
Passive ranging through wave-front coding:
information and application

Gregory E. Johnson, Edward R. Dowski, Jr., and W. Thomas Cathey

Passive-ranging systems based on wave-front coding are introduced. These single-aperture hybrid
optical–digital systems are analyzed by use of linear models and the Fisher information matrix. Two
schemes for passive ranging by use of a single aperture and a single image are investigated: ~i!
estimating the range to an object and ~ii! detecting objects over a set of ranges. Theoretical limitations
on estimator-error variances are given by use of the Cramer–Rao bounds. Evaluations show that range
estimates with less than 0.1% error can be obtained from a single wave-front coded image. An exper-
imental system was also built, and example results are given. © 2000 Optical Society of America
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1. Introduction

Wave-front coding is a technique for uniquely coding
information contained in an incoherent wave front.
Optical wave fronts from an object are coded by an
optical mask that is typically placed at or near the
aperture stop of an otherwise general imaging system.
The incoherently detected and spatially sampled wave
front is decoded by a digital signal-processing algo-
rithm. The optical–digital system is designed to com-
municate a portion of an object’s three-dimensional
information to a two-dimensional surface in an optimal
manner. The particular optical masks in this ranging
study are designed to preserve range information.
Other masks may preserve or remove spatial frequen-
cies, for example. The digital signal-processing wave-
front coded ranging algorithms developed for this
study were implemented in software, although other
implementations can be realized. A typical wave-
front coded passive-ranging system is shown in Fig. 1.

The remainder of this paper is organized as follows.
Section 2 gives a brief background on optical passive-
ranging systems; active systems are not discussed for
brevity. Section 3 presents the optical mask used in
this study. Section 4 introduces the linear system
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models and signal-processing algorithms with sepa-
rate sections on range estimation and object detec-
tion. Section 5 gives theoretical limitations based
on the Cramer–Rao bounds ~CRB’s! for two example
systems. Experimental validation is presented in
Section 6 for one of the systems for which a prototyp-
ical mask and lens were assembled. Section 7 gives
a discussion of the results and the conclusions.

2. Background: Optical Passive Ranging

Passive systems are, in general, characterized by
the lack of a transmitter. As such, they enjoy ad-
vantages such as stealth, lower power, and fewer
components over active systems. However, they
often suffer from higher complexity and degraded
performance. Example incoherent passive-
ranging systems may employ multiple apertures or
images such as stereo or motion ranging.1 These
echniques require multiple, displaced views of an
bject. Knowledge of the viewing-angle geome-
ries and the image correspondence is used to de-
ermine the object range. Single-aperture passive
ystems include commercial autofocus ~ATF! sys-
ems2 and range-from-defocus methods.3 Range-

from-defocus systems make assumptions about the
object’s spatial-frequency content and iterate the
lens-focus position to find a best-focused lens posi-
tion. In this case range can be derived from know-
ing or estimating the optical geometries.

A widespread and highly successful commercial
ranging application is ATF systems for cameras.4
Active ATF is often the measurement of the angle
that a transmitted beam makes when reflected off a
target. Passive ATF systems come in two varieties:
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contrast matching and phase matching. The con-
trast method is similar to the range-from-defocus ap-
proach in which the maximized spatial-frequency
content represents the best focus. Phase ATF uses
the optical concept that, for an in-focus system, the
intensity across the exit pupil is uniform; this is not
true for defocused systems. Note that these systems
are at best crude range finders, finding focus posi-
tions that are more suitable for human photographic
consumption rather than precision ranging. More
information on commercial ATF systems can be
found in Ref. 4.

As an alternative to the above ranging methods,
wave-front coding5 employs a modified optical system
that directly codes range information. The range
information can be extracted from a single image in a
straightforward manner by means of signal-
processing methods. One such hybrid system was
already introduced by Dowski and Cathey5 and
Dowski.6 The optical mask described in Ref. 6 pro-

uced a magnitude transfer function ~MTF! with pe-
iodic nulls; the periodicity is dependent on misfocus,
ence range. The estimate of the periodicity of the
ulls in the spatial-frequency estimate of an acquired

mage is related to the range.
In the null-space design overlapping objects at dif-

erent ranges produce competing periodicities, mak-
ng the estimate of a single range difficult. In
ontrast, the mask used in this ranging study and
escribed in Refs. 7 and 8 performs a bandpass type
f coding, separating objects at different ranges into
ifferent spatial-frequency regions. The encoding
ehavior of this mask is discussed in more detail in
ection 3. Digital processing of the coded images for
xtracting range is discussed in Sections 4–6.

3. Optical Masks for Passive Ranging

The mask used in this passive-ranging system is de-
signed in spatial coordinates as a cos~bpx!cos~bpy!
ectangularly separable mask. The transmissivity
or the mask is shown in Fig. 2.

Because passive optical media are positive only, a
roperly oriented phase mask of height ly2, where l
s the nominal center frequency ~wavelength! of the

incident wave, effectively provides a negative shift for
the otherwise ucos~bpx!u profile. The phase profile
and the spatial orientations of the phase mask and
the amplitude mask are shown in Fig. 3.

