
Undersampling and Oversampling in Sample Based Shape Modeling

Tamal K. Dey Joachim Giesen Samrat Goswami James Hudson Rephael Wenger Wulue Zhao

Ohio State University Columbus, OH 43210

Abstract

Shape modeling is an integral part of many visualization
problems. Recent advances in scanning technology and a
number of surface reconstruction algorithms have opened up
a new paradigm for modeling shapes from samples. Many of
the problems currently faced in this modeling paradigm can
be traced back to two anomalies in sampling, namely under-
sampling and oversampling. Boundaries, non-smoothness
and small features create undersampling problems, whereas
oversampling leads to too many triangles. We use Voronoi
cell geometry as a unified guide to detect undersampling and
oversampling. We apply these detections in surface recon-
struction and model simplification. Guarantees of the algo-
rithms can be proved. In this paper we show the success of
the algorithms empirically on a number of interesting data
sets.

Keywords: Computational Geometry, Surface Reconstruction,
Geometric Modeling, Mesh Generation, Polygonal Mesh Reduc-
tion, Polygonal Modeling, Shape Recognition.

1 Introduction

Visualizations of shapes with their models are integral part of
many scientific computations. Surface reconstruction which
builds a piecewise linear approximation of a surface from its
samples provides a powerful paradigm for modeling shapes.
We call this paradigm Sample Based Shape Modeling, or
SBSM in short. For many applications SBSM can provide
an initial mesh for the model which can be processed fur-
ther according to the need. For example, the traditional spline
based surface modeling can benefit from SBSM in generat-
ing an initial control mesh and then smoothing it out with
techniques such as surface fairing [29] or subdivision meth-
ods [33].

1.1 Background

A vast literature has built up on the problem of surface re-
construction in recent years. Various algorithms with differ-
ent capabilities and guarantees have been proposed. A very

early paper on the problem was by Boissonat [11] who pro-
posed a ‘sculpting’ of the Delaunay triangulation for recon-
struction. A more refined sculpting strategy was designed
by Edelsbrunner and Mücke [16] in their � -shape algorithm.
Bajaj, Bernardini and Xu [9] used � -shapes for reconstruct-
ing scalar fields and 3D CAD models. In [15] Edelsbrun-
ner reported the design of a commercial software WRAP

that eliminated the need for uniform samples in � -shapes.
Hoppe et al. [24] reconstructed the surface using the zero
level set of a distance function defined over the samples.
Curless and Levoy [14] used a distance function to con-
struct an implicit surface from multiple range scans. Turk
and Levoy [31] devised an incremental algorithm that itera-
tively improves a reconstruction by erosion and zippering. A
cluster based strategy was used by Heckel et al. for recon-
structions in [22]. Gopi, Krishnan and Silva [21] projected
sample points with their neighbors on a plane and lifted the
local 2D Delaunay triangulations to reconstruct the surface.
Bernardini et al. [10] proposed a ball pivoting algorithm that
reconstructs the surface incrementally by rolling a ball over
the sample points. Kobbelt and Botsch [25] used hardware
projections to reconstruct surfaces from large data. Attali
[8] introduced normalized meshes to reconstruct surfaces.
Very recently Amenta, Bern and Kamvysselis [2] proposed
a Voronoi based surface reconstruction called CRUST and
proved its theoretical guarantees. This algorithm was later
improved by the COCONE algorithm in [3] and the POWER

CRUST in [4]. Boissonnat and Cazals [12] showed how nat-
ural neighbors can aid surface reconstructions. See the sur-
veys by Mencl and Müller [26] for other surface reconstruc-
tion algorithms and by Uselton [32] for contour based sur-
face reconstructions.

1.2 Undersampling and oversampling

Although a considerable success has been made by recent
surface reconstruction algorithms, some of the major prob-
lems in SBSM that still remain can be traced back to two
anomalies in sampling, namely undersampling and oversam-
pling. In this paper we concentrate on detecting these two
anomalies using Voronoi structures and show how they can
aid surface reconstructions.

