
CS 468: Computational Topology Homology Fall 2002

It is by logic we prove, it is by intuition that we invent.

— Henri Poincaré(1854–1912)

6 Homology

In Lecture 3, we learned about a combinatorial method for representing spaces. In Lecture 4, we studied groups and
equivalence relations implied by their normal subgroups. In this lecture, we look at a combinatorial and computable
functor calledhomologythat gives us a finite description of the topology of a space. Homology groups may be re-
garded as an algebraization of the first layer of geometry in cell structures: how cells of dimensionn attach to cells
of dimensionn− 1 [1]. Mathematically, the homology groups have a less transparent definition than the fundamental
group, and require a lot of machinery to be set up before any calculations. We focus on a weaker form of homology,
simplicial homology, that both satisfies our need for a combinatorial functor, and obviates the need for this machinery.
Simplicial homology is defined only for simplicial complexes, the spaces we are interested in. Like the Euler charac-
teristic, however, homology is an invariant of the underlying space of the complex. Indeed, the invariance of the Euler
characteristic is often derived from the invariance of homology.

Homology groups, unlike the fundamental group, are abelian. In fact, the first homology group is precisely the
abelianization of the fundamental group. We pay a price for the generality and computability of homology groups:
homology has less differentiating power than homotopy. Once again, however, homology respects homotopy classes,
and therefore, classes of homeomorphic spaces.

6.1 Chains and Cycles

To define homology groups, we need simplicial analogs of paths and loops. LetK be a simplicial complex. Recall
oriented simplices from Lecture 3. We create the chain group of oriented simplices on the complex.

Definition 6.1 (chain group) Thekth chain groupof a simplicial complexK is 〈Ck(K),+〉, the free abelian group
on the orientedk-simplices, where[σ] = −[τ ] if σ = τ andσ andτ have different orientations. An element ofCk(K)
is ak-chain,

∑
q nq[σq], nq ∈ Z, σq ∈ K.

We often omit the complex in the notation. A simplicial complex has a chain group in every dimension. As stated
earlier, homology examines the connectivity between two immediate dimensions. To do so, we define a structure-
relating map between chain groups.

Definition 6.2 (boundary homomorphism) Let K be a simplicial complex andσ ∈ K, σ = [v0, v1, . . . , vk]. The
boundary homomorphism∂k : Ck(K) → Ck−1(K) is

∂kσ =
∑

i

(−1)i[v0, v1, . . . , v̂i, . . . , vn], (1)

wherev̂i indicates thatvi is deleted from the sequence.

It is easy to check that∂k is well-defined, that is,∂k is the same for every ordering in the same orientation.

Example 6.1 (boundaries)Let us take the boundary of the simplices in Figure1. .

• ∂1[a, b] = b− a.

• ∂2[a, b, c] = [b, c]− [a, c] + [a, b] = [b, c] + [c, a] + [a, b].

• ∂3[a, b, c, d] = [b, c, d]− [a, c, d] + [a, b, d]− [a, b, c].

Note that the boundary operator orients the faces of an oriented simplex. In the case of the triangle, this orientation
corresponds to walking around the triangle on the edges, according to the orientation of the triangle.
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Figure 1. k-simplices, 0 ≤ k ≤ 3. The orientation on the tetrahedron is shown on its faces.

If we take the boundary of the boundary of the triangle, we get:

∂1∂2[a, b, c] = [c]− [b]− [c] + [a] + [b]− [a] = 0. (2)

This is intuitively correct: the boundary of a triangle is a cycle, and a cycle does not have a boundary. In fact, this
intuition generalizes to all dimensions.

Theorem 6.1 ∂k−1∂k = 0, for all k.

Proof: The proof is elementary.

∂k−1∂k[v0, v1, . . . , vk] = ∂k−1

∑
i

(−1)i[v0, v1, . . . , v̂i, . . . , vk]

=
∑
j<i

(−1)i(−1)j [v0, . . . , v̂j , . . . , v̂i, . . . , vk]

+
∑
j>i

(−1)i(−1)j−1[v0, . . . , v̂i, . . . , v̂j , . . . , vk]

= 0,

as switchingi andj in the second sum negates the first sum.

