotation
equivariance.

2This is because the manifold of orthonormal frames at a point in 2D (the group O(2)) has dimension 1 and
in 3D (O(3)) has dimension 3.
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Other neural networks have been designed and evaluated on atomic systems using nuclei centered
calculations. Many of these use only the pairwise distance between atoms (e.g. SchNet [13] and
the graph convolutional model from Faber et al. [14]). Smith et al. [15] additionally uses angular
information but does not have general equivariance.

The other major approach to modeling 3D atomic systems is to voxelize the space [16–18]. In general,
these are subject to significant expense, no guarantees of smooth transformation under rotation, and
edge effects from the voxelization step.

An introduction to the concepts of steerability and equivariance in the context of neural networks can
be found in Cohen and Welling [19], which focuses on discrete symmetries. Further discussion of
related theory can be found in [20], [21], and [22].

3 Group representations and equivariance in 3D

A representation D of a group G is a function from G to square matrices such that for all g, h ∈ G,

D(g)D(h) = D(gh)

A function L : X → Y (for vector spaces X and Y) is equivariant with respect to a group G and
group representations DX and DY if for all g ∈ G,

L ◦DX (g) = DY(g) ◦ L

Invariance is a type of equivariance where DY(g) is the identity for all g. We are concerned with the
group of symmetry operations that includes isometries of 3D space and permutations of the points.

Composing equivariant networks L1 and L2 yields an equivariant network L2 ◦ L1 (proof in supple-
mentary material). Therefore, proving equivariance for each layer of a network is sufficient to prove
that a whole network is equivariant.

Furthermore, if a network is equivariant with respect to two transformations g and h, then it is
equivariant to the composition of those transformations gh (by the definition of a representation).
This implies that demonstrating permutation, translation, and rotation equivariance individually
is sufficient to prove equivariance of a network to the group (and corresponding representations)
containing all combinations of those transformations. Translation and permutation equivariance will
be manifest in our core layer definitions, so we will focus on demonstrating rotation equivariance.

Tensor field networks act on points with associated features. A layer L takes a finite set S of vectors
in R3 and a vector in X at each point in S and outputs a vector in Y at each point in S, where X and
Y are vector spaces. We write this as

L(~ra, xa) = (~ra, ya)

where ~ra ∈ R3 are the point coordinates and xa ∈ X , ya ∈ Y are the feature vectors (a being an
indexing scheme over the points in S). This combination of R3 with another vector space can be
written as R3 ⊕X , where ⊕ refers to concatenation.

We now describe the conditions on L for equivariance with respect to different input transformations.

3.1 Permutation equivariance

Condition: L ◦ Pσ = Pσ ◦ L
where Pσ(~ra, xa) := (~rσ(a), xσ(a)) and σ permutes the points to which the indices refer.

All of the layers that we will introduce in Section 4 are manifestly permutation-equivariant because
we only treat point clouds as a set of points, never requiring an imposed order like in a list. In our
implementation, points have an array index associated with them, but this index is only ever used in a
symmetric way.
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3.2 Translation equivariance

Condition: L ◦ T~t = T~t ◦ L
where T~t(~ra, xa) := (~ra+~t, xa). This condition is analogous to the translation equivariance condition
for CNNs.

All of the layers in Section 4 are manifestly translation-equivariant because we only ever use
differences between two points ~ri − ~rj (for indices i and j).

3.3 Rotation equivariance

The group of (proper) 3D rotations is called SO(3), a manifold that can be parametrized by 3 numbers
(see Goodman and Wallach [23]). LetDX be a representation of SO(3) on a vector space X (andDY
on Y). Acting with g ∈ SO(3) on ~r ∈ R3 we write asR(g)~r, and acting on x ∈ X gives DX (g)x.

Condition:

L ◦
[
R(g)⊕DX (g)

]
=
[
R(g)⊕DY(g)

]
◦ L

(1)

where
[
R(g)⊕DX (g)

]
(~ra, xa) =

(
R(g)~ra, DX (g)xa

)
. (For layers in this paper, only the action

of DY(g) on Y that will be nontrivial, so we will use a convention of omitting the R3 layer output in
our equations.)