The mask produces a particular MTF that changes
dramatically with misfocus c. This theoretical MTF
for an infinite aperture, the misfocus-dependent part

Fig. 1. Example optical–digital system for single-aperture pas-
sive ranging by use of wave-front coding.
of which is seen as a pair of shifted delta functions, is
given by

Hc~u! 5 1y2d~u! 1 1y4d~u 6 pbyc!,

c 5
pd2

4l S1
f

2
1
zo

2
1
zi
D . (3.1)

The misfocus parameter c can be expressed in terms
f a general optical system, as shown in Eq. ~3.1!,
here d is the width of the aperture, zo and zi are the

object and the image distances, respectively, f is the
focal length of the system, and l is the nominal center
wavelength of the incoherent illumination. Large or
small values of misfocus are translated to near or far
values, respectively, for range, given the optical pa-
rameters of the imaging system. A finite aperture
essentially smears the impulse response, which is
given by

Hc~u! 5 1y2~1 2 uuuyd!cos~bpu!sinc@cu~d 2 uuu!#

1 1y4~1 2 uuuyd!sinc@~cu 6 pb!~d 2 uuu!#.
(3.2)

Example MTF’s H~u! for the cosine mask are
shown in Fig. 4. The plots of the MTF’s are clearly
seen as having a bandpass region as well as a com-
mon zero-frequency subspace. Both the shifting and
the broadening of the MTF passband regions is clear
for the two values of misfocus.

The behavior shown in Fig. 4 is seen as a passband-
filtering operation, the center frequency of which is
highly range dependent. The object’s spatial fre-
quencies that are coded in the image will vary de-

Fig. 2. ~a! Transmission profile of a cos~bpx!cos~bpy! ranging
ask. ~b! Contour plot of the transmission profile shown in ~a!.

Fig. 3. Spatial orientation of the phase-mask profile with respect
to the transmission-mask profile.
10 April 2000 y Vol. 39, No. 11 y APPLIED OPTICS 1701
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pending on the range between the object and the
imaging system.

4. Range Decoding by Means of Signal Processing

Range information is coded in the spatial frequencies
of a sampled image. To evaluate the spatial-
frequency content of a wave-front coded image, one
implements Fourier transform techniques. The Fou-
rier method leads to a maximum-likelihood estimate of
the sinusoidal frequency content and is valuable in the
signal-estimation and the signal-detection tasks de-
scribed below. For the cosinusoidal mask, we can
perform range estimation by implementing a peak de-
tector on the spectral estimate. Alternatively, we can
perform object detection by measuring the energy con-
tent in the spatial-frequency estimate. Note that the
entire image can be processed at once, or we can pro-
cess only a small region of interest ~ROI! within the
image. By processing smaller ROI’s, we can produce
a two-dimensional range image ~or range map! by dis-
lacing the ROI across a coded image and repeating
he spectral estimation and the range estimation or
he object-detection routines.

A. Spectral Estimation

The spatial-frequency estimation is implemented by
use of Fourier analysis. Equation ~4.1! is a well-

nown equation for averaging complex-valued Fou-
ier coefficients. The Fourier coefficients are fk,

where gq ~q 5 0, . . . , 2N 2 1! is one element of the
N-length ~zero-padded, if necessary! column ~say,
he mth column! of the ROI ~or the input image!:

yk 5 uE@ fk#u 5 U 1
M (

m51

M

fk,mU
5 U 1

M (
m51

M

(
q50

2N21

wq uq,m exp~2j2pqny2N!U , (4.1)

where E is the expected-value operator.
We can evaluate horizontal spectra by processing

rows in the ROI or the image. Note the presence of
a smoothing window, wq ~q 5 0, . . ., 2N 2 1!, that is
applied to the data prior to transforming. This helps
to reduce the sidelobes in the estimate. Averaging
of the complex-valued coefficients reduces random
noise in the data.

Fig. 4. MTF’s for the two example misfocus values. Note the
optical system essentially produces power ~the MTF amplitude! as

function of range ~the peak-power location!.
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B. Range Estimation

Here the range to a single unknown object is desired.
A noiseless image x, where x 5 @x1x2 . . . xN#T, is
modeled as the convolution of an unknown object u
with the range-dependent impulse response h~r!. A
noisy version of the image y is modeled as x through
a noisy channel with additive noise, n, N@0, s2I#,

ithout loss of generality. These relations are
hown in Eq. ~4.2!, where F~r! is a convolution matrix
ased on h~r! and the asterisk denotes convolution:

x 5 h~r! p u 5 F~r!u, y 5 x 1 n (4.2)

this linear system is also illustrated graphically in
ig. 5!.
In the case of passive ranging the system impulse