Undersampling happens when a surface has small features
such as high curvatures that are sampled inadequately. It can-
not be avoided when a surface is not smooth. In this case
no finite sampling is dense enough for sharp edges or cor-
ners. Even the presence of boundaries in the surface can be

thought of as a consequence of undersampling. The sampling
in this case is intentionally stopped to introduce the bound-
aries. In all these cases, the reconstructed surface often has
undesirable holes and triangles and may even not be a man-
ifold with boundary. Detection of undersampling can help
mend these surfaces either by resampling manually, or by
stitching the holes algorithmically. Other than this, it has di-
rect application in reconstructing surfaces with boundaries
and determining features such as discontinuities in scalar
fields [20]. We also show that nonsmooth surface reconstruc-
tion can also benefit from this detection.

Not only undersampling poses challenge to SBSM, but
also its counterpart, oversampling, causes difficulties, partic-
ularly in post-processing. A surface, sometimes, is sampled
with unnecessarily high density. Surfaces reconstructed from
an unnecessarily dense sample contain large numbers of tri-
angles and thus become unwieldy for further processing such
as graphic rendering or finite element analysis. A variety of
algorithms have been proposed to simplify a piecewise lin-
ear surface [13, 17, 19, 23, 28, 30]. Most of these algorithms
choose a subset of vertices, edges, or triangles for deletion so
that the overall shape of the space delimited by the surface is
maintained. The major concerns in such simplification strate-
gies are to preserve topological and geometric features of the
surface and avoid self intersections. Oversampling detection
can directly benefit the simplification process by throwing
away unnecessary sample points before reconstruction. Such
sample decimations have been proposed earlier by [2] which
we refine with new concepts and a guarantee in surface re-
construction. This alternative approach of sample decimation
in place of model simplification has several advantages. First
of all, one does not need to worry about preserving features
or avoiding self intersections. If the decimation guarantees a
sample density that is still appropriate for surface reconstruc-
tion, the reconstructed model retains all features without any
self intersection. Furthermore, sample decimation at differ-
ent levels allows an alternative approach to multiresolution
meshing [18, 27].

1.3 Our approach

We use the structure of Voronoi diagrams as the key ingredi-
ent for undersampling and oversampling detection. A result
in [2] says that the Voronoi cells for a dense sample of a
surface are long and thin along the direction of normals at
the sample points. We use this structural information to de-
tect samples in the vicinity of undersampled regions, which
we call boundary samples. The information about boundary
samples can be exploited in many surface reconstruction al-
gorithms simply by disallowing triangles that are incident to
the boundary samples.

The structure of the Voronoi cells also indicates oversam-
pled regions. Voronoi cells in oversampled regions tend to
be overly long and ‘skinny’. Again, we measure the ‘skinni-
ness’ of the Voronoi cells and delete sample points accord-
ingly. The deletion stops when all Voronoi cells become suf-

ficiently ‘fat’. This strategy decimates the samples up to a
level determined by an input parameter.

2 Voronoi cell geometry

The main tool we use to detect undersampling and oversam-
pling is the geometry of the Voronoi cell structure. Our rea-
soning is based on a density condition called � -sampling as
introduced in [2]. This definition builds on the medial axis
of a surface and the related term of local feature size. The
medial axis of a surface S ��� 3 is defined as the locus of
all points that have more than one closest point on S. The
local feature size at a point x � S, denoted as f (x), is the
least distance of x to the medial axis. Let P ��� 3 be a set of
sample points on a surface S. We say P is an � -sample of S
if each point x � S has a sample within � f (x) distance. It has
been observed that typically ��� 0. 4 gives a dense enough
sampling for surface reconstruction. For a dense sample each
Voronoi cell is long and thin as shown in Figure 1. We in-
troduce a measure of this structural property that is easily
computable. We need the following definitions for further
expositions.

Definitions

Let VP and DP denote the Voronoi diagram and Delaunay tri-
angulation of the sample P ��� 3 respectively. For a sample
p � P, let Vp be its Voronoi cell. For convenience we use the
notation 	 (v, w) to denote the acute angle between the lines
supporting two vectors v and w.