We attain local rotation equivariance by restricting our convolution filters to a particular form. The
features have different types corresponding to whether they transform as scalars, vectors, or higher
tensors.

We decompose representations into irreducible representations to simplify our analysis. The irre-
ducible representations of SO(3) have dimensions 2l + 1 for l ∈ N (including l = 0) and are unitary.
We will use the term “rotation order” to refer to l in this expression. The rotation orders l = 0, 1, 2
correspond to scalars, vectors in 3-space, and symmetric traceless matrices, respectively.

The group elements are represented by D(l), which are called Wigner D-matrices (see Gilmore [24]);
they map elements of SO(3) to (2l + 1)× (2l + 1)-dimensional matrices. For scalars and 3-space
vectors, the (real) Wigner D-matrices are

D(0)(g) = 1 and D(1)(g) = R(g).

4 Tensor field network layers

The input and output of each layer of a tensor field network is a finite set S of points in R3 and a
vector in a representation of SO(3) associated with each point.

We decompose this representation into irreducible representations. In general, there are multiple
instances of each l-rotation-order irreducible representations. These are analogous to what is typically
called the “depth” of a convolution in a standard CNN, so we will refer to these different instances
as channels. We implement this object V (l)

acm as a dictionary with key l (the rotation order) of
multidimensional arrays each with shapes [|S|, nl, 2l + 1] (where nl is the number of channels)
corresponding to [point index, channel index, representation index]. See Figure 1
for an example of how to encode a simple system in this notation.

We will define three tensor field network layers and prove that they are equivariant. All of these
layers will be manifestly permutation-invariant and translation-equivariant, so to prove that a layer is
equivariant, we only have to prove rotation equivariance for an arbitrary rotation order. This requires
showing that when the point cloud rotates and the input features are transformed as tensors, the output
features also transform as tensors.

4.1 Point convolution

This layer is the core of our network and generalizes the point convolutions in [2]. At each layer, we
have an input structure V (l)

acm. The point convolution performs the same operation for each point a,
taking all the other points (both their relative locations and values of V ) as input. In the following, ~r
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denotes the 3-space vector of an input point to the convolution relative to the convolution center, r̂ is
~r normalized to unit length, and r is the length of ~r.

Figure 1: Example of V (l)
acm representing two point

masses with velocities and accelerations. Colored
brackets indicate the a (point), c (channel), and m
(representation) indices. (l) is the key for the V (l)

acm

dictionary of feature tensors.

Note that our design is strictly more general than
standard convolutional neural networks, which
can be treated as a point cloud of a grid of points
with regular spacing.

4.1.1 Spherical harmonics and filters

The spherical harmonics Y (l)
m are functions from

the points on a sphere to the complex or real
numbers (where l is a non-negative integer and
m is be any integer between −l and l inclu-
sive). The (real) spherical harmonics for l = 0
(scalars) and l = 1 (3-space vectors) are

Y (0)(r̂) ∝ 1 and Y (1)(r̂) ∝ r̂.

These functions are equivariant to SO(3); that is, for all g ∈ SO(3) and r̂,

Y (l)
m (R(g)r̂) =

∑
m′

D
(l)
mm′(g)Y

(l)
m′ (r̂).

To design a rotation-equivariant point convolution, we want rotation-equivariant filters. For our filters
to be rotation-equivariant, we restrict them to the following form:

F
(lf ,li)
cm (~r) = R

(lf ,li)
c (r)Y

(lf )
m (r̂) (2)

(where li and lf are non-negative integers corresponding to the rotation order of the input and the filter,
respectively and R(lf ,li)

c : R≥0 → R are learned functions, which contain most of the parameters
within a tensor field network). Filters of this form inherit the transformation property of spherical
harmonics under rotations because R(r) is a scalar in m. This choice of filter restriction is analogous
to the use of circular harmonics in Worrall et al. [1] (though we do not have an analog to the phase
offset because of the non-commutativity of SO(3)).

