Approximate Nearest Neighbors Search in High Dimensions and Locality-Sensitive Hashing

PAPERS

Piotr Indyk, Rajeev Motwani: Approximate Nearest Neighbors: Towards Removing the Curse of Dimensionality, STOC 1998.

Eyal Kushilevitz, Rafail Ostrovsky, Yuval Rabani: Efficient Search for Approximate Nearest Neighbor in High Dimensional Spaces. SIAM J. Comput., 2000.

Mayur Datar, Nicole Immorlica, Piotr Indyk, Vahab S. Mirrokni: *Locality-Sensitive Hashing* Scheme Based on p-Stable Distributions. Symposium on Computational Geometry 2004.

Alexandr Andoni, Mayur Datar, Nicole Immorlica, Vahab S. Mirrokni, P. Indyk: Locality-sensitive hashing using stable distributions.

In: Nearest Neighbor Methods in Learning and Vision: Theory and Practice, 2006.

CS 468 Geometric Algorithms

Aneesh Sharma, Michael Wand

Overview

Overview

- Introduction
- Locality Sensitive Hashing (Aneesh)
- Hash Functions Based on *p*-Stable Distributions (Michael)

Overview

Overview

- Introduction
 - Nearest neighbor search problems
 - Higher dimensions
 - Johnson-Lindenstrauss lemma
- Locality Sensitive Hashing (Aneesh)
- Hash Functions Based on *p*-Stable Distributions (Michael)

Problem

Problem Statement

Today's Talks: NN-search in high dimensional spaces

- Given
 - Point set $P = \{p_1, ..., p_n\}$
 - a query point q
- Find
 - [*ɛ*-approximate] nearest neighbor to *q* from *P*
- Goal:
 - Sublinear query time
 - "Reasonable" preprocessing time & space
 - "Reasonable" growth in *d* (exponential not acceptable)

Applications

Example Application: Feature spaces

- Vectors *x*∈ ℝ^d represent characteristic features of objects
- There are often many features
- Use nearest neighbor rule for classification / recognition

"Real World" Example: Image Completion

Applications

"Real World" Example: Image Completion

- Iteratively fill in pixels with best match (+ multi scale)
- Typically 5×5 ... 9×9 neighborhoods,
 i.e.: dimension 25 ... 81
- Performance limited by nearest neighbor search
- 3D version: dimension 81 ... 729

Higher Dimensions

Higher Dimensions are Weird

Issues with High-Dimensional Spaces :

d-dimensional space:
 d independent neighboring directions to each point

Volume-distance ratio explodes

No Grid Tricks

Regular Subdivision Techniques Fail

- Regular *k*-grids contain *k*^d cells
- The "grid trick" does not work
- Adaptive grids usually also do not help

- Conventional integration k subdivisions becomes infeasible (\Rightarrow MC-approx.)
- Finite element function representation become infeasible

Higher Dimensions are Weird

More Weird Effects:

- Dart-throwing anomaly
 - Normal distributions gather prob.-mass in thin shells
 - [Bishop 95]

- Nearest neighbor ~ farthest neighbor
 - For unstructured points (e.g. iid-random)
 - Not true for certain classes of structured data
 - [Beyer et al. 99]

Johnson-Lindenstrauss Lemma

Johnson-Lindenstrauss Lemma

JL-Lemma: [Dasgupta et al. 99]

- Point set P in \mathbb{R}^d , n := #P
- There is $f: \mathbb{R}^d \to \mathbb{R}^k$, $k \in O(\varepsilon^{-2} \ln n)$ $(k \ge 4(\varepsilon^{2/2} - \varepsilon^{3/3})^{-1} \ln n)$
- ...that preserves all inter-point distances up to a factor of $(1 + \varepsilon)$

Random orthogonal linear projection works with probability $\geq (1-1/n)$

This means...

What Does the JL-Lemma Imply?

Pairwise distances in small point set *P* (sub-exponential in *d*) can be well-preserved in low-dimensional embedding

What does it not say?