Poles: The farthest Voronoi vertex p+ in Vp is called the
positive pole of p. The negative pole of p is the farthest point
p
�� Vp from p such that two vectors from p to p+ and p

make an angle more than �2 . We call vp = p+ p, the pole
vector for p. If Vp is unbounded, p+ is taken at infinity, and
the direction of vp is taken as the average of all directions
given by unbounded Voronoi edges.

Cocone: The set Cp(� , v) = � y � Vp : � ((y p), v) ��
2 ����� is called the cocone of p with axis v and angle � . In
words, Cp(� , v) is the complement of a double cone (clipped
within Vp) centered at p with an opening angle �2 ��� around
the axis aligned with v. Usually, we take v = vp, the pole
vector and ��� �8 small. See Figure 1 for an example of a
cocone.

Cocone neighbor: A sample q is called a cocone neighbor
of another sample p if Vq overlaps with the cocone of p. Thus,
the set of cocone neighbors denoted Np is given by Np = ! q "
P #Vq $ Cp(% , vp) &= ')(.

Let dp denote the maximum distance of any point from p
that has p as its nearest sample on S. A point p lies in an over-
sampled region, if dp is small compared to the local feature
size f (p). On the other hand, if this distance is too large com-
pared to f (p), the point p is in an undersampled region. How-
ever, we cannot perform these comparisons exactly since S is
unknown. Instead, we use the approximations to dp and f (p).

−p

+
+

−p

p
p

p
pS

Figure 1: A Voronoi cell together with the normalized pole
vector and the cocone (shaded) in two dimensions (left) and
three dimensions (right).

Recent results in [4, 12] establish that poles approximate
the medial axis in an asymptotic sense. Therefore, the height
as defined below approximates f (p).

Height: The height hp is defined as the length ��� p ��� p ��� .
In order to approximate dp we use the farthest point from p

in Cp(� , vp). To understand the rationale for this approxima-
tion, observe that Vp,S lies close to the tangent plane at p if S
is assumed to be locally flat, and the pole vector vp = p+ � p
approximates the normal direction at p. Therefore, the co-
cone Cp(� , vp) coincides with a thin neighborhood around
Vp,S for a small � . Thus, the radius of Cp(� , vp) as defined
below approximates dp.

Radius: The radius rp is defined as the distance max ����� y �
p ��� : y 	 Cp(� , vp)
 .

3 Undersampling

When a surface is sampled, parts of it may be sampled
densely leaving patches that are undersampled. The bound-
aries between these well and under sampled patches demark
the undersampled regions. We need to detect the samples
that represent these boundaries. Formally, let F �� 3 be a
smooth compact surface without boundary. We focus on a
maximal subset S � F where each point x 	 S has a sam-
ple point p 	 P within � f (x) distance. Our goal is to detect
the boundaries of S from the sample P. Notice that this for-
mulation allows the boundary of S to represent all kinds of
undersampling including the ones caused by nonsmoothness
and true boundaries.

3.1 Boundaries

For any compact surface S we can distinguish interior points
from the boundary points. An interior point has a neighbor-
hood homeomorphic to the plane � 2 . A boundary point, on
the other hand, has a neighborhood homeomorphic to the
halfplane � 2

+ = � (x, y) 	�� 2 : x � 0
 .
In SBSM only a finite sample P, not the surface S, is given.

Even though all samples in P may be interior points of S,

the existence of a non-empty boundary has to be determined
only from the sample points. We need a classification of in-
terior and boundary samples that captures the intuitive dif-
ference between interior and boundary points. Recall that
Vp,S = Vp � S is the subset of S lying in Vp. The points in
Vp,S have p as nearest sample. In other words, the sample p
is a discrete representative of the continuous patch Vp,S.

Definition 1 (Interior and boundary samples) A sample
p 	 P is called interior if Vp,S does not contain a boundary
point of S. Sample points that are not interior are called
boundary. See Figure 2.

q

p

Figure 2: Intersection of VP with the surface S, p is an interior
sample, q is a boundary sample.