esponse h~r! and its convolution matrix F~r! can
contain the lens, the mask, and the propagation ef-
fects as well as the optical aberrations. The goal is
to estimate the parameter r for unknown objects u,
given F~r! and the data y with unknown noise n.
Note that the assumption of a noise-covariance ma-
trix s2I does not detract from the generality of these
xpressions. If the data y have a nondiagonal noise-
ovariance matrix R ~i.e., the noise is not uncorre-
ated!, they can be prewhitened as R21y2y, and the

system response in Eq. ~4.2! becomes R21y2F~ri!.
On the basis of the optical system behavior de-

scribed in Section 2, one can expect a sinusoidal-like
response to a spectrally flat object located at a single
range. The estimation of range is therefore the task
of estimating the spatial frequencies in the image and
locating the maximum energy in the spectra ~not in-
cluding the zero-frequency response!; essentially, a
imple peak detector is used on the non-zero-
requency portion of the maximum-likelihood spatial-
requency estimate described in Subsection 4.A.
ection 5 shows that the error in range estimates

rom such a system can be less than 0.1% for a point-
ource object.

C. Object Detection

Here the goal is to detect objects within a given set of
ranges. Thus we are interested in the sum of objects
u that make up an overall image x. A noiseless
image x can be modeled as the sum of the convolu-
tions of the unknown objects ui with their respective
range-dependent impulse responses h~ri!, where ri is
the range parameter of interest for the ith object.
Again, a noisy version of the image y is modeled
through an additive-noise channel with noise n.

Fig. 5. Typical noisy image-formation model for a single object.
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The relations for uncorrelated noise are indicated
mathematically in Eq. ~4.3! and graphically in Fig. 6:

x 5 (
i

p

h~ri! p ui 5 (
i

p

F~ri!ui, y 5 x 1 n. (4.3)

quation ~4.3! is now rephrased through linear alge-
ra to bring matrix tools to bear. A linear system B
s assumed to be an N 3 p matrix whose columns

represent the modes of the system. In the case of
object detection the columns represent the positive
frequency coefficients from the modulation transfer
function at a discrete selection of ranges @thus N
quals half of the fast Fourier transform ~FFT!
ength, and p represents the number of MTF’s#. For
xample, B 5 @b1b2 . . . b8# contains eight MTF’s,
here bi is the MTF at range ri. An input image u

is assumed to be an ~N 3 1!-length vector and is
ormed by a linear combination of terms bi, i.e., u 5

Ba, where a is a ~p 3 1!-length vector of weights, one
for each bi, as shown in Eq. ~4.4!:

u 5 Ba 5 (
i51

p

bi ai, a 5 @a1 . . . ap#
T,

B; N 3 p, u; N 3 1, a; p 3 1. (4.4)

The detection methodology seeks to find a repre-
sentation of a from noisy observations y of the object
u, where y 5 u 1 n, with n as a noise vector that is
independent of the data, n; N@0, s2I#. An estimate
â ~the minimum mean-squared-error estimate! of a
can be formed by means of the pseudoinverse of B,
denoted B#. From u 5 Ba and y 5 u 1 n, we esti-

ate u through û 5 PBy 5 BB#y to get â 5 B#û or
ˆ 5 B#BB#y 5 B#y, where B# 5 ~BTB!21BT. Note
that we can equivalently estimate the contributions
of the Fourier modes ~the weights on the values of bi!
r the contributions of the impulse responses @point-

spread functions ~PSF’s!#. In the following discus-
sion the system is denoted as u 5 Ba, and B is
assumed to be composed of MTF’s and not of PSF’s.

The detectors in this study are based on binary
hypothesis testing ~H0 versus H1!. If one assumes
that the signal y is generated from exactly one mode
the ith mode! the parameter vector a is all zeros

except for a 1 in the ith position: a 5 @0 . . . 0 1
0 . . . 0#T. Thus one can think of a set of vectors a1,
a2, . . . , ap, where ai indicates that the ith value is a

and that the rest are zeros. A simple hypotheses

Fig. 6. Typical noisy image-formation model for multiple objects.
Note that the partitioning of the object volume into regions is
arbitrary.
test H0 ~with a composite alternative H1! would then
ppear as

H0 ~Object at ri!
H1 ~No object at ri!

f y 5 Ba, Ha 5 ai under H0

a Þ ai under H1
.

(4.5)

In this detection approach the signal is reformu-
lated as the combination of the interference modes
and a signal mode. The interference terms may now
be rejected with the techniques of subspace projec-
tions. Here the notations for the N 3 p system ma-
trix B and the p 3 1 parameter vector a are replaced
with B0 and a0, respectively. The data y are de-
cribed as having a subspace signal, with subspace
nterference and noise of an unknown level, or y 5

0a0 1 n can also be modeled as y 5 bi
Tai 1 Ba 1 n.

