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1 Introduction

Geometric divide and conquer, in analogy to similar techniques commonly used in com-
binatorial algorithms, is a process used to reduce a given problem to solving a set of
simpler similar problems and then combining their results into the solution to the full
problem. Nevertheless, in contrast to its combinatorial counterpart, geometric divide and
conquer does not split the set of input primitives into disjoint subsets; instead it works
by partitioning the ambient space of the problem into certain cells we will call parts,
naturally inducing a partitioning on the individual objects embedded in it. In contrast
to the combinatorial setting, a given object may appear in several of the newly generated
parts. Because of this, an important goal is to limit the complexity of the data input
to the subproblems, while using a reasonable number of parts. The following discussion
looks at an instance of that technique applied to the Euclidean plane (the ambient space)
for an input consisting of a line arrangement.

2 Problem statement

We will focus our description on partitions of the Euclidean plane E2 populated with a
set of geometric objects, in our case the set of n lines L = {l1, l2, . . . , ln}.

Given a parameter r we seek a partitioning of the plane into a set of t generalized
triangles ∆1, ∆2, . . . , ∆t (intersections of three half-planes, possibly unbounded, as illus-
trated in figure 1) such that the interior of each triangle ∆i is intersected by at most
n/r lines of L. We shall call a partitioning of E2 with this property a 1/r-cutting of the
arrangement A(L).

Theorem (Cutting lemma) There exists a 1/r-cut of the arrangement A(L) that
uses t = Θ(r2) generalized triangles.

The bound implied by the cutting lemma is in fact optimal in the sense that any
partitioning of E2 (not just with triangles) that achieves a 1/r-cutting of the arrangement
A(L) has to contain Ω(r2) parts. This follows from the fact that any non-degenerate
arrangement A(L) of n lines has Θ(n2) intersection vertices. Any part in a potential 1/r-
cutting can be intersected by at most n/r lines, therefore can contain at most O(n2/r2)
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Figure 1: A 1/2-cut on an arrangement of 6 lines

intersection vertices. Therefore, we need at least Θ(n2)/O(n2/r2) = Ω(r2) parts to
achieve the desired cut.

We will proceed with a probabilistic argument that yields a weaker O(r2 log2 n) bound
but also provides a very simple randomized algorithm for the cutting creation. Subse-
quently we will illustrate a deterministic construction of a cutting achieving the asymp-
totically optimal Θ(r2) number of parts.

2.1 Probabilistic proof for the O(r2 log2 n) bound

The existence of a 1/r-cutting with O(r2 log2 n) generalized triangles can be established
through a probabilistic argument which also suggests a randomized algorithm for the
computation of the particular cutting. This algorithm is based on the method of self-
sampling, that is using a subset of the data of the problem at hand to construct a solution.
In the following proof, some of the edges of the triangles used in the cut may be parts
of arrangement lines, which is a valid practice since our definition of a 1/r-cut imposes
bounds on the number of lines intersecting the interior of the triangles used.

Given the arrangement L we select a random sample S ⊆ L of the lines by performing
s random draws with replacement from the pool of n lines (a line may be selected several
times). Subsequently we create a partitioning of the plane into the generalized triangles
∆1, ∆2, . . . , ∆t by triangulating the polygonal faces of the sub-arrangement A(S). We
have t = Θ(s2) since A(S) contains Θ(s2) vertices. If the size of our selected sample is
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s = 6r ln n we can show that the triangulation thus derived has a positive probability of
being a 1/r-cut. This shows that there actually exists an appropriate sample S leading
to the desired result.

Proof Let us describe a given triangle ∆ as fat if its interior is intersected by
k ≥ n/r lines of L. Obviously a partitioning is a 1/r-cutting if and only if contains no
fat triangles. Fix a choice of a fat triangle T . The probability that the interior of T
is not intersected by any of the lines in the sample S (which is drawn randomly with
replacement) is (

1 − k

n

)s

< e− ks
n ≤ e− s

r = e−6 ln n = n−6 (1)

We will call a triangle T interesting for L if it can appear as part of a triangulation
induced by some sample S. The number of potential interesting triangles is obviously

bounded by the number of all triangles that can be formed using 3 of the
(

n
2

)
vertices

of the overall arrangement L, and that is less than n6 triangles. A triangulation induced
by some sample S fails to be a 1/r-cutting if any of its triangles is fat. The probability of
that happening is trivially bounded by the possibility that any of the interesting triangles
for L is fat, that is

(# of interesting triangles) Pr{An interesting triangle is fat} < n6 · n−6 = 1

Thus the case that our triangulation is indeed a 1/r-cutting has a positive probability,
being the complement of the event just described whose probability is less than 1.