The above definition cannot be exploited algorithmically
to detect boundary samples since S is unknown. Therefore,
we aim for a different characterization that distinguishes in-
terior samples from boundary ones.

Definition 2 (Flatness) Given two parameters � and � , a
sample point p � P is called flat if the following two con-
ditions hold:

(1) Ratio condition: rp

hp ��� ;
(2) Normal condition: � q with p � Nq, � (vp, vq) ��� .

The ratio condition captures that Vp is long and thin. Unfor-
tunately, this single condition is not enough to differentiate
the interior samples from the boundary ones since Vp of a
boundary sample p may also be long and thin; see Figure 3
for an example in two dimensions. Hence we add the normal
condition to define flat samples.

Obviously, flatness depends on the parameters � and � .
For the proof that boundary samples cannot be flat, we use

� = 1. 3 � and � = 0. 14 radians [5] for an � -sampled sur-
face. However, in practice much larger values work as our
experiments show.

3.2 Theoretical guarantees

The algorithm for boundary sample detection is based on the
two main theorems; one says that boundary samples cannot
be flat, and the other says that a subset of interior samples
called deep interior samples must be flat. An interior sample
is deep if it does not have any boundary sample as its cocone
neighbor. We formally prove these two theorems in [5].

p

sq

Figure 3: The large gaps between p and q and between p and
s render them as boundary samples according to our defini-
tion (two dimensional case). Boundary samples q and s have
long and thin Voronoi cells.

Theorem 1 Boundary samples are not flat.

Theorem 2 Deep interior vertices are necessarily flat.

Theorem 1 assumes some conditions about boundary sam-
ples that are stated formally in [5]. For most practical data
these mild assumptions are quite valid as exhibited by our
experimental success.

3.3 Boundary detection

The algorithm for boundary detection first computes the set
of interior vertices, R, that are flat. It takes two parameters� and � to check the ratio and normal conditions respec-
tively. In theory, we require � = 1. 3 � and � = 0. 14 for an
� -sampled surface. However, in our experiments we obtain
good results for values as large as � = 0. 99 and � = �6 .

ISFLAT (p � P, � , �)
1 compute the radius rp and the height hp.
2 if rp

hp

�	�
3 if
 q with p � Nq, � (vp, vq)

�	
4 return true
5 endif
6 endif
7 return false

Theorem 1 guarantees that R cannot include any boundary
sample. Assuming that P has a deep interior sample for each
component of S, R cannot be empty by Theorem 2. Thus,
ISFLAT can be thought of as a procedure to capture really
good interior samples. However, not all interior samples are
flat, mainly because the normal condition is violated. So we
start walking from R, expanding it iteratively, each time in-
cluding a new interior sample. A generic iteration proceeds
as follows. Let p be any cocone neighbor of a sample q � R
so that p �� R and p satisfies the ratio condition. If vp and vq

make a small angle up to orientation, i.e., if � (vp, vq)
��

,
we include p in R. If no such sample can be found, the itera-
tion stops at which point all interior samples are included in

R. The rest of the samples, i.e. P � R must be boundary ones.
See Figure 4.

BOUNDARY (P,

,
�
)

1 R := �
2 for all p � P
3 if ISFLAT(p,

,
�
) R := R � p

4 endfor
5 while � p �� R and � q � R with p � Nq,

and rp
�	�

hp and � (vp, vq)
�	

6 R := R � p
7 endwhile
8 return P � R

Figure 4: Boundary samples (colored red) detected by
BOUNDARY on the data sets ENGINE, CACTUS, OILPUMP

and MONKEYSADDLE. This picture needs to be seen in
color.

3.4 Reconstruction

As we pointed out earlier almost all surface reconstruction
algorithms can benefit from detecting undersampling, espe-
cially if the undersampling is due to true boundaries. For
our experiments we decided to use the COCONE algorithm
of [3]. The COCONE algorithm uses single Voronoi diagram
computation as opposed to two in CRUST.