his gives y as the combination of a single-mode
ubspace signal bi

Tai and an interference signal Ba.
The N 3 ~p 2 1!-sized B matrix is B0 with the ith
column missing, and the ~p 2 1!-length a vector is a0
with the ith element removed.9 The projectors of
interest are defined as

for

B0 5 @b1 . . . bp#,

for the ith element define b 5 bi,

B 5 @b1 . . . bi21 bi11 . . . bp#,

i.e., B0 is missing the ith column,

now

PB 5 BB#, PB
' 5 I 2 PB, PG

' 5 I 2 PG,

PG 5 PPB
'b 5 ~PB

'bb!~PB
'b!# 5 PB

[bbTPB
'~bTPB

'b!21,

(4.6)

by use of the ranging-system variables.
A matched-subspace detector9 provides an F-

distributed statistic L2 2 1, hereafter denoted simply
as L, as shown by

L 5
yTPB

'PG PB
'y

yTPB
'PG

'PB
'y Ss 2 p

p D . (4.7)

Equation ~4.7! essentially gives the ratio of the signal
power in subspace ^b& to the signal power in the noise

Fig. 7. L~y! and the angular relations in the PB
' space.
10 April 2000 y Vol. 39, No. 11 y APPLIED OPTICS 1703
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subspace ^n& plus the interference subspace ^B&, after
projecting y through PB

'. This concept is slightly
modified in Eqs. ~4.8! and ~4.9!, below. Note the
caling by the dimensions of the subspaces in Eq.
4.7!, where in this case p is the number of modes in

~not in B0! and s 5 ~N 2 dim^b&! 5 ~N 2 1!.
Note that the design of the interference subspace

^B& can have a tremendous impact on the quality of
the detector.10 A subspace rich in interference can
actually scale the noise beyond what an orthogonal
projection system might, providing degraded results
compared with a simple orthogonal projection. Op-
timal subspace designs are largely application and
environment dependent.

In essence the statistic L in Eq. ~4.7! measures the
ratio of the length of y in ^b& to the length of y in ^n&,
as illustrated in Fig. 7. This ratio is the cotangent
squared of the angle a between the two vectors.
Thus L 5 isi2yini23 cot2~a!, which has values rang-
ing from zero to infinity. An alternative statistic b is
developed in Eqs. ~4.8! and ~4.9! in which the cosine of
the angle is measured. This alternative statistic has
the advantage that it is scaled from 0.0 to 1.0 and is
beta distributed.11 This distribution is helpful in de-
termining the detector thresholds for each mode in a
particular application:

Rewriting the statistic L of Eq. ~4.7! in the form of
Eq. ~4.8! yields

b 5 cos2~a! 5
isi2

iyi2 5
yTPB

'PGPB
'y

yTPB
'y

, (4.9)

where the statistic is denoted b. Note that y still
passes through PB

' in both the numerator and the
enominator in Eq. ~4.9!. One can think of this pro-

jector as placing y in the correct signal plane ~i.e., in
ig. 7 all the vectors are assumed to lie in the PB

'

subspace!.

5. Cramer–Rao Bounds

For many systems the data y can be modeled as
functions of the parameters q, y~q!, where q is the
unknown range vector. As such, it is desirable to
form an estimate of q, say, q̂, by use of the data y.

he Fisher information matrix J~q! provides an anal-
sis of a system’s sensitivities to the model parame-
ers q. When we estimate q, the inverse of the
isher matrix J21~q! provides the Cramer–Rao lower

bound12 on an unbiased estimator’s error-covariance
matrix E@q̂ 2 q#@q̂2q#T, where E@ . . . # is the
xpected-value operator. The trace of J21~q! lower-

L ; cot2~a! 5
cos2~a!

sin2~a!
5

co
1 2
704 APPLIED OPTICS y Vol. 39, No. 11 y 10 April 2000
bounds the estimator’s error variance, E@q̂ 2 q# @q̂ 2
q# $ tr#@J21~q!#, where tr@ . . . # represents the trace of
he elements ~in square brackets! of the matrix, or the
um of the diagonal elements. These theoretical re-
ations can be used to guide application-specific sys-
em design and provide a basis for accepting or
ejecting a particular estimator during the develop-
ent and the testing phases.
If the model for a linear system has unknown de-

erministic parameters, q 5 @q1q2 . . . qP#T, then the
Fisher matrix J~q! is defined as

J~q! 5 EF ]

]q
ln pq~y!GF ]

]q
ln pq~y!GT

, (5.1)

where pq~y! is the probability-density function of the
data y that are parameterized by q.12,13

A. Cramer–Rao Bounds for Range Estimation

For the range-estimation model the unknown param-
eters are the range r and the object u, such that q 5
@ruT#T. Furthermore, if we assume that the noise is
distributed as n ; N@0, s2I#, the Fisher matrix J~q!

may be written as

J~q! 5
1
s2 @Gr Gu#T@Gr Gu#,

Gr 5
]

]r
ln pq~y!f

]

]r
F~r!u,

Gu 5
]

]u
ln pq~y!f F~r!, (5.2)

where G expresses the sensitivities to the respective
model parameters. In this form the inverse of J~q!
provides the lower bound on the estimator error, as
shown in

J21~q! 5 s2F@Gr
TPGu

' Gr#
21 p

p @Gu
TPGr

' Gu#21G , (5.3)

where the projector, PGu

' 5 I 2 Gu~Gu
TGu!21Gu

T, is
projecting the sensitivity matrix Gr onto a subspace
that is orthogonal to the subspace spanned by the
sensitivity matrix Gu. The terms represented by
the asterisks in Eq. ~5.3! are not needed for the CRB
derivation.