The role of the constant factor of 6 in our choice of the sample size s = 6r ln n becomes
clear in the derivation of inequality (1). Apparently, if we were to choose a far greater
constant (say s = 100r ln n ) the probability our triangulation is not a 1/r-cutting would
be made practically zero (n−94). This leads to the conclusion that any sample S of such a
size would almost definitely result in an acceptable cutting, which provides a particularly
simple randomized algorithm for the 1/r-cutting problem (just pick a random sample of
adequate size, triangulate the faces of the corresponding arrangement and verify whether
it is an acceptable cutting or not).

A substantially more sophisticated argument leads to the stronger result that a sample
S of size only s = O(r) would suffice and in fact that particular result extends to higher
dimensions as well.

2.2 A deterministic construction for a O(r2)-size cutting

Here we will provide a deterministic argument for the existence of a 1/r-cut of size O(r2)
for an arrangement L of lines in E2, assuming that L exhibits no degeneracies. Central
to this argument is the notion of the level of a given point :
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Figure 2: Level boundaries induced by a line arrangement

Definition The level of a point p ∈ E2 is the number of lines of L that are strictly
below p. That is the number of lines that are intersected by a vertical open half line
connecting p to −∞ in the y - direction.

This definition induces a partitioning of E2 into n + 1 level regions as illustrated in
figure 2. Apparently, all points within a given cell of A(L) belong to the same level. For
0 ≤ k < n we shall define the k-level of L as the set of all edges of the arrangement having
level exactly equal to k (the four distinct levels in figure 2 correspond to the alternating
solid/dashed polylines). Each of those level polylines is an x-monotone chain of segments
which “turns” at each endpoint of an arrangement edge.

We define a q-simplification of a level as a chain of segments that connects every q-th
vertex on the level and also includes the extreme (infinite) edges of the level (figure 3).
If a given level V consists of t edges, its q-simplification is easily verified to consist of
�t/q� + 3 edges. Let p1, p2, . . . , pt−1 be the left-to-right enumeration of the vertices on
a given level and pi, pi+1, . . . , pi+q a subsequence of vertices connected by a chain of q
segments that is shortened into the single edge (pi, pi+q). We note that the original chain
meets with at most q+1 distinct lines of the arrangement (including those met at the two
extreme vertices), since the chain takes a turn at each line it encounters. Furthermore,
each line intersecting the shortened edge must intersect the original chain as well. Thus
the shortened edge is intersected by at most q + 1 lines itself. Since at each intersecting
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Figure 3: A 3-simplification (solid line) of an arrangement level (dashed line)

line the shortened edge makes a transition into the directly higher or directly lower level
(intersecting a line at an arrangement vertex is a degenerate case) and the initial level,
say k, at pi is also the final level at pi+q, the level of any cell the shortened edge crosses
into cannot deviate from k by more than �q/2	. Thus, the q-simplification of the k-level
V is entirely contained between levels k − �q/2	 and k + �q/2	.

Proof of the Cutting Lemma We can assume that r ≤ n/10 since if this is not
the case we have n = Θ(r) and we can simply triangulate the entire arrangement A(L)
using Θ(n2) = Θ(r2) triangles. Set q = � n

10r
	. We divide the n levels E0, E1, . . . , En−1

of the arrangement into q groups so that the i-th group contains all levels Ej such that
j ≡ i mod q, i = 0, 1, . . . , q − 1. The entire arrangement has n2 edges, therefore some
group Ei, Ei+q, Ei+2q, . . . must contain no more than n2/q edges.

Now define Pj to be the q-simplification of level Ei+jq. If the number of edges in Ei+jq

is mj the simplified level Pj has �mj/q� + 3 edges. Thus, the total number of edges of
all simplified levels Pj is

∑(
mj

q
+ 3

)
≤ 1

q

∑
mj + 3

(
n

q
+ 1

)
≤ n2

q2 + 3
(

n

q
+ 1

)
= O

(
n2

q2

)
.