Does not imply that the points *themselves* are well-represented (just the pairwise distances)

Experiment

Intuition

Difference Vectors

- Normalize (relative error)
- Pole yields bad approximation
- Non-pole area much larger (high dimension)
- Need large number of poles (exponential in *d*)

Overview

Overview

- Introduction
- Locality Sensitive Hashing
 - Approximate Nearest Neighbors
 - Big picture
 - LSH on unit hypercube
 - Setup
 - Main idea
 - Analysis
 - Results
- Hash Functions Based on *p*-Stable
 Distributions

Approximate Nearest Neighbors

Input: *P*, *q*, *r* Output:

• If there is a NN, return yes and output one ANN

×

- If there is no ANN, return no
- Otherwise, return either

×

Input: *P*, *q*, *r* Output:

- If there is a NN, return yes and output one ANN
- If there is no ANN, return no
- Otherwise, return either

Input: *P*, *q*, *r* Output:

- If there is a NN, return yes and output one ANN
- If there is no ANN, return no
- Otherwise, return either

General ANN

Decision version + Binary search

ANN: previous results

	Query time	Space used	Preprocessing time
Vornoi	$O(2^d \log n)$	$O(n^{d/2})$	$O(n^{d/2})$
Kd-tree	$O(2^d \log n)$	O(n)	$O(n\log n)$
LSH	$O(n^{\rho}\log n)$	$O(n^{1+\rho})$	$O(n^{1+\rho}\log n)$

Locality Sensitive Hashing

- Remember: solving decision ANN
- Input:
 - No. of points: n
 - Number of dimensions: d
 - Point set: P
 - Query point: q

- Family of hash functions:
 - Close points to same buckets
 - Faraway points to different buckets
- Choose a random function and hash *P*
- Only store non-empty buckets

- Hash q in the table
- Test every point in *q*'s bucket for ANN
- Problem:
 - q's bucket may be empty

Solution:

- Use a number of hash tables!
- We are done if any ANN is found

x o

• Problem:

- Poor resolution too many candidates!
- Stop after reaching a limit, small probability

• Want to find a hash function:

If $u \in B(q, r)$ then $\Pr[h(u) = h(q)] \ge \alpha$ If $u \notin B(q, R)$ then $\Pr[h(u) = h(q)] \le \beta$ $r < R, \quad \alpha >> \beta$

- *h* is randomly picked from a family
- Choose

$$R = r(1 + \mathcal{E})$$

LSH on unit Hypercube

Setup: unit hypercube

- Points lie on hypercube: $H^d = \{0,1\}^d$
- Every point is a binary string
- Hamming distance (r):
 - Number of different coordinates

Setup: unit hypercube

- Points lie on hypercube: $H^d = \{0,1\}^d$
- Every point is a binary string
- Hamming distance (r):
 - Number of different coordinates

Main idea

Hash functions for hypercube

• Define family *F*:

Given : Hypercube
$$H^d$$
, point $b = (b_1, \dots, b_d)$
 $h \in F : \left\{ h_i(b) = b_i \middle| b = (b_1, \dots, b_d) \in H^d$, for $i = 1, \dots, d \right\}$
 $\alpha = 1 - \frac{r}{d}, \quad \beta = 1 - \frac{r(1 + \varepsilon)}{d}$

- Intuition: compare a random coordinate
- Called: $(r, r(1+\varepsilon), \alpha, \beta)$ -sensitive family

Hash functions for hypercube

• Define family G:

1

Given :
$$b \in H^{a}$$
, F
 $g \in G$:
 $\left\{g:\{0,1\}^{d} \rightarrow \{0,1\}^{k} \middle| g(b)=\left(h^{1}(b),\ldots,h^{k}(b)\right), \text{ for } h^{i} \in F\right\}$
 $\alpha' = \left(1-\frac{r}{d}\right)^{k} = \alpha^{k}, \quad \beta' = \left(1-\frac{r(1+\varepsilon)}{d}\right)^{k} = \beta^{k}$

- Intuition: Compare k random coordinates
- Choose *k* later logarithmic in *n* J-L lemma

Constructing hash tables

- Choose g_1, \dots, g_τ uniformly at random from G
 - Constructing au hash tables, hash $extsf{P}$
 - Will choose au later

LSH: ANN algorithm

- Hash q into each g_1, \dots, g_{τ}
 - Check colliding nodes for ANN
 - Stop if more than 4τ collisions, return fail

Details...