In Eq. ~5.3! the upper left-hand term provides the
lower bound on the error variance for the best esti-

!

a!
5

isi2yiyi2

1 2 isi2yiyi2 ;
b

1 2 b
. (4.8)
s2~a

cos2~
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mator of r with the unknown object u, as summarized
n

var~r̂! $
s2

@Gr
TPGu

' Gr#
. (5.4)

Note that relation ~5.4! is a rank-1 evaluation
~Gr

TPGu

' Gr is a scalar! because there is only one pa-
rameter to be estimated, r.

Expression ~5.4! leads to the variance bounds in
relation ~5.5! as expressed in terms of the frequency
esponse of the system components. Note that the
rojector PGu

' is replaced with a frequency-domain
equivalent P@exp~ ju!#, which takes on nonzero values
only when the nuisance sensitivities @defined in Eq.
~5.2!# are zero:

var~r̂!

$
s2

*
2`

`

P@exp~ ju!#U ]

]r
H@exp~ ju!; r#U@exp~ ju!#U2

du

,

P@exp~ ju!# 5 H1 uH@exp~ ju!; r#u 5 0
0 else . (5.5)

From relation ~5.5! it is evident that the estimator’s
erformance depends on the spectral content of the
bject, U@exp~ ju!#. Although at first relation ~5.5!

represents a design difficulty because no a priori in-
formation about the object is assumed, general ap-
proximations may be made regarding anticipated
objects. As an alternative to range estimation
@which is dependent on the object spectra, according
to relation ~5.5!#, the CRB’s on object detection are
developed in the Subsection 5.B. There it is evident
that the object spectra do not play into the system
equations.

B. Cramer–Rao Bounds for Object Detection

From Eq. ~4.4! and Fig. 6, we can see that the parti-
tioned model parameters for this system are ex-
pressed as q 5 @uD

TuT#T, where uD is the desired
unknown object at some range rD and u represents all
ther unknown objects. Note that, in this situation,
he range rD is assumed to be known. This assump-

tion essentially is the act of looking at a given range
and estimating an object or the presence ~or the ab-
sence! of an object. The Fisher information for such
a system may be written as

J~q! 5
1
s2 @GuD

Gu#T@GuD
Gu#,

GuD
5

]

]uD
ln pq~y!f F~rD!,

Gu 5
]

]u
ln pq~y!f F~r!. (5.6)
The inverse of the Fisher matrix in Eq. ~5.6! is
given by

J21~q! 5 s2F@GuD

TPGu

' GuD
#21 p

p @Gu
TPGuD

' Gu#21G ,

(5.7)

where the projector PGu

' 5 I 2 Gu~Gu
TGu!21Gu

T is
projecting the sensitivity matrix GuD

onto a subspace
that is orthogonal to the subspace spanned by the
sensitivity matrix Gu. For this system, then, the
lower bound on the error variance for the best esti-
mator of the unknown object uD is given by

var~ûD! $
s2

tr@GuD

TPGu

' GuD
#

5
s2

tr@F~rD!TPF~r!
' F~rD!#

,

(5.8)

where tr@ . . . # represents the trace of the terms in
square brackets, which represent the sum of the di-
agonal elements. Expression ~5.8! leads to the vari-
ance bounds

var~ûD! $
s2

* P@exp~ ju!#H@exp~ ju!; rD#2du

,

P@exp~ ju!# 5 H1 uH@exp~ ju!; r# 5 0
0 else , (5.9)

expressed in terms of the frequency response of the
system components. Note that the projector PGu

' is
replaced with a frequency-domain equivalent
P@exp~ ju!#, which takes on values of 1 only when the
MTF for the nuisance parameter @defined in Eq. ~5.6!#
is zero. In relation ~5.9! note that the estimator-
rror performance does not depend on the spectral
ontent of the object.

Because objects are to be detected rather than es-
imated, we modify relation ~5.8! to evaluate the vari-
nce in the detectable object energy, uTu. Note that

the subscript D has been dropped from the u terms.
s such, the threshold detection of an estimated ob-

ect û by use of a measure of the estimated object’s
nergy ûTû from the image data y is of interest.

This evaluation evolves as a modification of the
Fisher matrix derived in the Subsection 5.A, as sum-
marized below in relations ~5.10! and ~5.11!. When
we compute the variance of a function of a parameter
~ûTû is a function of the original parameter û! the
Fisher matrix is modified by consideration of the sen-
sitivity of the function to the original parameter.13

This modification is manifest in the Fisher matrix as
a linear transformation A, as shown in

J~uTu! 5 A21J~u!A2T, Aij 5 F ]

]ui
uj

2G .