The COCONE algorithm proceeds as follows. Each sample
chooses a set of triangles from the Delaunay triangulation of
the sample P whose dual Voronoi edges are intersected by
the cocones defined at the sample. The set of all such chosen

triangles over all samples is called the candidate set. Each
of these triangles is shown to lie close to the original sur-
face S and has normal oriented nearly in the same direction
as those at its three sample vertices [3]. A subsequent mani-
fold extraction step extracts a manifold surface out of this set
of candidate triangles. This manifold is homeomorphic and
geometrically close to S [3].

This algorithm works nicely with well sampled smooth
surfaces that have no boundary. However, it is our experi-
ence that the algorithm computes many undesirable triangles
near non-smooth regions and boundaries. The appearance
of these undesirable triangles can be attributed to the fact
that the boundary samples do not have reliable normals and
as a result they choose ‘garbage’ triangles in the candidate
set. At this point we make use of the algorithm BOUNDARY

by just disallowing boundary samples to choose triangles. In
most cases neighboring interior samples choose correct tri-
angles for boundary samples. However, small holes may be
left in the surface where boundary samples come close to
each other, a case that happens near non smooth and high
curvature regions. We stitch these holes in a later step. See
Figure 5.

Figure 5: A zoom on the OILPUMP: sharp edges are mostly
reconstructed with candidate triangles (left), final recon-
struction (right). Dark shaded triangles border holes.

COCONE (P, � , � , �)
1 compute the Voronoi diagram VP of P.
2 B :=BOUNDARY(P, � , �)
3 T := �
4 for all p � P � B
5 T := T � CANDIDATETRIANGLES(p)
6 endfor
7 extract a manifold M from T.
8 stitch small holes in M.
9 return M

3.4.1 Manifold extraction with boundaries

The algorithm CANDIDATETRIANGLES(p) returns the set of
triangles dual to the Voronoi edges intersecting the cocone
Cp(� , vp). The manifold extraction step first prunes the trian-
gles with bare edges iteratively. Such prunings are necessary

for a subsequent walk over the remaining candidate triangles
as described in [2]. This poses an inherent difficulty for sur-
faces with boundary. Reconstruction of such a surface must
allow triangles with bare edges at the true boundary. In this
case the manifold extraction step deletes the entire surface
in a cascaded manner. Similar problem arises for otherwise
undersampled surfaces. However, if we disallow the removal
of triangles incident to boundary samples, this problem does
not arise. Thus, our boundary detection algorithm also makes
the manifold extraction feasible for undersampled surfaces,
especially surfaces with boundaries.

3.4.2 Stitching

After we extract M from candidate triangles, holes may re-
main in M. These holes may be due to a true boundary, or
may reflect undersampling near non-smooth or high curva-
ture regions. First, we separate out the true boundary by con-
sidering the size of the triangles which have three vertices on
a hole. If these triangles are too big compared to the trian-
gles incident on the edges of the hole in M, we designate that
hole as a true boundary. Several measures are possible to de-
termine the size of a triangle. We consider the circumradius
of the triangles for this purpose.

The holes that are not designated as true boundary are
stitched. These holes are usually small. We observe from our
experiments that a set of Delaunay triangles exist that can
fill up these small holes. This observation is validated by the
results in [1]. In that paper it is shown that an enumeration
of all possible combinations of triangles with the linear pro-
gramming technique does find a set of Delaunay triangles
that can fill up small holes. We avoid the computation with
linear programming. Instead, for a small hole we include all
triangles that have three vertices in that hole. A subsequent
prune and walk step as in manifold extraction recovers only
the triangles needed to patch the hole from this set. See Fig-
ure 6.

3.5 Experiments

Computation of cocones at each sample point needs the co-
cone angle � . In [3], it is proved that � = �8 is a feasible
choice. In practice, we also observed that � = 	8 gives good
results. All our experiments are conducted with this value of

. The other two parameters � and � for boundary detection

should have values �� 1. 3 � and �� 0. 14 radians in the-
ory [5]. We observed that values as large as � = 0. 99 and
� = �6 work well in practice. All of our experiments are car-
ried out with these fixed values.