The boundary operator connects the chain groups into achain complexC∗:

. . . → Ck+1
∂k+1−−−→ Ck

∂k−→ Ck−1 → . . . .

with ∂k∂k+1 = 0 for all k. For generality, we often define null boundary operators in dimensions where the domain
or codomain of the boundary operator is empty, e.g.∂0 ≡ 0. A chain complexC∗ should be viewed as a single object.
Chain complexes are common in homology, but this particular chain complex is one of two we will see in our class.

The boundary operator also allows us to define subgroups ofCk: the group ofcyclesand the group ofboundaries.

Definition 6.3 (cycle group, boundary group) Thekth cycle groupis

Zk = ker ∂k

= {c ∈ Ck | ∂kc = ∅}.

A chain that is an element ofZk is ak-cycle. Thekth boundary groupis

Bk = im ∂k+1

= {c ∈ Ck | ∃d ∈ Ck+1 : c = ∂k+1d}.

A chain that is an element ofBk is a k-boundary. We also call boundariesbounding cyclesand cycles not inBk

non-bounding cycles.
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Both subgroups are normal because our chain groups are abelian. The names match the names we had for loops in
the fundamental group, but also extend the notions to other dimensions. Bounding cyclesboundhigher dimensional
cycles, as otherwise they would not be in the image of the boundary homomorphism. We can think of them as “filled”
cycles, as opposed to “empty” non-bounding cycles. The definitions of the subgroups, along with Theorem6.1, imply
that the subgroups are nested,Bk ⊆ Zk ⊆ Ck, as shown in Figure2.

Ck

Bk−1

Zk−1

Ck−1
δk+1 δkCk+1

0 00

Z k

kB

Z k+1

k+1B

Figure 2. A chain complex with its internals: chain, cycle, and boundary groups, and their images under the boundary operators.

6.2 Simplicial Homology

Chains and cycles are simplicial analogs of the maps called paths and loops in the continuous domain. Following the
construction of the fundamental group, we now need a simplicial version of a homotopy to form equivalent classes of
cycles. Consider the sum of the non-bounding 1-cycle and a bounding 1-cycle in Figure3. The two cyclesz, b have

b z+bz

Figure 3. A non-bounding oriented 1-cycle z ∈ Zk, z 6∈ Bk is added to a oriented 1-boundary b ∈ Bk. The resulting cycle z + b is
homotopic to z. The orientation on the cycles is induced by the arrows.

a shared boundary. The edges in the shared boundary appear twice in the sumz + b with opposite signs, so they are
eliminated. The resulting cyclez + b is homotopic toz: we may slide the shared portion of the cycles smoothly across
the triangles thatb bounds. But such homotopies exist for any boundaryb ∈ B1. Generalizing this argument to all
dimensions, we look for equivalent classes ofz + Bk for ak-cycle. But these are precisely the cosets ofBk in Zk

As Bk is normal inZk, the cosets form a group under coset addition.

Definition 6.4 (homology group) Thekth homology groupis

Hk = Zk/Bk = ker ∂k/im ∂k+1. (3)

If z1 = z2 + Bk, z1, z2 ∈ Zk, we sayz1 andz2 arehomologousand denote it withz1 ∼ z2.

Homology groups are finitely generated abelian. Therefore, the fundamental theorem of finitely generated abelian
groups from Lecture 4 applies. Homology groups describe spaces through their Betti numbers and the torsion sub-
groups.

Definition 6.5 (kth Betti Number) Thekth Betti numberβk of a simplicial complexK is βk = β(Hk), the rank of
the free part ofHk.