(5.10)

Note that the elements of the object u ~i.e., ui and
j! are now included in the CRB evaluation through
10 April 2000 y Vol. 39, No. 11 y APPLIED OPTICS 1705
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Table 1. Simulation Parameter Values

1

the transformation A, bringing the object content into
question. The variance on estimating uTu is
bounded as shown in

var~ûTû! $
s2

tr@AF~rD!TPF~r!
' F~rD!A#

. (5.11)

Effects of the system parameters on the variance
bound can be seen in relation ~5.11! by consideration
of a spectrally white object u, where uk 5 1yN, k 5
2Ny2, . . . , Ny2 for an N-length object u. The
transformation A becomes ]y]ui~uj

2!, which is 2u
when i 5 j and zero otherwise. Recall that u 5 Ba
nd that B is a matrix of MTF’s, so u is the object’s
pectral representation, which was defined to be
hite. Thus the terms ui are independent. For an

N-length object u, the matrix A therefore becomes a
diagonal matrix with 2yN on the diagonal, A 5 ~2y
N!I.

C. Simulated Optical Systems

Two optical systems are simulated, one that is capa-
ble of ranging from 1 to 4 m and another that is
capable of ranging from 5 to 20 mm. The former
system is similar to that which might be employed in
general proximity-sensing applications, and the lat-
ter is similar to a miniature inspection system or a
medical scope design. The optical parameters for
each system are given in Table 1.

Both designs contain a simple lens, an aperture, an
illumination bandpass filter, and the cosine wave-
front coding mask as introduced in Section 3. The
generalized optical system is shown in Fig. 8. Ex-
ample MTF’s for the 4-m and the 20-mm optical sys-

Fig. 8. Schematic of the object and the simulated optical system.
Note that r is measured from the first principle plane of the optical
ystem. The l filter is used to reduce infrared wavelengths.

Simulation Parameter

Resolution R

4 m 20 mm

Focal length f 60 mm 10 mm
Aperture width d 5 mm 0.35 mm
Mask beta b 2 2
Illumination leff 550 nm 550 nm
Image distance f 5 zi 60 mm 10 mm
Object distance r 5 zo 1–4 m 5–20 mm
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tems described above are shown in Figs. 9 and 10,
respectively, in which the MTF’s for several ranges
have been plotted.

The peak locations marked in Fig. 9 show the
ranges at which each MTF was simulated. The re-
lation of the range ~in physical units! to the peak
location ~in normalized frequency coordinates! forms
a calibration for the system. This calibration is used
to determine the most likely range from the maxi-
mum peak location in a given spectral estimate. Ob-
servations to be made between Figs. 9 and 10 include
the fact that the MTF’s look remarkably similar for
two distinctly different optical systems. As a design
rule, one can shuffle both the position of the close-
range peak and the position of the far-range peak by
adjusting both the focal length and the focus of the
system. Changes in the aperture size and the mask
value b can also be used to help vary the sharpness of
he peaks for a given frequency location.

For object detection, the N 3 p model B0 contains
a discrete number of modes p, and N is a conveniently
arge FFT length. In this case p is related to the
ange resolution of the object-detection system. For
set of object distances ~i.e., 1 to 4 m! the displace-
ent between modes in the model is chosen to be a

ercentage of the distance. If the detector resolution
s 10%, or Rpct 5 0.10, the detection space is divided

as Rnext 5 ~1 1 Rpct!Rthis. Thus Rnext is the range at
which the next MTF ~i.e., the next column of B0! will
be evaluated. One example system B0 is evaluated
with a range resolution of 4%, or Rpct 5 0.04. At
lower percentages ~higher resolutions! the farther
ange-estimate variance exceeds the closer estimates
y several orders of magnitude. This difference in-

Fig. 9. Example MTF’s for the simulated 1–4-m system. The
peaks are marked with the range for the simulated MTF.

Fig. 10. Example MTF’s for the simulated 5–20-mm system.
Several peaks are marked with the range for the simulated MTF.



dicates that, for this detector, the MTF peaks are too
broad at farther ranges to resolve reliably objects that
are separated by less than 4% of the range, or ap-
proximately 16 cm in the 4-m design and approxi-
mately 0.8 mm in the 20-mm design, at the farthest
ranges.

D. Cramer–Rao Bound Results for Range Estimation

For the system parameters given in Subsection 5.C
and a signal-to-noise ratio of 45 dB ~typical of a noisy
CCD camera! Fig. 11 shows that one can reasonably
estimate the range to a spectrally white object with
errors of the order of 1y100 to 1y1000 at the closer
ranges in the 4-m system. The variance begins to
exceed 1y100 as the range approaches 4 m. Figure
12 shows that one can reasonably estimate the range
to a spectrally white object with errors of less than
1y1000 in the 20-mm system.