4.1.2 Combining representations using tensor products

Our filters and layer input each inhabit representations of SO(3) (that is, they both carry l and m
indices). In order to produce output that we can feed into downstream layers, we need to combine the
layer input and filters in such a way that the output also transforms appropriately (by inhabiting a
representation of SO(3)).

A tensor product of representations is a prescription for combining two representations DX and DY
to get another representation DX ⊗DY over the vector space X ⊗ Y . The crucial property of the
tensor product is that it is equivariant:

DX ⊗DY = DX⊗Y

Now consider the tensor product of two representations of orders l1 and l2 (where we use the
usual notational convention of using just l to refer to the (2l + 1)-dimensional vector space that
represents rotation order l). For the irreducible representations with u(l1) ∈ l1 and v(l2) ∈ l2,
u(l1) ⊗ v(l2) ∈ l1 ⊗ l2 can be calculated using Clebsch-Gordan coefficients (see Griffiths [25])
(denoted with C):

(u⊗ v)(l)m =

l1∑
m1=−l1

l2∑
m2=−l2

C
(l,m)
(l1,m1)(l2,m2)

u(l1)m1
v(l2)m2

This tensor product produces non-zero values only for l between |l1 − l2| and (l1 + l2) inclusive (m
is any integer between −l and l inclusive). The (real) Clebsch-Gordan coefficients for l = 0 and
l = 1 are just the familiar ways to combine scalars and vectors: For 1⊗ 1→ 0 and 1⊗ 1→ 1,

C
(0,0)
(1,i)(1,j) ∝ δij C

(1,i)
(1,j)(1,k) ∝ εijk
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which are the dot and cross products for 3D vectors, respectively. The 0⊗ 0→ 0 case is just regular
multiplication of two scalars, and 0⊗ 1→ 1 and 1⊗ 0→ 1 corresponds to scalar multiplication of a
vector.

4.1.3 Layer definition

A given input inhabits one representation, a filter inhabits another, and together these produce outputs
at possibly many rotation orders. We can put everything together into our pointwise convolution layer
definition:

L(lo)
acmo

(
~ra, V

(li)
acmi

)
:=

∑
mf ,mi

C
(lo,mo)
(lf ,mf )(li,mi)

∑
b∈S

F
(lf ,li)
cmf (~rab)V

(li)
bcmi

(3)

(where ~rab := ~ra − ~rb and the subscripts i, f , and o denote the representations of the input, filter, and
output, respectively). A point convolution of an lf filter on an li input yields outputs at 2min(li, lf )+1
different rotation orders lo (one for each integer between |li − lf | and (li + lf ), inclusive), though in
designing a particular network, we may choose not to calculate or use some of those outputs.

The equivariance of the filter F (equation 2)and the equivariance of the Clebsch-Gordan coefficients
together imply that point convolutions are equivariant (detailed proof in supplementary material).
This aspect of the design is the core of our result in this paper.

4.2 Self-interaction

We follow Schütt et al. [13] in using point convolutions to scale feature vectors elementwise and
using self-interaction layers to mix together the components of the feature vectors at each point.
Self-interaction layers are analogous to 1x1 convolutions, and they act like l = 0 (scalar) filters:∑

c′

W
(l)
cc′V

(l)
ac′m

In general, each rotation order has different weights because there may be different numbers of
channels corresponding to that rotation order. However, the same weights are used for every m for a
given order; this is essential to maintain equivariance. For l = 0, we may also use biases.

The D-matrices commute with the weight matrix W because W has no representation index m, so
this layer is equivariant for l > 0. Equivariance for l = 0 is straightforward because D(0) = 1.