We can show thatβk = rank Hk = rank Zk − rank Bk. The description given by homology is finite, as an-
dimensional simplicial space has at mostn + 1 nontrivial homology groups.
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6.3 Understanding Homology

The description provided by homology groups may not be transparent at first. In this section, we look at a few examples
to gain an intuitive understanding of what homology groups capture. Table1 lists the homology groups of the basic
2-manifolds we first met in Lecture 2. As they are 2-manifolds, the highest non-trivial homology group for any of

2-manifold H0 H1 H2

sphere Z {0} Z
torus Z Z× Z Z
projective plane Z Z2 {0}
Klein bottle Z Z× Z2 {0}

Table 1. Homology of basic 2-manifolds.

them isH2. Torsion-freespaces have homology that does not have a torsion subgroup, that is, terms that are finite
cyclic groupsZm. Most of the spaces we are interested are torsion-free. In fact, any space that is a subcomplex ofS3

is torsion-free. We deal withS3 as it is compact.R3 is not compact and creates special cases that need to be handled
in algorithms. To avoid these difficulties, we add a point at infinity andcompactifyR3 to getS3, the three-dimensional
sphere. This construction mirrors that of the two-dimensional sphere in Lecture 2. Algorithmically, theone point
compactification ofR3 is easy, as we have a simplicial representation of space.

So what does homology capture? For torsion-free spaces in three-dimensions, the Betti numbers (the number ofZ
terms in the description) have intuitive meaning as a consequence of theAlexander Duality. β0 measures the number
of components of the complex.β1 is the rank of a basis for thetunnels. As H1 is free, it is a vector-space andβ1 is
its rank.β2 counts the number ofvoidsin the complex. Tunnels and voids exist in the complement of the complex in
S3. The distinction might seem tenuous, but this is merely because of our familiarity with the terms. For example, the
complexenclosesa void, and the void is the empty spaceenclosedby the complex.

Using this understanding, we may now examine Table1. All four spaces have a single component, soH0 = Z
andβ0 = 1. The sphere and the torus enclose a void, soH2 = Z andβ2 = 1. The non-orientable spaces, on the
other hand, are one-sided and cannot enclose any voids, so they have trivial homology in dimension 2. To see whatH1

captures, we look at the diagrams for the 2-manifolds in Figure4. We may, of course, triangulate these diagrams to
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Figure 4. Diagrams for basic 2-manifolds.

obtain abstract simplicial complexes for computing simplicial homology. For now, though, we assume that whatever
curve we draw on these manifolds could be “snapped” to some triangulation of the diagrams. To understand 1-cycles
and torsion, we need to pay close attention to the boundaries in the diagrams. Recall that a boundary is simply a cycle
thatbounds. In each diagram, we have a boundary, simply, the boundary of the diagram! The manner in which this
boundary is labeled determines how the space is connected, and therefore the homology of the space.

It is clear that any simple closed curve drawn on the disk for the sphere is a boundary. Therefore, its homology is
trivial in dimension one. The torus has two classes of non-bounding cycles. When we glue the edges marked ’a’, edge
’b’ becomes a non-bounding 1-cycle and forms a class with all 1-cycles that are homologous to it. We get a different
class of cycles when we glue the edges marked ’b’. Each class has a generator, and each generator is free to generate
as manydifferentclasses of homologous 1-cycles as it pleases. Therefore, the homology of a torus in dimension one
is Z× Z andβ1 = 2.
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There is a 1-boundary in the diagram, however: the boundary of the disk that we are gluing. Going around this
1-boundary, we get the descriptionaba−1b−1. That is, the disk makes the cycle with this description a boundary.
Equivalently, the disk adds the relationaba−1b−1 = 1 to the presentation of the group. But this relation is simply
stating that the group is abelian and we already knew that.

Continuing in this manner, we look at the boundary in the diagram for the projective plane. Going around, we
get the descriptionabab. If we let c = ab, the boundary isc2 and the disk adds the relationc2 = 1 to the group
presentation.1 In other words, we have a cyclec in our manifold that is non-bounding, but becomes bounding when
we go around it twice. If we try to generate all the different cycles from this cycle, we just get two classes: the class of
cycles homologous toc, and the class of boundaries. But any group with two elements is isomorphic toZ2, hence the
description ofH1. You should convince yourself of the verity of the description ofH1 for the Klein bottle in a similar
fashion.