In this subsection only the single-range estimation
task is explored by use of spectrally white objects.
Although the results are compelling ~in general,
range errors are expected to be less than 0.1%!, most
practical applications will not be detecting point
sources or such broadband objects. As such, a more
robust object-detection technique is employed in Sub-
section 5.E., in which the detector is based on
subspace-projection methods and is designed to work
with sources of varying spectral distributions.

E. Cramer–Rao Bound Results for Object Detection

For the system parameters given in Subsection 5.D
and a signal-to-noise ratio of 45 dB Fig. 13 shows that
one may reasonably detect objects with errors of the
order of 1y106 by using the 4-m system. Figure 14
shows that one can reasonably detect a spectrally

Fig. 11. Plot of the CRB range-estimate variance as a function of
range for the 4-m system design. Note that the variance is near
1y1000 at 1 m and approximately 1y100 at 4 m.

Fig. 12. Plot of the CRB range-estimate variance as a function of
range for the 20-mm system design. Note that the variance is less
than 1y1000 for the entire simulated range.
white object with errors of less than 1y1000 by using
the 20-mm system. Although at first these values
may appear to be extremely low, it should be reiter-
ated that the systems are operating at only a 4%
resolution. At higher resolutions the variance for
the farther ranges will exceed 1y10 and higher. In
general, object-detection errors are expected to be
less than 0.1%, similar to the range estimates for the
same point source.

6. Experimental Results

To validate the point-source object results provided in
the CRB evaluations, we use a 15-mm-diameter hole
in an opaque material as a transmission source.
The experimental setup allows for the testing of
ranges nominally from 1 to 2 m, considerably shorter
than the ranges at which the simulations were per-
formed. Furthermore, the system is not focused to
infinity to stretch the MTF responses over this range.
Rather, it is focused to just beyond the experimental
region. The diagram shown in Fig. 15 shows the
basic setup.

A. Experimental Data Quality

The size of the pinhole, detector noise, and difficulties
with controlling camera exposure time and source

Fig. 13. Plot of the CRB object-detection variance as a function of
range for the 4-m system design by use of a 4% range resolution.
The variance is much less than 1y1000.

Fig. 14. Plot of the CRB object-detection variance as a function of
range for the 20-mm system design with a 4% range resolution.
Note that the variance is still less than 1y1000.

Fig. 15. Experimental setup.
10 April 2000 y Vol. 39, No. 11 y APPLIED OPTICS 1707
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illumination combine to provide images with a small
dynamic range: 14 to 33 levels out of an 8-bit cam-
era ~i.e., 5% to 13% of the dynamic range!. As such,
he signal-to-noise ratio was quite low, and the image
ontrast was considerably low. Example images of a
oint source at 650 mm and 1.5 m are given in Fig. 16.
Because the mask is cosinusoidal, it consists of

oth a phase piece and an amplitude piece. Cement-
ng the assembly under a microscope produced align-

ent and other quality issues. Optical aberrations
nd misalignment of the lenses further contribute to
egraded performance of the experimental system.
he nonuniformity of the peaks in the captured PSF

n the contour plots of Fig. 17 highlight these issues
s well as the low illumination ~i.e., the high noise!
evel. A comparison of the spatial-frequency esti-

ates of Fig. 17 is shown in Fig. 18. Note that there
re two estimates for each image, a horizontal and a
ertical plot. The CCD pixels are rectangular ~11
m 3 13 mm!, so there are two spatial sampling

frequencies available.
Figure 18 highlights the broadened ~and the low-

ered! peak responses of the experimental system.
The broadening is due in part to the high noise level
and, more importantly, to the optical problems men-

Fig. 16. Images of a point-source object located approximately 6
optical system.

Fig. 17. Experimental and s
708 APPLIED OPTICS y Vol. 39, No. 11 y 10 April 2000
tioned above and the use of broadband illumination
in the experiments ~the CRB investigations described
n Section 5 used monochromatic illumination!. The
hift in peak locations between experiment and sim-
lation is due to the defocused ~from infinity! exper-

mental system; the image simulator was focused at
nfinity.

B. Experimental Results for Range Estimation

The experiments described in this subsection evalu-
ate the spectra for point-source objects with nominal
distances of 650 to 1500 mm. At each range tested
10 instances of an image are acquired and processed.
Note that each instance is an average of five images,
which helps to reduce noise because the illumination
is low. The center region ~sample instance! of the
cquired image is Fourier processed, as explained in
ubsection 4.A, to produce spectral estimates for that

mage.
Figure 19 shows that the standard deviation in the

ange estimates for 10 instances is less than 0.50% of
he object range. The standard deviation shown in
ig. 19 is close to the 0.10% variance bound ~i.e.,
ar 5 0.11y2 is a standard deviation of 0.316%!, as

described in Section 5 for the 4-m design.