4.3 Nonlinearity

Our nonlinearity layer acts as a scalar transform in the l spaces (that is, along the m dimension). For
l = 0 channels, we can use

η(0)
(
V (0)
ac + b(0)c

)
and η(l)

(
‖V ‖(l)ac + b(l)c

)
V (l)
acm where ‖V ‖(l)ac :=

√∑
m

|V (l)
acm|2

for some functions η(l) : R→ R (which can be different for each l) and biases b(l)c . Note that

‖D(g)V ‖ = ‖V ‖

because D is a unitary representation. Therefore, this layer is a scalar transform in the representation
index m, so it is equivariant.

5 Demonstrations

We chose demonstrations that both convey the power of 3D equivariance and the flexibility of our
framework and are simple enough to serve as clear and unambiguous demonstrations. Each of these
tasks is either unnatural or impossible in existing models.

The largest task that we describe here uses dozens of points, but tensor field networks can scale to
over a thousand points on a standard GPU. We have successfully trained tensor field networks on
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Figure 3: Network diagrams for shape classification task showing how information flows between
tensors of different order. Clebsch-Gordan tensors are implied in the arrows indicating convolutions.
The numbers above the self-interactions indicate the number of channels. Individual convolutions,
indicated by arrows, each produce a separate tensor, and concatenation is performed after the
convolutions.

large standard datasets, including QM9 energy [26], MD17 molecular dynamics forces [27], and
ModelNet40 [28] classification.

In these tasks, we used radial functions and nonlinearities identical to those used in Schütt et al. [2].
We used radial basis functions composed of Gaussians, and two fully connected layers are applied
to this basis vector. We implemented our models in TensorFlow [29], and our code is available at
https://github.com/tensorfieldnetworks/tensorfieldnetworks.

5.1 Geometry: shape classification

Network type: 0→ 0

Figure 2: 3D Tetris shapes. Blocks correspond to
single points. The third and fourth shapes from the
left are mirrored versions of each other.

Rotation equivariance eliminates the need for ro-
tational data augmentation. We demonstrate this
with the following task: During training, we in-
put to the network a dataset of shapes in a single
orientation, and it learns to classify which shape
it has seen. We then test the network with shapes
from the same dataset that have been rotated and
translated randomly. Our network automatically
performs as well on this test dataset as it does
on the training dataset.

A toy dataset is sufficient to demonstrate this capability; we use 8 shapes that we call 3D Tetris,
shown in Figure 2, which our network learns to classify with perfect accuracy. We have also trained a
tensor field network on ModelNet40 as in [11] but without needing rotational data augmentation. We
achieved decent (though not state-of-the-art) accuracy with tensor field networks, but, in contrast,
without data augmentation during training, PointNet’s performance is roughly random classification
accuracy on a test set that has been randomly rotated and translated.

We use a 3-module network that includes the following for every module: all possible paths with
l = 0 and l = 1 convolutions, concatenation, a self-interaction layer, and a rotation-equivariant
nonlinearity. We only use the l = 0 output of the network since the shape classes are invariant under
rotation and hence scalars. To get a classification from the l = 0 output of the network, we sum over
the feature vectors of all points. This global pooling operation is equivariant because D-matrices act
linearly. This network is depicted in Figure 3.

There are two shapes in 3D Tetris that are mirrors of each other. Any network that relies solely upon
distances (such as SchNet [2]) or angles between points (such as ANI-1 [15]) cannot distinguish these
shapes, but ours can.
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5.2 Physics: vectors and tensors in classical mechanics

Network types: 0→ 1 and 0→ 0⊕ 2

To demonstrate the usefulness of different tensor field network output types, we train networks to
calculate acceleration vectors of point masses under Newtonian gravity and the moment of inertia
tensor at a specific point of a collection of point masses. These tasks only require a single layer of
point convolutions to demonstrate (though they can also be learned by more general networks), and
we can check the learned radial functions against the analytical solutions.

The acceleration of a point mass in the presence of other point masses according to Newtonian gravity
is given by

~ap = −GN
∑
n6=p

mn

r2np
r̂np

where we define ~rnp := ~rn − ~rp. (We choose units where GN = 1, for simplicity.)