6.4 Invariance

Like the Euler characteristic, we define homology using simplicial complexes. From the definition, it seems that
homology is capturing extrinsic properties of our representation of a space. We are interested in intrinsic properties
of the space, however. We hope that any two different simplicial complexesK andL with homeomorphic underlying
spaces|K| ≈ |L| have the same homology, the homology of the space itself. Poincaré stated this hope in terms of “the
principal conjecture” in 1904.

Conjecture 6.1 (Hauptvermutung) Any two triangulations of a topological space have a common refinement.

In other words, the two triangulations can be subdivided until they are the same. This conjecture, like Fermat’s last
lemma, is deceptively simple. Papakyriakopoulos verified the conjecture for polyhedra of dimension≤ 2 in 1943 [7],
and Möıse proved it for three-dimensional manifolds in 1953 [5]. Unfortunately, the conjecture is false in higher
dimensions for general spaces. Milnor obtained a counterexample in 1961 for dimensions six and greater using Lens
spaces [4]. Kirby and Siebenmann produced manifold counterexamples in 1969 [2]. The conjecture fails to show the
invariance of homology [8].

To settle the question of topological invariance of homology, a more general theory was introduced, that ofsingular
homology. This theory is defined using maps on general spaces, thereby eliminating the question of representation.
Homology is axiomatized as a sequence of functors with specific properties. Much of the technical machinery required
is for proving that singular homology satisfies the axioms of a homology theory, and that simplicial homology is
equivalent to singular homology. Mathematically speaking, this machinery makes homology less transparent than the
fundamental group. Algorithmically, however, simplicial homology is the ideal mechanism to compute topology.

6.5 The Euler-Poincaŕe Formula

Let’s revisit the Euler characteristic now in our new setting. We may redefine the Euler characteristic over a chain
complex.

Definition 6.6 (Euler characteristic) χ(C∗) =
∑

i(−1)i rank(Ci).

This definition is trivially equivalent to our previous one as thek-simplices are the generators ofCk andrank(Ci) =
|{σ ∈ K | dim σ = i}| in that definition. We now denote the sequence of homology functors asH∗. Then,H∗(C∗) is
a chain complex:

. . . → Hk+1
∂k+1−−−→ Hk

∂k−→ Hk−1 → . . . .

The operators between the homology groups are induced by the boundary operators: we map a homology class to the
class of the boundary of one of its members. According to the new definition, the Euler characteristic of our new chain
is

H∗(C∗) =
∑

i

(−1)i rank(Hi) =
∑

i

(−1)iβi

. Surprisingly, the homology functor preserves the Euler characteristic of a chain complex.

1We need this substitution as an artifact of using this diagram, which we are using for adding some form of uniformity to our treatment. The
definition of the cross-cap in Conway’s ZIP proof, however, is the one we need here.
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Theorem 6.2 (Euler-Poincaŕe) χ(K) = χ(C∗) = χ(H∗(C∗)). That is,
∑

i(−1)isi =
∑

i(−1)iβi, wheresi =
|{σ ∈ K | dim σ = i}| andβi = rank Hi.

The theorem derives the invariance of the Euler characteristic from the invariance of homology.

Example 6.2 We know that the Euler characteristic of a sphere is 2. The Euler-Poincaré relation tells us where this 2
comes from. According to the relation,χ(S2) = β0 − β1 + β2. We haveβ0 = 1, as the sphere has one component,
β1 = 0 as all 1-cycles are contractible, andβ2 = 1 as the sphere encloses a single void. Similarly,χ(T2) = 0, as it
has the same Betti numbers as the sphere, except thatβ1 = 2.
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are mine. Massey includes a description of the Alexander Duality [3]. The other citations are referenced within the
text.
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