m and 1.5 m away from the principle plane of the experimental

ted PSF’s at nominally 1 m.
50 m
imula
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Although the overall variance is low as shown in
Fig. 19, the general trend expected ~an increasing
ariance for increasing range! is not evident in the
xperimental data. Because the illumination and
he contrast are so low, the noise n effectively domi-
ates the variance independently of the range. The
RB evaluations in Section 5 analyzed system pa-
ameters; experimentally those subtleties are lost in
he noise. Further issues in the experimental de-
ign contribute as well. Because the experimental
ange is considerably less than that of the CRB eval-
ations ~1.5 m compared with 4.0 m! and the exper-

mental system is defocused with respect to infinity,
he peaks at farther ranges are somewhat improved.
urthermore, the contrast is enhanced with a point
ource farther away ~the object is more in focus! be-
ause more photons are concentrated in a smaller
rea on the detector. This concentration of photons
mproves the response at farther ranges, even though
he total illumination falls off as the square of the
ange. Such radiometric effects are not taken into
ccount in the CRB evaluations.

C. Experimental Results for Object Detection

With the point-source objects imaged in Subsection
6.B, we seek to provide validation of the system pa-
rameters and prove the basic functionality of the de-
sign. Practical objects are of interest in this
subsection. The objects imaged in the detector ex-
periments were two cars on a roadway, as shown in
Fig. 20. The experiment is scaled to fit the lab:

Fig. 19. Standard deviation of 10 sample images at each range.
cal std. dev., calculated standard deviation.
The cars are toys, each approximately 2 in. ~5 cm!
ong, and represent a passive traffic-monitoring or
bject-avoidance application.
The experiments in this subsection analyze the im-

ge in Fig. 20 with a simple proximity detector based
n five modes and a FFT length of 256 ~thus B is p 3
, where p 5 5 and N 5 128!. The image is pro-

essed in small ROI’s to produce a proximity-
etection map or grid. The image size is 768 ~width!

484 ~height! pixels, and the ROI size is 200 3 200
ixels. The ROI center is translated by approxi-
ately 50 pixels across the entire image to produce a
3 18 element proximity map of detected objects.
etections fall into five categories, numbered 1–5 in
ig. 21, for which 1 is the closest proximity of interest
nd 5 is the farthest proximity of interest. The out-
ut map is thus a 9 3 18 element sized image of
roximity values ranging from 0 to 5 ~with zero rep-
esenting no object detected!.

Figure 21 shows a proximity map for the wave-
ront coded image in Fig. 20. The numbers anno-
ated on Figure 21 highlight proximities. The
eftmost vehicle is farther away and as such gets a
roximity value of 5. The rightmost vehicle is closer
nd is given a proximity value of 2 ~i.e., it is closer
han 5!. The lane marker adjacent to the leftmost
ehicle was also detected and is assigned a proximity
alue of 5. Different applications would, in general,

Fig. 21. Proximity map for the wave-front coded image shown in
Fig. 20.
Fig. 18. Spectral content of the PSF’s shown in Fig. 17 demon-
strating the different MTF performances for the experimental and
the simulated systems.
 Fig. 20. Wave-front coded image of two vehicles on a roadway.
10 April 2000 y Vol. 39, No. 11 y APPLIED OPTICS 1709
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treat the data shown in Fig. 21 differently. The cat-
egories may be translated into more meaningful
items such as tracking, warning, proximal, and the
like.

Figure 22 provides another type of proximity-
sensing situation, this time with traffic monitoring.
Six regions are analyzed to detect the presence of a
vehicle. The center rightmost sensor detected a ve-
hicle and estimated its range to be near bin 2. The
upper leftmost sensor detected a vehicle but cannot
assign it a bin number because the threshold level for
proper mode identification was not reached.

7. Conclusions

Two schemes for passive ranging by use of a single
wave-front coded image from a single aperture have
been discussed: ~i! estimating the range to an object
and ~ii! detecting objects over a given set of ranges.

RB evaluations showed that range estimates based
n optical system parameters with less than 0.1%
rror are possible. Experimental range estimates
ith approximately 0.2% error support the CRB eval-
ations. Furthermore, the experimental system has
lso been used in a detector mode in which detected
bjects were placed in a proximity map. This qual-
tative example of a detection system shows the ca-
ability of building a range map that is based on
ave-front coding. Proximity detectors are in wide-

pread use in simple applications. Many such de-
ectors are Boolean, sensing if something is there or
ot. Wave-front coding offers an attractive passive
lternative for both proximity-sensing and ranging
ystems.
Future research is directed at the design of other

Fig. 22. Detector locations for traffic monitoring.
710 APPLIED OPTICS y Vol. 39, No. 11 y 10 April 2000
optical masks for passive ranging as well as enhancing
the digital signal-processing algorithms currently in
use. Masks that are nonabsorbing ~the cosinusoidal
mask has 50% absorption! are desired for light-
sensitive applications. Fast and adaptive algorithms
for proximity detection and range mapping are desired
for systems with limited processing power.

This material is based on research that was sup-
ported in part by U.S. Army Research Office grant
DAAG 55-97-1-0348 and by the Colorado Advanced
Technology Institute.
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