We implemented COCONE in C++ using the computa-
tional geometry algorithms library CGAL [35]. The soft-
ware is available from [34]. Robust Delaunay triangula-
tion/Voronoi diagram computations in the presence of degen-
eracies and finite precision arithmetic are absolutely neces-
sary for valid output. To this end we used the filtered floating
point arithmetic of CGAL. This simulates exact arithmetic

Figure 6: A zoom on the ear of the MANNEQUIN and a zoom
on the KNOT: before (left) and after stitching (right).

only on a demand basis. Thus, it provides the advantage of
exact arithmetic with a small increase in running time by a
factor of two. The running times we report here are due to
experiments performed on a PC with 933 Mhz Pentium III
processor and 512 MB main memory.

Our modified COCONE algorithm has produced a ‘perfect’
manifold surface for all data mentioned in Table 1. See Fig-
ures 7 and 8. For ENGINE, CACTUS, FOOT, MANNEQUIN

and MONKEYSADDLE it has produced a manifold with no
hole except at the true boundaries. All these data have un-
dersampling due to either high curvatures or nonsmoothness.
For KNOT, 3HOLES and OILPUMP it has produced water-
tight models though they have undersampling due to miss-
ing samples in KNOT and 3HOLES and nonsmoothness in
OILPUMP. We verified this claim with the Euler equation
relating the number of vertices, edges, triangles and true
boundaries (if any).

4 Oversampling

We have already mentioned that the Voronoi structure also
provides information about oversampling. The samples re-
sponsible for oversampling have overly skinny Voronoi cells.
Again, we measure the skinniness by computing the ratio rp

hp

for each sample p. If this ratio is smaller than a threshold � ,
we delete p. This is the main scheme in our simple decima-
tion algorithm.

Figure 7: Reconstruction of the data sets KNOT and
OILPUMP.

number of number of running
object points triangles time(sec.)

CACTUS 3280 6538 50
3HOLES 4000 8008 38
KNOT 10000 20000 96

MONKEYSADDLE 10000 19599 367
ENGINE 11360 22356 229

MANNEQUIN 12772 25427 91
FOOT 20021 40002 149

OILPUMP 30931 61858 235

Table 1: Experimental data.

4.1 Decimation

Recall that hp estimates the distance of p from the me-
dial axis. As we delete samples, the Voronoi diagram VP

changes. We do not recompute hp. The reason is that poles
approximate the medial axis better with a denser sample
than with a sparser one. This also means that the cocone axis
v remains the same for a point p throughout the decimation.
However, Cp(� , v) and hence its radius rp change as Voronoi
diagram changes. Our simple decimation algorithm keeps
track of these changes. We use � = �8 as before.

DECIMATE(P, �)
1 for each p � P compute hp and rp

2 Q := P
3 while � p � Q so that rp

hp

���
4 delete p from Q.
5 update VQ.
6 if Vq is changed for any q 	 Q update rq

7 endwhile
8 return Q

In [7] it is proved that, for an appropriate � , DECIMATE

produces a subset Q
 P so that Q is a dense sample for re-
construction. Additionally, for each remaining sample p 	 Q
there is a point, say x 	 S, so that x has p as its nearest sam-
ple and the distance ��� x p ��� is more than a constant factor of�

f (x). It means that p is necessary for x to maintain a sample

Figure 8: Data sets FOOT, MANNEQUIN, ROCKER and BUNNY. The upper row shows reconstructions without any sample
decimation. The lower row shows reconstruction after DECIMATE with � = 0. 3.

density determined by the user parameter � . Although in the-
ory we need an extremely small value of � , we obtain good
results for � in the range of 0. 25 � 0. 4.

