Homology

Tidbits

- Slow me down!
- $\mathbb{X} \underset{g}{\stackrel{f}{\rightleftarrows}} \mathbb{Y}$

$$
\begin{array}{lll}
\text { Homeomorphism: } & f \circ g=1_{\mathbb{X}} & g \circ f=1_{\mathbb{Y}} \\
\text { Homotopy: } & f \circ g \simeq 1_{\mathbb{X}} & g \circ f \simeq 1_{\mathbb{Y}}
\end{array}
$$

- Note dual use of homotopy
- Functorial Question
- Projects: email me!
- Lecture 8 is on Tuesday, November 12 - Lecture 10 ?
- Understanding classes of cycles

Overview

- Simplicial homology
- Chains
- Boundary operator
- Cycles and boundaries
- Chain complex
- Groups!
- Understanding homology
- Invariance
- Euler-Poincaré formula

Why Homology?

- Algebraization of first layer of geometry in structures
- How cells of dimension n attach to cells of dimension $n-1$
- Less transparent, more machinery
- Combinatorial
- Finite description
- Computable

Chain Group

- Simplicial complex K
- k-chain: $c=\sum_{i} n_{i}\left[\sigma_{i}\right], n_{i} \in \mathbb{Z}, \sigma_{i} \in K$ (like a path)
- $[\sigma]=-[\tau]$ if $\sigma=\tau$ and σ and τ have different orientations.
- The k th chain group C_{k} of K is the free abelian group on its set of oriented k-simplices
- $\operatorname{rank} \mathrm{C}_{k}=$?

Boundary Operator

- The boundary operator $\partial_{k}: \mathrm{C}_{k} \rightarrow \mathrm{C}_{k-1}$ is a homomorphism defined linearly on a chain c by its action on any simplex

$$
\begin{aligned}
\sigma=\left[v_{0}, v_{1}, \ldots, v_{k}\right] & \in c, \\
\partial_{k} \sigma & =\sum_{i}(-1)^{i}\left[v_{0}, v_{1}, \ldots, \hat{v}_{i}, \ldots, v_{k}\right]
\end{aligned}
$$

where \hat{v}_{i} indicates that v_{i} is deleted from the sequence.

- $\partial_{1}[a, b]=b-a$.
- $\partial_{2}[a, b, c]=[b, c]-[a, c]+[a, b]=[b, c]+[c, a]+[a, b]$.
- $\partial_{3}[a, b, c, d]=[b, c, d]-[a, c, d]+[a, b, d]-[a, b, c]$.

Boundary Operator

- $\partial_{1}[a, b]=b-a$.
- $\partial_{2}[a, b, c]=[b, c]-[a, c]+[a, b]=[b, c]+[c, a]+[a, b]$.
- $\partial_{3}[a, b, c, d]=[b, c, d]-[a, c, d]+[a, b, d]-[a, b, c]$.
- $\partial_{1} \partial_{2}[a, b, c]=[c]-[b]-[c]+[a]+[b]-[a]=0$.

Boundary Theorem

- (Theorem) $\partial_{k-1} \partial_{k}=0$, for all k.
- Proof:
$\partial_{k-1} \partial_{k}\left[v_{0}, v_{1}, \ldots, v_{k}\right]=$

$$
\begin{aligned}
= & \partial_{k-1} \sum_{i}(-1)^{i}\left[v_{0}, v_{1}, \ldots, \hat{v_{i}}, \ldots, v_{k}\right] \\
= & \sum_{j<i}(-1)^{i}(-1)^{j}\left[v_{0}, \ldots, \hat{v}_{j}, \ldots, \hat{v}_{i}, \ldots, v_{k}\right] \\
& +\sum_{j>i}(-1)^{i}(-1)^{j-1}\left[v_{0}, \ldots, \hat{v}_{i}, \ldots, \hat{v}_{j}, \ldots, v_{k}\right] \\
= & 0,
\end{aligned}
$$

as switching i and j in the second sum negates the first sum.

Chain Complex

- The boundary operator connects the chain groups into a chain complex C_{*} :

$$
\ldots \rightarrow \mathrm{C}_{k+1} \xrightarrow{\partial_{k+1}} \mathrm{C}_{k} \xrightarrow{\partial_{k}} \mathrm{C}_{k-1} \rightarrow \ldots
$$

Cycle Group

- Let c be a k-chain
- If it has no boundary, it is a k-cycle (zycle?)
- $\partial_{k} c=\emptyset$, so $c \in \operatorname{ker} \partial_{k}$
- The k th cycle group is

$$
\mathbf{Z}_{k}=\operatorname{ker} \partial_{k}=\left\{c \in \mathrm{C}_{k} \mid \partial_{k} c=\emptyset\right\}
$$

Boundary Group

- Let b be a k-chain
- If b is a boundary of something, it is a k-boundary.
- The k th boundary group is

$$
\mathrm{B}_{k}=\operatorname{im} \partial_{k+1}=\left\{c \in \mathrm{C}_{k} \mid \exists d \in \mathrm{C}_{k+1}: c=\partial_{k+1} d\right\}
$$

RELATIONSHIP

- Let b be a k-boundary.
- Then, $\exists c \in \mathrm{C}_{k+1}$, such that $b=\partial_{k+1} c$.
- What is the boundary of b ?

$$
\partial_{k} b=\partial_{k} \partial_{k+1} c=\emptyset,
$$

by the boundary theorem.