The moment of inertia tensor is used in classical mechanics to calculate angular momentum. Objects
generally have different moments of inertia depending on which axis they rotate about, and this is
captured by the moment of inertia tensor (see Landau and Lifshitz [30]):

Iij =
∑
p

mp

[
(~rp · ~rp)δij − (~rp)i(~rp)j

]
The moment of inertia tensor is a symmetric tensor, so it can be encoded using a 0⊕ 2 representation.

For both of these tasks, we input to the network a set of random points with associated random
masses. For the moment of inertia task, we also designate a different special point at which we want
to calculate the moment of inertia tensor.

For learning Newtonian gravity, we use a single l = 1 convolution with 1 channel; for learning the
moment of inertia tensor, we use a single layer comprised of l = 0 and l = 2 convolutions with 1
channel each. We get excellent agreement with the Newtonian gravity inverse square law and the
moment of inertia tensor radial functions. Further information about this demonstration is included in
the supplementary material.

5.3 Chemistry: toward geometrically generating molecular structures

Network type: 0→ 0⊕ 1

In this task, we randomly remove a point from a point cloud and ask the network to replace that point.
This is a first step toward general isometry-equivariant generative models for 3D point clouds. We
train on molecular structures because precise positions are important for chemical behavior.

Figure 4: A hypothetical example input and out-
put of the missing point network. (A) A benzene
molecule with hydrogen removed (B) The relative
output vectors produced by the network, with ar-
rows shaded by the associated probabilities.

We output an array of scalars, a special scalar,
and one vector at each point. The vector, ~δa,
indicates where the missing point should be rel-
ative to the starting point ~ra (both direction and
distance) and the array of scalars indicates the
point type. The special scalar is used as a proba-
bility pa measuring the confidence in that point’s
vote. We aggregate votes for location using a
weighted sum: ∑

a

pa(~ra + ~δa)

(See the supplementary material for a proof that
this is translation-equivariant.) This scheme is
illustrated in Figure 4.

We trained on structures in the QM9 dataset, a
collection of 134,000 molecules with up to nine
heavy atoms (the elements C, N, O, F).
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In a single epoch, we train on each molecule in the training set with one randomly selected atom
deleted. We then test the network on a random selection of other molecules, making a prediction for
every possible atom that could be removed.

Table 1: Performance on missing point task

Atoms Number of
predictions

Accuracy (%)
(≤ 0.5 Å

and atom type)

Distance
MAE in Å

5-18 15863 91.3 (train) 0.16
19 19000 93.9 (test) 0.14
23 23000 96.5 (test) 0.13
25-29 25356 97.3 (test) 0.16

After training for 225 epochs on a dataset
containing only 1000 molecules (each
with 5-18 atoms), we see excellent gen-
eralization to the test sets, which include
larger molecules. Further details can be
found in the supplementary material.

6 Future work

We have explained the theory of tensor
field networks and demonstrated some
of their capabilities.

We expect that tensor field networks will be the right model for learning a wide range of phenomena:
In the context of atomic systems, we intend to train networks to predict properties of large and
heterogeneous systems, learn molecular dynamics, calculate electron densities (as inputs to density
functional theory algorithms), and hypothesize new stable structures. Ultimately, we hope to design
new useful materials, drugs, and chemicals.

For more general physics, we see potential applications in modeling complex fluid flows, analyzing
detector events in particle physics experiments, and studying configurations of stars and galaxies. We
see other applications in 3D perception, robotics, computational geometry, and bioimaging.
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A Proofs of general equivariance propositions

For equivariant L, the following diagram is commutative for all g ∈ G:

X Y

X Y

L

DX (g) DY(g)

L

If a function is equivariant with respect to two transformations g and h, then it is equivariant to the
composition of those transformations:

L(DX (gh)x) = L
(
DX (g)DX (h)x

)
= DY(g)L

(
DX (h)x

)
= DY(gh)L(x)

for all g, h ∈ G and x ∈ X ; that is, the following diagram is commutative:

X Y

X Y

X Y

L

DX (g) DY(g)

L

DX (h) DY(h)