Choosing parameters

• Choose k and τ to ensure constant probability of:

- Finding an ANN if there is a NN
- Few collisions (< 4τ) when there is no ANN

Define:
$$\rho = \frac{\ln 1/\alpha}{\ln 1/\beta}$$

Choose: $k = \frac{\ln n}{\ln 1/\beta}$, $\tau = 2n^{\rho}$

- Probability of finding an ANN if there is a NN
 - Consider a point $p \in B(q, r)$ and a hash function $g_i \in G$

$$\Pr[g_i(p) = g_i(q)] \geq \alpha^k$$
$$= \alpha^{\frac{\ln n}{\ln 1/\beta}}$$
$$= n^{-\frac{\ln 1/\alpha}{\ln 1/\beta}}$$
$$= n^{-\rho}$$

- Probability of finding an ANN if there is a NN
 - Consider a point $p \in B(q, r)$ and a hash function $g_i \in G$

 $\Pr[g_i \text{ hashes } p \text{ and } q \text{ to different locations}] \leq 1 - n^{-\rho}$ $\Pr[p \text{ and } q \text{ collide at least once in } \tau \text{ tables}] \geq 1 - (1 - n^{-\rho})^{\tau}$ $\geq 1 - 1/e^2$ $> \frac{4}{5}$

- Probability of collision if there is no ANN
 - Consider a point $p \notin B(q, r(1+\varepsilon))$ and a hash function $g \in G$

$$\Pr[g(p) = g(q)] \leq \beta^{k}$$
$$= \exp\left(\ln(\beta) \cdot \frac{\ln n}{\ln 1/\beta}\right)$$
$$= \frac{1}{n}$$

- Probability of collision if there is no ANN
 - Consider a point $p \notin B(q, r(1+\varepsilon))$ and a hash function $g \in G$

 $E[\text{collisions with } q \text{ in a table}] \leq 1$ $E[\text{collisions with } q \text{ in } \tau \text{ tables}] \leq \tau$ $Pr[\geq 4\tau \text{ collisions}] \leq \frac{\tau}{4\tau} = \frac{1}{4}$ $Pr[<4\tau \text{ collisions}] \geq \frac{3}{4}$

Results

- Given: $(r, r(1+\varepsilon), \alpha, \beta)$ sensitive family for Hypercube
 - Can answer Decision-ANN with:

$$O\left(dn+n^{1+\rho}\right)$$
 space
 $O\left(dn^{\rho}\right)$ query time

• Show:

- **Given:** $(r, r(1+\varepsilon), \alpha, \beta)$ sensitive family for Hypercube
 - Can answer Decision-ANN with:

$$O\left(dn+n^{1+1/(1+\varepsilon)}\right)$$
 space
$$O\left(dn^{1/(1+\varepsilon)}\right)$$
 query time

Can amplify success probability

- Build $O(\log n)$ structures
- Can answer Decision-ANN with:

$$O\left(dn+n^{1+1/(1+\mathcal{E})}\log n\right) \text{space}$$
$$O\left(dn^{1/(1+\mathcal{E})}\log n\right) \text{query time}$$

Can answer ANN on the Hypercube:

• Build
$$O\left(\varepsilon^{-1}\log n\right)$$
 structures with $r_i = (1+\varepsilon)^i$

$$O\left(dn+n^{1+1/(1+\varepsilon)}\varepsilon^{-1}\log^2 n\right) \text{space}$$
$$O\left(dn^{1/(1+\varepsilon)}\log\left(\varepsilon^{-1}\log n\right)\right) \text{query time}$$

LSH - Summary

- Randomized Monte-Carlo algorithm for ANN
- First truly sub-linear query time for ANN
- Need to examine only logarithmic number of coordinates
- Can be extended to any metric space if we can find a hash function for it!
- Easy to update dynamically
- Can reduce ANN in R^d to ANN on hypercube

Overview

Overview

- Introduction
- Locality Sensitive Hashing
- Hash Functions Based on *p*-Stable
 Distributions
 - The basic idea
 - The details (more formal)
 - Analysis, experimental results

LSH by Random Projections

Idea:

- Hash function is a projection to a line of random orientation
- One composite hash function is a random grid
- Hashing buckets are grid cells
- Multiple grids are used for prob. amplification
- Jitter grid offset randomly (check only one cell)
- Double hashing: Do not store empty grid cells

LSH by Random Projections

LSH by Random Projections

Questions:

- What distribution should be used for the projection vectors?
- What is a good bucket size?
- Local sensitivity:
 - How many lines per grid?
 - How many hash grids overall?
 - Depends on sensitivity (as explained before)
- How efficient is this scheme?