4.2 Experiments

We implemented DECIMATE in C++ using the CGAL li-
brary [35]. Figure 8 shows the results on the four data sets
FOOT, MANNEQUIN, ROCKER and BUNNY. We achieve al-
most 65% reduction in data points when � = 0. 3 is used for
these experiments; see Table 2. Increasing � to 0. 4 achieves
almost 80% reduction as shown in the table. Different levels
of decimation with three different values of � are shown in
Figure 9.

5 Conclusions

A major complaint against Delaunay based surface recon-
struction algorithms is that they are slow. COCONE can han-
dle data size in the range of 100K sample points with cur-
rent computing resources. In order to make COCONE useful
for large data sets, we investigated if a divide-and-conquer
strategy can help in this regard. A remarkable success has
been achieved recently with this approach. We partition the
data using an octree and then apply the COCONE algorithm

#points after Running
Data #points before � = 0. 3 time

� = 0. 4 (sec.)
MANNEQUIN 12772 5616 97

4408 108
FOOT 20021 3359 277

2247 268
BUNNY 35947 11171 421

7747 460
ROCKER 40177 12685 1391

8025 1567

Table 2: Results of DECIMATE with � = 0. 3 and � = 0. 4.

described in this paper on each cluster. The surface patches
from different cells are stitched automatically by manifold
extraction. This result shows that COCONE can be extended
to handle data even with more than a million points in less
than an hour using modest computing resource such as PCs.
The details appear in a companion paper [6].

Noise is the other challenge that needs further investiga-
tion. The noise created in the form of outliers is easy to detect
and COCONE can easily isolate them. However, local noise
introduced by small perturbations in the coordinates of the
sample points causes difficulty with the current state of the
art. Can we take advantage of the Voronoi cell geometry for

Figure 9: The data set BUNNY (original 35947 points). Decimations with � = 0. 25, 13792 points (left), � = 0. 35, 9251 points
(middle) and � = 0. 4, 7747 points (right).

this problem? We plan to investigate this line of research.
Acknowledgement: This research was partially supported

by NSF under grant CCR-9988216.

References
[1] U. Adamy, J. Giesen, M. John. New Techniques for Topologically

Correct Surface Reconstruction. Proc. Visualization 2000, (2000),
373–380.

[2] N. Amenta, M. Bern and M. Kamvysselis. A new Voronoi-based sur-
face reconstruction algorithm. Proc. SIGGRAPH 98, (1998), 415-421.

[3] N. Amenta, S. Choi, T. K. Dey and N. Leekha. A simple algorithm
for homeomorphic surface reconstruction. Proc. 16th. Ann. Sympos.
Comput. Geom., (2000), 213–222.

[4] N. Amenta, S. Choi and R. K. Kolluri. The power crust, unions of
balls, and the medial axis transform. Manuscript, 2000.

[5] T. K. Dey and J. Giesen. Detecting undersampling in surface recon-
struction. Proc. 17th Ann. Sympos. Comput. Geom., (2001), 257–263.

[6] T. K. Dey, J. Giesen and J. Hudson. A Delaunay based shape recon-
struction from large data. Proc. IEEE Sympos. in Parallel and Large
Data Visualization and Graphics, (2001), to appear.

[7] T. K. Dey, J. Giesen and J. Hudson. Decimating samples for mesh
simplification. Proc. 13th Canadian Conf. Comput. Geom., (2001), to
appear.

[8] D. Attali. r-regular shape reconstruction from unorganized points.
Proc. 13th Ann. Sympos. Comput. Geom., (1997), 248–253.

[9] C. Bajaj, F. Bernardini and G. Xu. Automatic reconstruction of sur-
faces and scalar fields from 3D scans. SIGGRAPH 95, (1995), 109–
118.

[10] F. Bernardini, J. Mittelman, H. Rushmeir, C. Silva and G. Taubin. The
ball-pivoting algorithm for surface reconstruction. IEEE Trans. Vis.
Comput. Graphics, 5, no. 4, 349–359.

[11] J. D. Boissonnat. Geometric structures for three dimensional shape
representation, ACM Transact. on Graphics 3(4), (1984) 266–286.