Moreover, none of the simplified levels can properly intersect, since level Pj is at
most allowed to span levels i + qj − � q

2	 through i + qj + � q
2	. Consider the trapezoidal

decomposition (figure 4 on the arrangement of all polylines Pj. Since the Pj’s are non-
intersecting, the only vertices present are the O(n2/q2) already existing on the individual
polylines. Thus the trapezoidal decomposition has O(n2/q2) cells. The top and bottom
boundaries of such a cell are parts of the edges of some Pj’s, therefore can be intersected
by at most q+1 lines each. Similarly, each of the vertical boundaries connects two points
that each can deviate no more than �q/2	 from their original levels, which are q apart.
Overall, the level difference of two endpoints of a vertical cell boundary cannot be more
than 2q + 1. In total, at most

6q + 4 ≤ 10q ≤ n

r
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Figure 4: Cut construction by triangulation of the trapezoidal decomposition of the Pj’s

2q+1 lines max

q+1 lines max

q+1 lines max
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Figure 5: Maximum lines intersecting a trapezoidal cell. Bottom vertices lie in level
range [i+ qj −�q/2	, i+ qj + �q/2	], top ones in [i+ q(j +1)−�q/2	, i+ q(j +1)+ �q/2	].

lines can possibly intersect each cell.

Splitting the trapezoidal cell into two triangles we have the guarantee that they
cannot be intersected by more than n/r lines. Therefore, the triangulation thus created
is a 1/r-cut of size O(r2).
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3 An application : The complexity of m faces in the
arrangement of n lines

As before, consider an arrangement A(L) of the n-line set L = {l1, l2, . . . , ln} in E2. Let
us suppose we are interested in m specific of the Θ(n2) faces of the arrangement. We
will provide a series of bounds for the total number of edges K(m, n) contained in all of
those faces of interest

Theorem (Canham’s lemma) K(m, n) ≤ 4
(

m
2

)
+ n.

Proof Denote by di the number of faces of interest that have an edge on line li.
Apparently, K(m, n) =

∑
i di. Furthermore, any pair of faces can lie on at most four

common lines, since they are convex cells and have exactly four common tangents. Thus,
counting each pair of faces at each line they possibly share, we have

∑
i

(
di

2

)
≤ 4

(
m
2

)
,

which gives

K(m, n) =
∑

i

di ≤ ∑
i

[(
di

2

)
+ 1

]
≤ 4

(
m
2

)
+ n .

This bound is optimal when m = O(
√

n) since the n term is dominant. With a slightly
different manipulation we can show the following improved result

Theorem K(m, n) = O(m
√

n + n).

Proof Using the Cauchy-Schwartz inequality we have

∑
i

(di − 1) · 1 ≤
√∑

i

(di − 1)2 ·∑
i

12 ≤
√√√√∑

i

(
di

2

)
· n ≤

√√√√4
(

m
2

)
· n = O(m

√
n)

Thus
K(m, n) =

∑
i

di =
∑

i

(di − 1) + n = O(m
√

n + n) .

Using this intermediate result and the 1/r-cut divide and conquer technique previously
described we can prove the following bound which is optimal without the need for any
hypotheses on the values on m, and n

Theorem K(m, n) = O(m2/3n2/3 + n) .
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Proof Create a 1/r-cut of the arrangement using a total of t = Θ(r2) generalized
trianges. Assign each of the m faces to one of the triangles it intersects (there might be
more than one) and denote by m∆, n∆ respectively the number of faces and lines that
appear within a given triangle ∆. We have m =

∑
∆ m∆ and by definition of the cut

n∆ ≤ n/r. We count each edge of a face that is fully contained within a triangle using
the previous bound on that triangle. We account for the edges present in a given triangle
that form parts of faces assigned to neighboring trianges by adding a term equal to the
total lines n∆ intersecting the current triangle ∆. With these points considered we have

K(m, n) =
∑
∆

(K(m∆, n∆) + O(n∆)) + O(n)

=
∑
∆

(O(m∆
√

n∆ + n∆) + O(n∆)) + O(n)

= O(m
√

n

r
+
(

n

r

)
r2 +

(
n

r

)
r2 + n)

= O(m
√

n

r
+ nr + n) .

We minimize the term m
√

n
r
+nr by selecting r = m2/3n−1/3. Substituting into the above

relation yields
K(m, n) = O(m2/3n2/3 + n)

which is in fact an optimal bound for any choice of m and n.
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[1] J. Matoušek, Lectures on discrete geometry, Springer, 2002.

[2] K.L. Clarkson, H. Edelsbrunner, L.J. Guibas, M. Sharir and E. Welzl, Combinatorial
complexity bounds for arrangements of curves and spheres, Disc. Comp. Geom., 5:99-
160, 1990.


