The Power of Visualization

Pat Hanrahan

CS448b – Visualization Winter 2006

Definition [www.oed.com]

1. The action or fact of visualizing; the power or process of forming a mental picture or vision of something not actually present to the sight; a picture thus formed.

1883 Academy 14 July 31 Investigations into the phenomena of visualisation.

1884 GURNEY & MYERS in 19th Cent. July 72 In the next stage of visualisation the percipient sees a face or figure projected or dejected, as it were, on some convenient surface.

1894 Athenæum 10 Nov. 638/2 [The book had] a power of visualization that gave it a claim to real originality.

Definition [www.oed.com]

2. The action or process of rendering visible.

1936 Amer. Jrnl. Cancer XXVII. 49 The hexagonal tube..offers distinct advantages with its flat sides permitting good visualization.

1960 New Scientist 28 July 305/3 Echo sounding..is now being applied to the visualization of structures within the body.

1973 Nature 17 Aug. 410/1 Direct visualization of biological material at this level would tell us much about the structure and mode of action of macromolecules.

1982 Listener 23/30 Dec. 42/3 The cinematic visualisation of the script..belongs entirely to Welles and his technicians

Visualization is the Use of Graphical Techniques to Convey Information and Support Reasoning

Number Scrabble

Given: The numbers 1 through 9 Goal: Pick numbers so that 3 numbers sum to 15 Example: A takes 8 B takes 2 A takes 4 B takes 3 A takes 5 B takes?

Number Representations

Counting – Tallying

Adding – Roman numerals

XXIII + XII = XXXIIIII = XXXV

Multiplication – Arabic number systems

Distributed Cognition							
External (E) vs. Internal (I) process							
	Roman	Arabic					
1. Separate power & base	I.	E					
2. Get base value	E	I					
3. Multiply base values	I	I					
4. Get power values	I	E					
5. Add power values	I	E					
6. Combine base & power	I	E					
7. Add results	I	E					
Arabic more efficient than Roman							

Power of Representations

- Distributed cognition
 - Internal representations (mental models)
 - External representations (cognitive artifacts)
- The representational effect
 - Different representations have different cost-structures / "running" times
 - Big idea in computer & cognitive science

Amplifies Cognition

- 1. Provide natural perceptual mapping
 - Discriminate different things
 - Estimate quantities
 - Segment objects into groups
- 2. Enhance memory
 - Minimize information in working memory
 - Change recall to recognition
 - Facilitate combining things into chunks
 - Transform to a more memorable form

Amplifies Cognition

- 3. Reduce search time
 - Retrieve information in neighborhood
 - Natural spatial index
 - Preattentive (fast, parallel) search process
- 4. Perceptual inference
 - Map inference to visual pattern finding
 - Enforce constraints

Amplifies Cognition

- 5. Control attention
 - Highlight to focus attention
 - Control reading order

6. Provide context

- Style provides cultural cues
- Aesthetics makes tasks enjoyable
- Alternatives encourage creativity

Purposes / Pragmatics

- 2. Visual languages Chemical diagrams
- 3. Support collaboration Shared whiteboard

More and More Data

Ctr for Int. Turbulence Simulation PW6000 Turbine 93.8 million cell mesh 5700 time steps, 30 iter/ts 5970 hours on 1K proc

Sloan Digital Sky Survey Robotic telescope 5x6 2048x2048 CCD sensors 40 TB of imagery 100 million object catalog

			Cr	oss Sectional	View	To	. View	
30, 1985	HET	SRM No.	Erosion Depth (in.)	Perimeter Affected (deg)	Nominal Dia. (in.)	Length Of Max Erosion (in.)	Total Heat Affected Length (in.)	Clocking Location (deg)
1 0C1	61A LH Center Field** 61A LH CENTER FIELD** 51C LH Forward Field** 51C RH Center Field (prim)*** 51C RH Center Field (sec)***	22A 22A 15A 15B 158	None NONE 0.010 0.038 None	None NONE 154.0 130.0 45.0	0.280 0.280 0.280 0.280 0.280 0.280	None NONE 4.25 12.50 None	None NONE 5.25 58.75 29.50	36°66 338°-18 163 354 354
	410 RH Forward Field 41C LH Aft Field* 418 LH Forward Field	138 11A 10A	0.028 None 0.040	110.0 None 217.0	0.280 0.280 0.280	3.00 None 3.00	None None 14.50	275
2	STS-2 RH Aft Field	28	0.053	116.0	0.280			90
	*Hot gas path detected in pr **Soot behind primary O-ring Clocking location of leak (OTHER SRM-15 FIELD JOI NEAR OR BEYOND THE PRI SRM-22 FORMARD FIELD AUD SOOT BUOKS	heat i heat i heck pi MARY (JOINT	Indication of affected second of the other ort - 0 deg ND NO BLOW D-RING. HAD PUTTY SRM-22 FIG	of heat on O-r condary O-ring HOLES IN PU PATH TO PRI ELD JOINTS H	ing, but no o TTY AND NO MARY O-RIN AD NO BLOW	damage. SOOT G, BUT NO O-R HOLES IN PUTT	ING EROSION Y.	

Challenger Disaster

BLOW BY HISTORY		HISTORY	OF O (DEGRE	ES-F	TEMPERATURES
O 2 CASE JOINTS (80°), (110°) ARE	MOTOR	MGT	AMB	O-RING	WIND
O MUCH WORSE VISUALLY THAN SRM-22	Dm-+	68	36	47	IO MPH
	Dm-2	76	45	52	10 mpH
SRM 22 BLOW-BY	Qm - 3	72.5	40	48	10 mPH
○ 2 CRSE JOINTS (30-40°)	Qm - 4	76	48	51	IO MPH
	SRM-15	52	64	53	10 MPH
SRM-13 A, 15, 16A, 18, 23A 24A	5RM-22	77	78	75	IO MPH
O NOZZLE BLOW-BY	S Rm - 25	55	26	29	10 mpH

1 of 13 pages of material faxed to NASA by Morton Thiokol

5. Interaction

Gibson's Experiment Goal: Match 2 shapes Active touch: 96% Passive (rotation) 72% Passive (imprint) 49%

From J. J. Gibson (1966) The Senses Considered as a Perceptual System, p. 124

Thanks to David Kirsh for this example.

