Morse Theory

CS 468 - Lecture 9
11/20/2

Presentations

- November 27th:
- Surface Flattening (Jie Gao)
- Simplicial Sets (Patrick Perry)
- Complexity of Knot Problems (Krishnaram Kenthapadi)
- December 4th
- Tangent Complex (Yichi Gu)
- Irreducible Triangulations (Jon McAlister)
- Homotopy in the Plane (Rachel Kolodny)

Shape

EXCURSIONS

Overview

- Relationship between Geometry and Topology
- Tangent Spaces
- Derivatives
- Critical points
- Persistence

TANGENT $\operatorname{SpACE} T_{p}\left(\mathbb{R}^{3}\right)$

- \mathbb{M} is a smooth, compact, 2-manifold without boundary
- $\mathbb{M} \subset \mathbb{R}^{3}$ is embedded (not necessary, extends)
- A tangent vector v_{p} to \mathbb{R}^{3} consists of two points of \mathbb{R}^{3} : its vector part v, and its point of application p.
- The set $T_{p}\left(\mathbb{R}^{3}\right)$ consists of all tangent vectors to \mathbb{R}^{3} at p, and is called the tangent space of \mathbb{R}^{3} at p.

TANGENTS Space $T_{p}(\mathbb{M})$

- Let p be a point on \mathbb{M} in \mathbb{R}^{3}.
- A tangent vector v_{p} to \mathbb{R}^{3} at p is tangent to \mathbb{M} at p if v is the velocity of some curve in \mathbb{M}.
- The set of all tangent vectors to M at p is called the tangent plane of M at p and is denoted by $T_{p}(\mathbb{M})$.

Tangent Plane

- A patch is the inverse of a chart.
- Let $p \in \mathbb{M} \subset \mathbb{R}^{3}$, and let φ be a patch in \mathbb{M} such that $\varphi\left(u_{0}, v_{0}\right)=p$.
- A tangent vector v to \mathbb{R}^{3} at p is tangent to \mathbb{M} iff v can be written as a linear combination of $\varphi_{u}\left(u_{0}, v_{0}\right)$ and $\varphi_{v}\left(u_{0}, v_{0}\right)$.
- $T_{p}(\mathbb{M})$ is the best linear approximation of the surface M near p.

Functions on Manifolds

- A vector: direction for moving
- Real valued smooth function $h: \mathbb{M} \rightarrow \mathbb{R}$.
- How does h vary in direction v_{p} ?

DERIVATIVES

- A vector field or flow on V is a function that assigns a vector $v_{p} \in T_{p}(\mathbb{M})$ to each point $p \in \mathbb{M}$.
- The derivative $v_{p}[h]$ of h with respect to v_{p} is the common value of $(d / d t)(h \circ \gamma)(0)$, for all curves $\gamma \in \mathbb{M}$ with initial velocity v_{p}.
- The differential $d h_{p}$ of $h: \mathbb{M} \rightarrow \mathbb{R}$ at $p \in \mathbb{M}$ is a linear function on $T_{p}(\mathbb{M})$ such that $d h_{p}\left(v_{p}\right)=v_{p}[h]$, for all tangent vectors $v_{p} \in T_{p}(\mathbb{M})$.
- A differential converts vector fields to real-valued functions

Critical Points

- Travel in all directions in $T_{p}(\mathbb{M})$
- A point $p \in \mathbb{M}$ is critical for map $h: \mathbb{M} \rightarrow \mathbb{R}$ if $d h_{p}$ is the zero map.
- Otherwise, p is regular.

DEGENERACIES

- Let x, y be a patch on \mathbb{M} at p.
- The Hessian of $h: \mathbb{M} \rightarrow \mathbb{R}$ is:

$$
H(p)=\left[\begin{array}{cc}
\frac{\partial^{2} h}{\partial x^{2}}(p) & \frac{\partial^{2} h}{\partial y \partial x}(p) \\
\frac{\partial^{2} h}{\partial x \partial y}(p) & \frac{\partial^{2} h}{\partial y^{2}}(p)
\end{array}\right]
$$

- Basis $\left(\frac{\partial}{\partial x}(p), \frac{\partial}{\partial y}(p)\right)$ for $T_{p}(\mathbb{M})$.
- A critical point $p \in \mathbb{M}$ is non-degenerate if the Hessian is non-singular at p, i.e. $\operatorname{det} H(p) \neq 0$.
- Otherwise, it is degenerate.

Morse Functions

- A smooth map $h: \mathbb{M} \rightarrow \mathbb{R}$ is a Morse function if all its critical points are non-degenerate.
- Any twice differentiable function h may be unfolded to a Morse function.
- As close to h as we specify!
- Morse functions are dense

Morse Lemma

(a) $x^{2}+y^{2}$
(b) $-x^{2}+y^{2}$

(c) $x^{2}-y^{2}$
(d) $-x^{2}-y^{2}$

Indices

- (Lemma) It is possible to choose local coordinates x, y at a critical point $p \in \mathbb{M}$, so that a Morse function h takes the form:

$$
\begin{equation*}
h(x, y)= \pm x^{2} \pm y^{2} \tag{1}
\end{equation*}
$$

- The index $\mathrm{i}(\mathrm{p})$ of h at critical point $p \in \mathbb{M}$ is the number of minuses.
- Equivalently, the index at p is the number of the negative eigenvalues of $H(p)$.
- A critical point of index 0,1 , or 2 , is called a minimum, saddle, or maximum, respectively.