The Details

p-Stable Distributions

Distribution for the Projection Vectors:

- Need to make the projection process formally accessible
- Mathematical tool: *p*-stable distributions

p-Stable Distributions

p-Stable Distributions:

A prob. distribution D is called p-stable : \Leftrightarrow

- For any $v_1, \ldots, v_n \in \mathbb{R}$
- And i.i.d. random variables $X_1, \ldots, X_n \sim D$

 $\sum_{i} \mathbf{v}_{i} \mathbf{X}_{i} \text{ has the same distribution as } \left[\sum_{i} / \mathbf{v}_{i} / \mathbf{P}\right]^{1/p} \mathbf{X}$ where $\mathbf{X} \sim \mathbf{D}$

Gaussian Distribution

Gaussian Normal Distributions are 2-stable

More General Distributions

Other distributions:

- Cauchy distribution
 - is 1-stable

(must have infinite variance

so that the central limit theorem is not violated)

 $\frac{1}{\pi(1+x^2)}$

- Distributions exists for $p \in (0,2]$
- No closed form, but can be sampled
- Sampling sufficient for LSH-algorithm

Projection

Projection Algorithm:

- Chose p according to metric of the space l_p
- Compute vector with entries according to a *p*-stable distribution
 [for example: Gaussian noise entries]
- Each vector v_i yields a hash function h_i

Locality Sensitive HF

Locality Sensitive Hash Functions

- $H = \{h: S \rightarrow U\}$ is $(r_1, r_2, \alpha, \beta)$ -sensitive : \Leftrightarrow
 - $v \in B(q, r_1) \Rightarrow Pr(collision(p, q)) \ge \alpha$
 - $v \notin B(q, r_2) \Rightarrow Pr(collision(p, q)) \le \beta$

Performance

 $\rho = \frac{\ln \alpha}{\ln \beta} \quad (O(dn + n^{1+\rho}) \text{ space, } O(dn^{\rho}) \text{ query time})$

Locality Sensitivity

Computing the Locality "Sensitivity"

Distance $c = ||v_1 - v_2||_p$

cX-distributed, *X* from *p*-stable distr.

$$\underbrace{\Pr(collision)}_{=:p(c)} = \int_{0}^{r} \frac{1}{c} \int_{abs. density}^{r} \underbrace{\left(\frac{t}{c}\right)}_{hit bucket} \left(1 - \frac{t}{r}\right) dt$$

The constructed family of hash functions is $(r_1, r_2, \alpha, \beta)$ -sensitive for $\alpha = p(1), \beta = p(c), r_2/r_1 = c$

Numerical Computation

Numerical result: $\rho \sim 1/c = 1/(1+\varepsilon)$

$$\left[\rho = \frac{\ln \alpha}{\ln \beta}, O(dn + n^{1+\rho}) \text{ space, } O(dn^{\rho}) \text{ query time}\right]$$

Numerical Computation

Width Parameter r

- Intuitively: In the range of ball radius
- Num. result: not too small (too large increases k)
- Practice: factor 4 (E2LSH manual)

Experimental Results

LSH vs. ANN

Comparison with ANN (Mount, Arya, kD/BBD-trees)

MNIST handwritten digits, 60000×28^2 pix (*d*=784)

LSH vs. ANN

Remarks:

- ANN with c = 10 is comparably fast and 65% correct, but there are no guarantees [Indyk]
- LSH needs more memory:
 1.2GB vs. 360MB [Indyk]
- Empirically, LSH shows linear performance when forced to use linear memory [Goldstein et al. 05]
- Benchmark searches only for points in the data set, LSH is much slower for negative results [Goldstein et al. 05, report ~1.5 ord. of mag.]