# Photographic optics CS 448A, Winter 2010 

Marc Levoy
Computer Science Department Stanford University

## Outline

+ pinhole cameras
- thin lenses
- graphical constructions, algebraic formulae
+ lenses in cameras
- focal length, sensor size
+ thick lenses
- stops, pupils, perspective transformations
+ exposure
- aperture, shutter speed (ISO comes later)
+ depth of field
+ aberrations...


## Cutaway view of a real lens



Vivitar Series $190 \mathrm{~mm} \mathrm{f} / 2.5$
Cover photo, Kingslake, Optics in Photography

## Lens quality varies

- Why is this toy so expensive?
- EF $70-200 \mathrm{~mm}$ f/2.8L IS USM
- \$1700

- Why is it better than this toy?
- EF 70-300mm f/4-5.6 IS USM
- \$550
- Why is it so complicated?


Stanford Big Dish
Panasonic GF1

Panasonic 45-200/4-5.6 zoom, at $200 \mathrm{~mm} \mathrm{f} / 4.6$ \$300

Leica $90 \mathrm{~mm} / 2.8$ Elmarit-M prime, at $\ddagger / 4$
\$2000

## Zoom lens versus prime lens



Canon 100-400mm/4.5-5.6 zoom, at 300 mm and $\mathrm{f} / 5.6$ \$1600

Canon $300 \mathrm{~mm} / 2.8$
prime, at $\mathrm{f} / 5.6$
\$4300

## Why not use sensors without optics?


(London)

- each point on sensor would record the integral of light arriving from every point on subject
- all sensor points would record similar colors


## Pinhole camera

(a.k.a. camera obscura)


## Pinhole photography

- no distortion
- straight lines remain straight
- infinite depth of field
- everything is in focus




## Large pinhole causes geometric blur

Photograph made with small pinhole


Photograph made with larger pinhole


## Small pinhole causes diffraction blur



- smaller aperture means more diffraction
- due to wave nature of light


## Examples

- large pinhole
$\rightarrow$ geometric blur
- small pinhole $\rightarrow$ diffraction blur
+ optimal pinhole $\rightarrow$ very little light



## Replacing the pinhole with a lens

Photograph made with small pinhole


Photograph made with lens


## Physical versus geometrical optics


(Hecht)

- light can be modeled as traveling waves
- the perpendiculars to these waves can be drawn as rays
- diffraction causes these rays to bend, e.g. at a slit
- geometrical optics assumes
- $\lambda \rightarrow 0$
- no diffraction
- in free space, rays are straight (a.k.a. rectilinear propagation)


## Snell's law of refraction

(Hecht)

- as waves change speed at an interface, they also change direction

$\frac{x_{i}}{x_{t}}=\frac{\sin \theta_{i}}{\sin \theta_{t}}=\frac{n_{t}}{n_{i}}$
* index of refraction $n$ is defined as the ratio between the speed of light in a vaccum / speed in some medium


## Typical refractive indices (n)

+ air $=1.0$
+ water = 1.33
+ glass $=1.5-1.8$
- when transiting from air to glass, light bends towards the normal
- when transiting from glass to air,
 light bends away from the normal
- light striking a surface perpendicularly does not bend


## Q. What shape should an interface be to make parallel rays converge to a point?


A. a hyperbola

- so lenses should be hyperbolic!


## Spherical lenses


(Hecht)

(wikipedia)

- two roughly fitting curved surfaces ground together will eventually become spherical
- spheres don't bring parallel rays to a point
- this is called spherical aberration
- nearly axial rays (paraxial rays) behave best


## Paraxial approximation



- assume $e \approx 0$


## Paraxial approximation



## The paraxial approximation is

a.k.a. first-order optics

+ assume first term of $\sin \phi=\phi-\frac{\phi^{3}}{3!}+\frac{\phi^{5}}{5!}-\frac{\phi^{7}}{7!}+\ldots$
- i.e. $\sin \phi \approx \phi$


## Paraxial focusing



Snell's law:

$$
n \sin i=n^{\prime} \sin i^{\prime}
$$

paraxial approximation:

$$
n i \approx n^{\prime} i^{\prime}
$$

## Paraxial focusing


$n i \approx n^{\prime} i^{\prime}$

## Paraxial focusing



$$
\begin{aligned}
& n(u+a) \approx n^{\prime}\left(a-u^{\prime}\right) \\
& n(h / z+h / r) \approx n^{\prime}\left(h / r-h / z^{\prime}\right) \\
& n / z+n / r \approx n^{\prime} / r-n^{\prime} / z^{\prime}
\end{aligned}
$$

$\downarrow h$ has canceled out, so any ray from $P$ will focus to $P^{\prime}$

## Focal length



What happens if $z$ is $\infty$ ?

$$
\begin{aligned}
& n / z+n / r \approx n^{\prime} / r-n^{\prime} / z^{\prime} \\
& n / r \approx n^{\prime} / r-n^{\prime} / z^{\prime} \\
& z^{\prime} \approx\left(r n^{\prime}\right) /\left(n^{\prime}-n\right)
\end{aligned}
$$

