Approximate Nearest Neighbors Search in High Dimensions and Locality-Sensitive Hashing

PAPERS

Piotr Indyk, Rajeev Motwani: Approximate Nearest Neighbors:
Towards Removing the Curse of Dimensionality, STOC 1998.
Eyal Kushilevitz, Rafail Ostrovsky, Yuval Rabani: Efficient Search for Approximate Nearest Neighbor in High Dimensional Spaces. SIAM J. Comput., 2000.

Mayur Datar, Nicole Immorlica, Piotr Indyk, Vahab S. Mirrokni: Locality-Sensitive Hashing
Scheme Based on p-Stable Distributions. Symposium on Computational Geometry 2004.
Alexandr Andoni, Mayur Datar, Nicole Immorlica, Vahab S. Mirrokni, P. Indyk:
Locality-sensitive hashing using stable distributions.
In: Nearest Neighbor Methods in Learning and Vision: Theory and Practice, 2006.

Overview

Overview

- Introduction
- Locality Sensitive Hashing (Aneesh)
- Hash Functions Based on p-Stable Distributions (Michael)

Overview

Overview

- Introduction
- Nearest neighbor search problems
- Higher dimensions
- Johnson-Lindenstrauss lemma
- Locality Sensitive Hashing (Aneesh)
- Hash Functions Based on p-Stable Distributions (Michael)

Problem

Problem Statement

Today's Talks: NN-search in high dimensional spaces

- Given
- Point set $P=\left\{p_{1}, \ldots, p_{n}\right\}$
- a query point q
- Find
- [ε-approximate] nearest neighbor to q from P
- Goal:
- Sublinear query time
- "Reasonable" preprocessing time \& space
- "Reasonable" growth in d (exponential not acceptable)

Applications

Example Application: Feature spaces

- Vectors $x \in \mathbb{R}^{d}$ represent characteristic features of objects
- There are often many features
- Use nearest neighbor rule for classification / recognition

Applications

"Real World" Example: Image Completion

Applications

"Real World" Example: Image Completion

- Iteratively fill in pixels with best match (+ multi scale)
- Typically $5 \times 5 \ldots 9 \times 9$ neighborhoods, i.e.: dimension 25 ... 81
- Performance limited by nearest neighbor search
- 3D version: dimension 81 ... 729

Higher Dimensions

Higher Dimensions are Weird

Issues with High-Dimensional Spaces :

- d-dimensional space:
d independent neighboring directions to each point

- Volume-distance ratio explodes

$$
\begin{aligned}
\operatorname{vol}(r) & \in \Theta\left(r^{d}\right) \\
d & \rightarrow \infty
\end{aligned}
$$

No Grid Tricks

Regular Subdivision Techniques Fail

- Regular k-grids contain k^{d} cells
- The "grid trick" does not work
- Adaptive grids usually also do not help
- Conventional integration
 becomes infeasible (\Rightarrow MC-approx.)
- Finite element function representation become infeasible

Higher Dimensions are Weird

More Weird Effects:

- Dart-throwing anomaly
- Normal distributions gather prob.-mass in thin shells
- [Bishop 95]

- Nearest neighbor ~ farthest neighbor
- For unstructured points (e.g. iid-random)
- Not true for certain classes of structured data
- [Beyer et al. 99]

Johnson-Lindenstrauss Lemma

Johnson-Lindenstrauss Lemma

JL-Lemma: [Dasgupta et al. 99]

- Point set P in $\mathbb{R}^{d}, n:=\# P$
- There is $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}, \quad k \in \mathrm{O}\left(\varepsilon^{-2} \ln n\right)$

$$
\left(k \geq 4\left(\varepsilon^{2} / 2-\varepsilon^{3} / 3\right)^{-1} \ln n\right)
$$

- ...that preserves all inter-point distances up to a factor of $(1+\varepsilon)$

Random orthogonal linear projection works with probability $\geq(1-1 / n)$

This means...

What Does the JL-Lemma Imply?