L

Composing equivariant functions L1 : X → Y and L2 : Y → Z yields an equivariant function
L2 ◦ L1:

L2(L1(D
X (g)x)) = L2(D

Y(g)L1(x))

= DZ(g)L2(L1(x))

That is, the following is commutative:

X Y Z

X Y Z

L1

DX (g)

L2

DY(g) DZ(g)

L1 L2

B Motivating point convolutions

We can represent input as a continuous function that is non-zero at a finite set of points (using Dirac
δ functions):

V (~t) =
∑
a∈S

Vaδ(~t− ~ra)

A point convolution is then equivalent to applying an integral transform with kernel

F (~t− ~s)
∑
a∈S

δ(~t− ~ra)

for some function F . This transform yields

L(~t) =
∫
d3~sF (~t− ~s)

∑
a∈S

δ(~t− ~ra)
∑
b∈S

Vbδ(~s− ~rb)

=
∑
a∈S

δ(~t− ~ra)
∑
b∈S

F (~ra − ~rb)Vb

=
∑
a∈S

δ(~t− ~ra)La
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where we define
La :=

∑
b∈S

F (~ra − ~rb)Vb

as in the main text.

C Proof of equivariance of point convolution layer

Figure S1: Condition for layer rotation equivariance

Under a rotation ~ra 7→ R(g)~ra, we know that ~rab 7→ R(g)~rab and

F
(lf ,li)
cm (R(g)~rab) =

∑
m′

D
(lf )
mm′(g)F

(lf ,li)
cm′ (~rab) (4)

because of the transformation properties of the spherical harmonics Y (l)
m .

Figure S2: Filter equivariance equation

The crucial property of the Clebsch-Gordan coefficients that we need to prove equivariance of this
layer is ∑

m′
1,m

′
2

C
(l0,m0)
(l1,m′

1)(l2,m
′
2)
D

(l1)
m′

1m1
(g)D

(l2)
m′

2m2
(g)

=
∑
m′

0

D
(l0)
m0m′

0
(g)C

(l0,m
′
0)

(l1,m1)(l2,m2)

(5)
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Figure S3: Equivariance of Clebsch-Gordan coefficients. Note that each D may refer to a different
irreducible representation.

(see Fig S3 and, for example, Reisert and Burkhardt [3]).

Then

L(lO)
acmO

(
R(g)~ra,

∑
m′

I

D
(lI)
mIm′

I
(g)V

(lI)
acm′

I

)
=

∑
mF ,mI

C
(lO,mO)
(lF ,mF )(lI ,mI)

∑
b∈S

F (lF ,lI)
cmF

(R(g)~rab)
∑
m′

I

D
(lI)
mIm′

I
(g)V

(lI)
bcm′

I

=
∑

mF ,mI

C
(lO,mO)
(lF ,mF )(lI ,mI)

∑
b∈S

∑
m′

F

D
(lF )
mFm′

F
(g)F

(lF ,lI)
cm′

F
(~rab)

∑
m′

I

D
(lI)
mIm′

I
(g)V

(lI)
bcm′

I


=
∑
m′

O

D
(lO)
mOm′

O
(g)

∑
mF ,mI

C
(lO,m

′
O)

(lF ,mF )(lI ,mI)

∑
b∈S

F (lF ,lI)
cmF

(~rab)V
(lI)
bcmI

=
∑
m′

O

D
(lO)
mOm′

O
(g)L(lO)

acm′
O

(
~ra, V

(lI)
acmI

)
.

D Details for gravitational accelerations and moment of inertia tasks

D.1 Moment of inertia radial functions

We can write the moment of inertia tensor as

Iij :=
∑
a∈S

maTij(~ra)

where

Tij(~r) := R(0)(r)δij +R(2)(r)

(
r̂ir̂j −

δij
3

)
The expression thatR(2) is multiplying is the 3D symmetric traceless tensor, which can be constructed
from the l = 2 spherical harmonic. To get agreement with the moment of inertia tensor as defined in
the main text, we must have

R(0)(r) =
2

3
r2 R(2)(r) = −r2

Figure S5 shows the excellent agreement of our learned radial functions for filters l = 0 and l = 2 to
the analytical solution.