[12] J. D. Boissonat and F. Cazals. Natural coordinates of points on a sur-
face. Intl. J. Comput. Geom. Appl., to appear.

[13] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agarwal,
F. Brooks and W. Wright. Simplification envelopes. SIGGRAPH 96,
(1996), 119–128.

[14] B. Curless and M. Levoy. A volumetric method for building complex
models from range images. SIGGRAPH 96, (1996), 303-312.

[15] H. Edelsbrunner. Shape reconstruction with Delaunay complex. LNCS
1380, LATIN’98: Theoretical Informatics, (1998), 119–132.

[16] H. Edelsbrunner and E. P. Mücke. Three-dimensional alpha shapes.
ACM Trans. Graphics, 13, (1994), 43–72.

[17] J. El-Sana and A. Varshney. Controlled simplification of genus for
polygonal models. Proc. Visualization 97, (1997), 403– 412.

[18] L. de Floriani, P. Magillo and E. Puppo. Multiresolution representa-
tion and reconstruction of triangulated surfaces. In Advances in Visual
Form Analysis, C. Arcelli, L. Cordella, G. Sanniti di Baja (Editors),
World Scientific, Singapore, (1997), 140–149.

[19] M. Garland and P. S. Heckbert. Surface simplification using quadric
error metrics. Proc. SIGGRAPH 97, (1997), 209–216.

[20] T. Gutzmer and A. Iske. Detection of discontinuities in scattered data
approximation. Numerical Algorithms, 16, (1997), 155–170.

[21] M. Gopi, S. Krishnan and C. Silva. Surface reconstruction based
on lower dimensional localized Delaunay triangulation. Eurographics
2000.

[22] B. Heckel, A. E. Uva, B. Hamann and K. I. Joy. Surface reconstruc-
tion using adaptive clustering methods. In G. Brunnett, H. Bieri and
G. Farin, eds., Geometric Modeling, Supplement to the Journal Com-
puting, to appear.

[23] H. Hoppe. Progressive meshes. Proc. SIGGRAPH 96, (1996), 99-108.

[24] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald and W. Stuetzle. Sur-
face reconstruction from unorganized points. Proc. SIGGRAPH 92,
(1992), 71-78.

[25] L. Kobbelt and M. Botsch. An interactive approach to point cloud tri-
angulation. Proc. Eurographics, 2000.

[26] R. Mencl and H. Müller. Interpolation and approximation of surfaces
from three-dimensional scattered data points. State of the Art Reports,
Eurographics 98, (1998), 51–67.

[27] J. Rossignac and P. Borrel. Multi-resolution 3D approximations for
rendering. Modeling in Comput. Graphics, (1993), 455–465.

[28] W. Schröder, J. Zarge and W. Lorensen. Decimation of triangle
meshes. Proc. SIGGRAPH 92, (1992), 65–70.

[29] G. Taubin. A signal processing approach to fair surface design. Proc.
SIGGRAPH 95, (1995), 351–358.

[30] G. Turk. Re-tiling polygonal surfaces. Siggraph 92, (1992), 55–64.

[31] G. Turk and M. Levoy. Zippered polygon meshes from range images.
Proc. SIGGRAPH 94, (1994), 311-318.

[32] S. P. Uselton. A survey of surface reconstruction techniques. 4th Ann.
Conf. Natl. Comput. Graphics Assoc., June 1983. triangulated sur-
faces. Proc. SIGGRAPH 94, (1994), 247–256.

[33] D. Zorin and P. Schröder. Subdivision for modeling and animation.
SIGGRAPH 99 Course Notes.

[34] http://www.cis.ohio-state.edu/� tamaldey/cocone.html

[35] http://www.cgal.org

Figure 10: Upper row shows reconstructed surfaces with boundary samples (colored red) detected by BOUNDARY on the data
sets ENGINE, CACTUS, OILPUMP and MONKEYSADDLE. The middle row shows the reconstruction of the data sets FOOT,
MANNEQUIN, ROCKER and BUNNY. The bottom row shows the reconstruction after decimating these data sets with � = 0. 3.