- $f \triangleq$ focal length $=z^{\prime}$


## Focusing of rays versus waves

rays from infinity<br>$\equiv$ plane waves


rays converging to a focus $\equiv$ spherical waves

## Lensmaker's formula

- using similar derivations, one can extend these results to two spherical interfaces forming a lens in air

(Hecht, edited)
$\rightarrow$ as $d \rightarrow 0$ (thin lens approximation), we obtain the lensmaker's formula

$$
\frac{1}{s_{o}}+\frac{1}{s_{i}}=\left(n_{l}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)
$$

## Gaussian lens formula

- Starting from the lensmaker's formula

$$
\frac{1}{s_{o}}+\frac{1}{s_{i}}=\left(n_{l}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)
$$

(Hecht, eqn 5.15)

- and recalling that as object distance $\mathrm{S}_{\mathrm{o}}$ is moved to infinity, image distance $s_{i}$ becomes focal length $f_{i}$, we get

$$
\begin{equation*}
\frac{1}{f_{i}}=\left(n_{l}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \tag{Hecht,eqn5.16}
\end{equation*}
$$

- Equating these two, we get the Gaussian lens formula

$$
\begin{equation*}
\frac{1}{s_{o}}+\frac{1}{s_{i}}=\frac{1}{f_{i}} \tag{Hecht,eqn5.17}
\end{equation*}
$$

## Gauss' ray tracing construction

- assume that parallel rays converge to a point located at focal length $f$ from lens

- and rays going through center of lens are not deviated
- hence same perspective as pinhole



## Gauss' ray tracing construction



- rays coming from points on a plane parallel to the lens are focused on another plane parallel to the lens


## From Gauss's ray construction to the Gaussian lens formula



- positive $s_{i}$ is rightward, positive $s_{o}$ is leftward
- positive $y$ is upward


## From Gauss's ray construction to the Gaussian lens formula


$\frac{\left|y_{i}\right|}{y_{o}}=\frac{s_{i}}{s_{o}}$

## From Gauss's ray construction to the Gaussian lens formula



$$
\frac{\left|y_{i}\right|}{y_{o}}=\frac{s_{i}}{s_{o}} \quad \text { and } \quad \frac{\left|y_{i}\right|}{y_{o}}=\frac{s_{i}-f}{f} \quad \cdots \cdots \quad \frac{1}{s_{o}}+\frac{1}{s_{i}}=\frac{1}{f}
$$

## Changing the focus distance

$\rightarrow$ to focus on objects
at different distances, move sensor relative to lens


$$
\frac{1}{s_{o}}+\frac{1}{s_{i}}=\frac{1}{f}
$$

## Changing the focus distance

- to focus on objects at different distances, move sensor relative to lens
- at $s_{o}=s_{i}=2 f$
we have $1: 1$ imaging, because


$$
\frac{1}{2 f}+\frac{1}{2 f}=\frac{1}{f}
$$

In $1: 1$ imaging, if the sensor is 36 mm wide, an object 36 mm wide will fill the frame.

$$
\frac{1}{s_{o}}+\frac{1}{s_{i}}=\frac{1}{f}
$$

## Changing the focus distance

- to focus on objects at different distances, move sensor relative to lens
- at $s_{o}=s_{i}=2 f$ we have $1: 1$ imaging, because

$$
\frac{1}{2 f}+\frac{1}{2 f}=\frac{1}{f}
$$

- can't focus on objects closer to lens than its focal length $f$



## Changing the focal length

- weaker lenses
have longer focal lengths
- to stay in focus, move the sensor further back

(Kingslake)


## Changing the focal length

- weaker lenses
have longer focal lengths
- to stay in focus, move the sensor further back
- if the sensor size is constant, the field of view becomes smaller



## Focal length and field of view



(London)
FOV measured diagonally on a
35 mm full-frame camera $(24 \times 36 \mathrm{~mm})$

## Focal length and field of view



(London)
FOV measured diagonally on a 35 mm full-frame camera $(24 \times 36 \mathrm{~mm})$

## Changing the sensor size

- if the sensor size is smaller, the field of view is smaller too
- smaller sensors either have fewer pixels, or noiser pixels



## Full-frame 35 mm versus APS-C

- full-frame sensor is $24 \times 36 \mathrm{~mm}$ (same as 35 mm film)
- APS-C sensor is $14.8 \times 22.2 \mathrm{~mm}$ (Canon DSLRs)
+ conversion factor is $1.6 x$


Case 2 - Digital SLR uses lens with SHORTER focal length than a 35 mm film camera.