Pairwise distances in small point set P (sub-exponential in d)
can be well-preserved in low-dimensional embedding

What does it not say?
Does not imply that the points themselves are well-represented (just the pairwise distances)

Experiment

Intuition

Difference Vectors

- Normalize (relative error)
- Pole yields bad approximation
- Non-pole area much
 larger (high dimension)
- Need large number of poles (exponential in d)

Overview

Overview

- Introduction
- Locality Sensitive Hashing
- Approximate Nearest Neighbors
- Big picture
- LSH on unit hypercube
- Setup
- Main idea
- Analysis
- Results
- Hash Functions Based on p-Stable Distributions

Approximate Nearest Neighbors

ANN: Decision version

Input: P, q, r Output:

- If there is a NN, return yes and output one ANN
- If there is no ANN, return no
- Otherwise, return either

ANN: Decision version

Input: P, q, r Output:

- If there is a NN , return yes and output one ANN
- If there is no ANN, return no
- Otherwise, return either

ANN: Decision version

Input: P, q, r Output:

- If there is a NN, return yes and output one ANN
- If there is no ANN, return no
- Otherwise, return either

ANN: Decision version

General ANN

\bigoplus PLEB

Decision version + Binary search

ANN: previous results

	Query time	Space used	Preprocessing time
Vornoi	$O\left(2^{d} \log n\right)$	$O\left(n^{d / 2}\right)$	$O\left(n^{d / 2}\right)$
Kd-tree	$O\left(2^{d} \log n\right)$	$O(n)$	$O(n \log n)$
LSH	$O\left(n^{\rho} \log n\right)$	$O\left(n^{1+\rho}\right)$	$O\left(n^{1+\rho} \log n\right)$

LSH: Big picture

Locality Sensitive Hashing

- Remember: solving decision ANN
- Input:
- No. of points: n
- Number of dimensions: d
- Point set: P
- Query point: q

LSH: Big Picture

- Family of hash functions:
- Close points to same buckets
- Faraway points to different buckets
- Choose a random function and hash P
- Only store non-empty buckets

LSH: Big Picture

- Hash q in the table
- Test every point in q's bucket for ANN
- Problem:
- q’s bucket may be empty

LSH: Big Picture

- Solution:
- Use a number of hash tables!
- We are done if any ANN is found

LSH: Big Picture

- Problem:
- Poor resolution too many candidates!
- Stop after reaching a limit, small probability

LSH: Big Picture

- Want to find a hash function:

$$
\begin{aligned}
& \text { If } u \in B(q, r) \text { then } \operatorname{Pr}[h(u)=h(q)] \geq \alpha \\
& \text { If } u \notin B(q, R) \text { then } \operatorname{Pr}[h(u)=h(q)] \leq \beta \\
& r<R, \quad \alpha \gg \beta
\end{aligned}
$$

- h is randomly picked from a family
- Choose

$$
R=r(1+\varepsilon)
$$

LSH on unit Hypercube

Setup: unit hypercube

- Points lie on hypercube: $H^{d}=\{0,1\}^{d}$
- Every point is a binary string
- Hamming distance (r):
- Number of different coordinates

$$
\begin{aligned}
& u: 000100111101 \\
& v: 01100010
\end{aligned}
$$

Setup: unit hypercube

- Points lie on hypercube: $H^{d}=\{0,1\}^{d}$
- Every point is a binary string
- Hamming distance (r):
- Number of different coordinates

$$
\begin{array}{lll|ll|l|lllll}
u & : & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 \\
v & : & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0
\end{array}
$$

Main idea

Hash functions for hypercube

- Define family F:

Given : Hypercube H^{d}, point $b=\left(b_{1}, \ldots, b_{d}\right)$

$$
\begin{aligned}
& h \in F:\left\{h_{i}(b)=b_{i} \mid b=\left(b_{1}, \ldots, b_{d}\right) \in H^{d}, \text { for } i=1, \ldots, d\right\} \\
& \alpha=1-\frac{r}{d}, \quad \beta=1-\frac{r(1+\varepsilon)}{d}
\end{aligned}
$$