Monkey Saddle

UNFOLDING

PL Functions

- Let K be a triangulation of a compact 2-manifold without boundary M.
- Let $h: \mathbb{M} \rightarrow \mathbb{R}$ be a function that is linear on every triangle.
- The function is defined by its values at the vertices of K.
- Assume $h(u) \neq h(v)$ for all vertices $u \neq v \in K$.
- Sometimes called a height function over a 2-manifold.

Stars

- Recall: the star of a vertex u in a triangulation K is St $u=\{\sigma \in K \mid u \leq \sigma\}$.
- The lower and upper stars of u for a height function h are

$$
\begin{aligned}
& \underline{\mathrm{St}} u=\{\sigma \in \operatorname{St} u \mid h(v) \leq h(u), \forall \text { vertices } v \leq \sigma\} \\
& \overline{\mathrm{St}} u=\{\sigma \in \operatorname{St} u \mid h(v) \geq h(u), \forall \text { vertices } v \leq \sigma\}
\end{aligned}
$$

- Suppose u is a maximum. What's $\underline{\operatorname{St}} u$? What's $\overline{\operatorname{St}} u$?
- $K=\dot{\bigcup}_{u} \underline{\mathrm{St}} u=\dot{\bigcup}_{u} \overline{\mathrm{St}} u$.

PL Stars

Filtrations

- Sort the n vertices of K in order of increasing height to get the sequence $u^{1}, u^{2}, \ldots, u^{n}, h\left(u^{i}\right)<h\left(u^{j}\right)$, for all $1 \leq i<j \leq n$.
- Let K^{i} be the union of the first i lower stars, $K^{i}=\bigcup_{1 \leq j \leq i} \underline{\mathrm{St}} u^{j}$.
- Same idea with upper stars
- Recall $\chi=v-e+t=\beta_{0}-\beta_{1}+\beta_{2}$

Levels of Torus

Minimum

- $\underline{\mathrm{St}} u^{i}=u^{i}$, so a minimum vertex is a new component and $\chi^{i}=\chi^{i-1}+1$.
- $\beta_{0}^{i}=\beta_{0}^{i-1}+1, \beta_{1}^{i}=\beta_{1}^{i-1}, \beta_{2}^{i}=\beta_{2}^{i-1}$
- Therefore, $\chi^{i}=\beta_{0}^{i-1}+1-\beta_{1}^{i-1}+\beta_{2}^{i-1}=\chi^{i-1}+1$
- So, a minimum creates a new 0 -cycle and acts like a positive vertex in the filtration of a complex.
- The vertex is unpaired at time i.

Regular

- $\underline{\text { St }} u^{i}$ is a single wedge, so $\chi^{i}=\chi^{i-1}+1-1=\chi^{i-1}$.
- $\underline{\text { St }} u^{i} \neq \emptyset$ so $\beta_{0}^{i}=\beta_{0}^{i-1}$
- $\overline{\mathrm{St}} u^{i} \neq \emptyset$ so $\beta_{2}^{i}=\beta_{2}^{i-1}$ (also duality!)
- Using Euler-Poincaré, we get $\beta_{1}^{i}=\beta_{1}^{i-1}$.
- No topological changes!
- All the cycles created at time i are also destroyed at time i.
- The positive and negative simplices in $\underline{\operatorname{St}} u^{i}$ cancel each other, leaving no unpaired simplices.

SADDLE

- $\underline{\mathrm{St}} u^{i}$ has two wedges, bringing in two more edges than triangles.
- $\chi^{i}=\chi^{i-1}+1-2=\chi^{i-1}-1$.
- If this saddle connects two components, it destroys a 0 -cycle and $\beta_{0}^{i}=\beta_{0}^{i-1}-1$.
- Otherwise, it creates a new 1 -cycle and $\beta_{1}^{i}=\beta_{1}^{i-1}+1$.
- All the simplices in a saddle are paired, except for a single edge whose sign corresponds to the action of the saddle.
- We have $\chi^{i}=\chi^{i-1}-1$ in either case.

MAXIMUM

- $\underline{\mathrm{St}} u^{i}=\mathrm{St} u^{i}$ and has the same number of edges and triangles.
- So, $\chi^{i}=\chi^{i-1}+1$ for the single vertex.
- In our case, one global minimum
- If global minimum, $\beta_{2}^{i}=\beta_{2}^{i-1}+1=1$.
- Otherwise, the lower star covers a 1 -cycle and $\beta_{1}^{i}=\beta_{1}^{i-1}-1$.
- Single unpaired triangle (positive or negative)
- We have $\chi^{i}=\chi^{i-1}+1$ in both cases.

CORRESPONDENCE

critical	unpaired	action
minimum	vertex	$\beta_{0^{++}}$
saddle	edge	$\beta_{0^{--}}$or $\beta_{1^{++}}$
maximum	triangle	$\beta_{1^{--}}$or $\beta_{2^{++}}$

- Correspondence allows us to talk about persistent critical points
- Let m_{i} be the number of index i critical points in K
- $\chi(K)=\sum_{i}(-1)^{i} s_{i}=\sum_{i}(-1)^{i} \beta_{i}=\sum_{i}(-1)^{i} m_{i}$

CANCELLATION

- Pairs of critical points annihilate each other
- Inverse unfolding plus smoothing
- Need additional structure (Morse-Smale Complex) to do this geometrically