- switching lenses
- objects occupies fewer pixels, but composition stays the same



## Sensor sizes



## Changing the focal length

 versus changing the viewpoint
(a)
wide-angle

(b)

(c)
telephoto

- changing the focal length lets us move back from a subject, while maintaining its size on the image
- but moving back changes perspective relationships


## Convex versus concave lenses

(Hecht)

rays from a convex lens converge

rays from a concave lens diverge

- positive focal length $f$ means parallel rays from the left converge to a point on the right
- negative focal length $f$ means parallel rays from the left converge to a point on the left (dashed lines above)


## Convex versus concave lenses


rays from a convex lens converge

...producing a real image

rays from a concave lens diverge

...producing a virtual image

## Convex versus concave lenses


...producing a real image

## The power of a lens

$$
P=\frac{1}{f}
$$

- units are meters ${ }^{-1}$
- a.k.a. diopters
(wikipedia)
+ my eyeglasses have the prescription
- right eye: - 0.75 diopters
- left eye: -1.00 diopters
Q. What's wrong with me?
A. Myopia



## Thick lenses

- an optical system may contain many lenses, but can be characterized by a few numbers



## Stops



- in photographic lenses, the aperture stop (A.S.) is typically in the middle of the lens system
- in a digital camera, the field stop (F.S.) is the edge of the sensor; no physical stop is needed


## Pupils



- the exit pupil is the image of the aperture stop as seen from an axial point on the image plane
* the center of the entrance pupil is the center of perspective
- you can find this point by following two lines of sight


## Lenses perform a 3D perspective transform



## 

http://graphics.stanford.edu/courses/ cs178/applets/thinlens.html

- lenses transform a 3D object to a 3D image; the sensor extracts a 2 D slice from that image
- as an object moves linearly (in Z), its image moves non-proportionately (in Z)
- as you move a lens linearly,
the in-focus object plane moves non-proportionately
+ as you refocus a camera, the image changes size !


## Exposure

$+\mathrm{H}=\mathrm{E} \times \mathrm{T}$

- exposure $=$ irradiance $\times$ time
+ irradiance (E)
- controlled by aperture
- exposure time (T)
- controlled by shutter


## Shutters



- quiet
+ slow
(max 1/500s)
+ need one per lens

+ loud
- fast
(max 1/4000)
- distorts motion



Jacques-Henri Lartigue, Grand Prix (1912)

## Shutter speed

+ controls how long the sensor is exposed to light
- linear effect on exposure until sensor saturates
+ denoted in fractions of a second:
- $1 / 2000,1 / 1000, \ldots, 1 / 250,1 / 125,1 / 60, \ldots, 15,30, \mathrm{~B}(\mathrm{ulb})$
+ normal humans can hand-hold down to $1 / 60$ second
- rule of thumb: shortest exposure $=1 / \mathrm{f}$
- e.g. $1 / 500$ second for a 500 mm lens


## Main side-effect of shutter speed

+ motion blur
- halving shutter speed doubles motion blur

Slow shutter speed


Fast shutter speed


## Aperture

- irradiance on sensor is proportional to
- square of aperture diameter $A$
- inverse square of distance to sensor ( $\sim$ focal length $f$ )
- so that aperture values give irradiance regardless of lens, aperture number $N$ is defined relative to focal length

$$
N=\frac{f}{A}
$$

- $\mathrm{f} / 2.0$ on a 50 mm lens means the aperture is 25 mm
- $\mathrm{f} / 2.0$ on a 100 mm lens means the aperture is 50 mm
$\therefore$ low F -number ( N ) on long zooms require fat lenses
- doubling N reduces A by $2 \times$, hence light by $4 \times$
- going from $f / 2.0$ to $f / 4.0$ cuts light by $4 x$
- to cut light by $2 \times$, increase N by $\sqrt{ } 2$


## How low can N be?


(Kingslake)

+ principal planes are the paraxial approximation of a spherical "equivalent refracting surface"

$$
N=\frac{1}{2 \sin \theta^{\prime}}
$$

+ lowest possible N in air is $f / 0.5$
+ lowest N in SLR lenses is $\mathrm{f} / 1.0$


Canon EOS 50 mm f/1.0 (discontinued)

## Cinematography by candlelight



Stanley Kubrick, Barry Lyndon, 1975


- Zeiss 50 mm f/0.7 Planar lens
- originally developed for NASA's Apollo missions
- very shallow depth of field in closeups (small object distance)


## Cinematography by candlelight

## 

Stanley Kubrick, Barry Lyndon, 1975

+ Zeiss 50 mm f/0.7 Planar lens
- originally developed for NASA's Apollo missions
- very shallow depth of field in closeups (small object distance)


## Microscope objectives

10 IMmersion objective lens
$\xrightarrow{\text { OBJECT SIDE }} \xrightarrow{\text { IMAGE SIDE }}$


- numerical aperture $N A=n \sin \theta$
+ for dry objectives, $N \approx 1 / 2$ NA
+ so $40 \times / 0.95 \mathrm{NA}$ objective $=f / 0.51$ (on object side) !
$+\theta=71.8^{\circ}$ !


## Main side-effect of aperture

+ depth of field
- doubling N (two f/stops) doubles depth of field

Large aperture opening


Small aperture opening


## Trading off motion blur and depth of field