- That is, every boundary is a cycle!
- What is the point-set theoretic version?

NESTING

- $\mathrm{B}_{k} \subseteq \mathrm{Z}_{k} \subseteq \mathrm{C}_{k}$
- Chains are analogs of paths
- Cycles are analogs of loops
- Boundaries are analogs of bounding loops
- We need a simplicial analog of homotopy!

Adding Cycles

- z is a k-cycle
- b is a k-boundary
- We would like to have $z+b$ be equivalent to z
- That is, if $z_{1}-z_{2}=b$ where b is a boundary, then $z_{1} \sim z_{2}$
- Any boundary would do!

Simplicial Homology

- The k th homology group is

$$
\mathrm{H}_{k}=\mathbf{Z}_{k} / \mathrm{B}_{k}=\operatorname{ker} \partial_{k} / \operatorname{im} \partial_{k+1}
$$

- If $z_{1}=z_{2}+\mathbf{B}_{k}, z_{1}, z_{2} \in \mathbf{Z}_{k}$, we say z_{1} and z_{2} are homologous
- $z_{1} \sim z_{2}$.

DESCRIPTION

- Homology groups are finitely generated abelian.
- (Theorem) Every finitely generated abelian group is isomorphic to product of cyclic groups of the form

$$
\mathbb{Z}_{m_{1}} \times \mathbb{Z}_{m_{2}} \times \ldots \times \mathbb{Z}_{m_{r}} \times \mathbb{Z} \times \mathbb{Z} \times \ldots \times \mathbb{Z}
$$

- The k th Betti number β_{k} of a simplicial complex K is $\beta_{k}=\beta\left(\mathrm{H}_{k}\right)$, the rank of the free part of H_{k}.
- Torsion coefficients

Interpretation

- Compactify \mathbb{R}^{3} via a one point compactification to get \mathbb{S}^{3}
- Subcomplexes are torsion-free
- Alexander Duality:
- β_{0} measures the number of components of the complex.
- β_{1} is the rank of a basis for the tunnels.
- β_{2} counts the number of voids in the complex.

Homology of 2-MANifolds

2-manifold	H_{0}	H_{1}	H_{2}
sphere	\mathbb{Z}	$\{0\}$	\mathbb{Z}
torus	\mathbb{Z}	$\mathbb{Z} \times \mathbb{Z}$	\mathbb{Z}
projective plane	\mathbb{Z}	\mathbb{Z}_{2}	$\{0\}$
Klein bottle	\mathbb{Z}	$\mathbb{Z} \times \mathbb{Z}_{2}$	$\{0\}$

INVARIANCE

- (Hauptvermutung) Any two triangulations of a topological space have a common refinement (Poincaré 1904)
- True for polyhedra of dimension ≤ 2 (Papakyriakopoulos 1943)
- True for 3-manifolds (Moïse 1953)
- False in dimensions ≥ 6 (Milnor 1961)
- False for manifolds of dimension ≥ 5 (Kirby and Siebenmann 1969)
- Singular homology
- Axiomatization

Euler Revisited

- Let K be a simplicial complex and $s_{i}=|\{\sigma \in K \mid \operatorname{dim} \sigma=i\}|$. The Euler characteristic $\chi(K)$ is

$$
\chi(K)=\sum_{i=0}^{\operatorname{dim} K}(-1)^{i} s_{i}=\sum_{\sigma \in K-\{\emptyset\}}(-1)^{\operatorname{dim} \sigma}
$$

- We have new language!
- Let C_{*} be the chain complex on K
- $\operatorname{rank}\left(\mathrm{C}_{i}\right)=|\{\sigma \in K \mid \operatorname{dim} \sigma=i\}|$
- $\chi(K)=\chi\left(\mathbf{C}_{*}\right)=\sum_{i}(-1)^{i} \operatorname{rank}\left(\mathbf{C}_{i}\right)$.

Euler-Poincaré

- Homology functors H_{*}
- $\mathrm{H}_{*}\left(\mathrm{C}_{*}\right)$ is a chain complex:

$$
\ldots \rightarrow \mathrm{H}_{k+1} \xrightarrow{\partial_{k+1}} \mathrm{H}_{k} \xrightarrow{\partial_{k}} \mathrm{H}_{k-1} \rightarrow \ldots
$$

- What is its Euler characteristic?
- $($ Theorem $) ~ \chi(K)=\chi\left(\mathbf{C}_{*}\right)=\chi\left(\mathrm{H}_{*}\left(\mathbf{C}_{*}\right)\right)$.
- $\sum_{i}(-1)^{i} s_{i}=\sum_{i}(-1)^{i} \operatorname{rank}\left(\mathrm{H}_{i}\right)=\sum_{i}(-1)^{i} \beta_{i}$
- Sphere: $2=1-0+1$
- Torus: $0=1-2+1$