D.2 Point generation details and radial hyperparameters

The number of points is uniformly randomly selected from 2 through 10. The masses are scalar
values that are randomly chosen from a uniform distribution from 0.5 to 2.0. The coordinates of the
points are randomly generated from a uniform distribution to be inside a cube with sides of length 4
for gravity and 1 for moment of inertia.
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We use 30 Gaussian basis functions whose centers are evenly spaced between 0 and 2. We use a
Gaussian variance that is one half the distance between the centers. We use a batch size of 1. For the
test set, we simply use more randomly generated points from the same distribution.

We note that−1/r2 diverges as r → 0. We choose a cutoff minimum distance at 0.5 distance because
it is easy to generate sufficient examples at that distance with a few number of points per example. If
we wanted to properly sample for closer distances, we would need to change how we generate the
random points or use close to 1000 points per example.

E Proof of weighted point-averaging layer equivariance

Let S be the set of points (not including the missing point at ~M ) with locations ~ra. Suppose that the
output of the network is a scalar and a vector ~δa at each point in S. We take the softmax of the scalars
over S to get a probability pa at each point. Define the votes as ~va := ~ra+~δa, so the guessed point is

~u :=
∑
a∈S

pa~va

This is the first operation that we have introduced that lacks manifest translation equivariance because
it uses ~ra by itself instead of only using ~ra−~rb combinations. We can show that ~ra 7→ ~ra+~t implies

~u 7→
∑
a∈S

[
pa(~ra + ~t) + pa~δa

]
= ~u+ ~t

because the pa sum to 1. This voting scheme is also rotation-equivariant because it is a sum of 3D
vectors. The loss function

loss = (~u− ~M)2

is translation-invariant because it is a function of the difference of vectors in 3D space and rotation-
invariant because it is a dot product of vectors.

F Missing point task accuracies and MAE by epoch

In Table S1, we give the prediction accuracy and MAE on distance for the missing point task broken
down by atom type. There are 1,000 molecules in each of the train and test sets; however, when
comparing results by atom type, the relevant number to compare is the number of examples where a
specific atom type is removed. In Figure S6 and Figure S7, we give the accuracy and distance MAE
for the missing point task as a function of the number of training epochs (Tables 1 and S1 contain the
results after 225 epochs).
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Table S1: Performance on missing point task by atom type

Atoms

Number of
atoms with
given type

in set

Accuracy (%)
(≤ 0.5 Å

and atom type)

Distance
MAE in Å

Hydrogen

5-18 (train) 7207 94.6 0.16
19 10 088 93.2 0.16
23 14 005 96.7 0.14
25-29 16 362 97.7 0.15

Carbon

5-18 (train) 5663 94.3 0.16
19 6751 99.9 0.10
23 7901 100.0 0.11
25-29 8251 99.7 0.17

Nitrogen

5-18 (train) 1407 74.8 0.16
19 616 74.7 0.18
23 37 81.1 0.19
25-29 16 93.8 0.26

Oxygen

5-18 (train) 1536 83.3 0.17
19 1539 80.2 0.21
23 1057 68.0 0.20
25-29 727 60.1 0.21

Fluorine

5-18 (train) 50 0.0 0.18
19 6 0.0 0.07
23 0
25-29 0
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Figure S4: Diagrammatic proof of point convolution rotation equivariance.
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Figure S5: Radial function learned by l = 0 and l = 2 filters for moment of inertia toy dataset. The
filters learn the analytical radial functions. For a collection of randomly generated point sets, the
mean minimum distance is the average of the minimum distance between points in each point set.
Distances smaller than the mean minimum distance might not have been seen by the network enough
times to correct the radial filter.

Figure S6: Accuracy of missing point task by epoch of training
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Figure S7: Distance MAE of missing point task by epoch of training
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