- Intuition: compare a random coordinate
- Called: $(r, r(1+\varepsilon), \alpha, \beta)$-sensitive family

Hash functions for hypercube

- Define family \mathbf{G} :

Given : $b \in H^{d}, F$
$g \in G:$
$\left\{g:\{0,1\}^{d} \rightarrow\{0,1\}^{k} \mid g(b)=\left(h^{1}(b), \ldots, h^{k}(b)\right)\right.$, for $\left.h^{i} \in F\right\}$
$\alpha^{\prime}=\left(1-\frac{r}{d}\right)^{k}=\alpha^{k}, \quad \beta^{\prime}=\left(1-\frac{r(1+\varepsilon)}{d}\right)^{k}=\beta^{k}$

- Intuition: Compare k random coordinates
- Choose k later - logarithmic in $n \quad J$-L lemma

Constructing hash tables

- Choose g_{1}, \ldots, g_{τ} uniformly at random from G
- Constructing τ hash tables, hash P
- Will choose τ later

LSH: ANN algorithm

- Hash q into each g_{1}, \ldots, g_{τ}
- Check colliding nodes for ANN
- Stop if more than 4τ collisions, return fail

Details...

Choosing parameters

- Choose k and τ to ensure constant probability of:
- Finding an ANN if there is a NN
- Few collisions $(<4 \tau)$ when there is no ANN

$$
\begin{aligned}
& \text { Define : } \rho=\frac{\ln 1 / \alpha}{\ln 1 / \beta} \\
& \text { Choose }: \mathrm{k}=\frac{\ln \mathrm{n}}{\ln 1 / \beta}, \quad \tau=2 n^{\rho}
\end{aligned}
$$

Analysis of LSH

- Probability of finding an ANN if there is a NN
- Consider a point $p \in B(q, r)$ and a hash function $g_{i} \in G$

$$
\begin{aligned}
\operatorname{Pr}\left[g_{i}(p)=g_{i}(q)\right] & \geq \alpha^{k} \\
& =\alpha^{\frac{\ln \mathrm{n}}{\ln 1 / \beta}} \\
& =n^{-\frac{\ln 1 / \alpha}{\ln 1 / \beta}} \\
& =n^{-\rho}
\end{aligned}
$$

Analysis of LSH

- Probability of finding an ANN if there is a NN
- Consider a point $p \in B(q, r)$ and a hash function $g_{i} \in G$
$\operatorname{Pr}\left[g_{i}\right.$ hashes p and q to different locations $] \leq 1-n^{-\rho}$ $\operatorname{Pr}[p$ and q collide at least once in τ tables $] \geq 1-\left(1-n^{-\rho}\right)^{\tau}$

$$
\begin{aligned}
& \geq \\
& >
\end{aligned} \quad \frac{1-1 / e^{2}}{5}
$$

Analysis of LSH

- Probability of collision if there is no ANN
- Consider a point $p \notin B(q, r(1+\varepsilon))$ and a hash function $g \in G$

$$
\begin{aligned}
\operatorname{Pr}[g(p)=g(q)] & \leq \quad \beta^{k} \\
& =\exp \left(\ln (\beta) \cdot \frac{\ln \mathrm{n}}{\ln 1 / \beta}\right) \\
& =\frac{1}{n}
\end{aligned}
$$

Analysis of LSH

- Probability of collision if there is no ANN
- Consider a point $p \notin B(q, r(1+\varepsilon))$ and a hash function $g \in G$ $\mathrm{E}[$ collisions with q in a table] ≤ 1 $\mathrm{E}[$ collisions with q in τ tables] $\leq \quad \tau$

$$
\begin{array}{ll}
\operatorname{Pr}[\geq 4 \tau \text { collisions }] & \leq \frac{\tau}{4 \tau}=\frac{1}{4} \\
\operatorname{Pr}[<4 \tau \text { collisions }] & \geq \frac{3}{4}
\end{array}
$$

Results

Complexity of LSH

- Given: $(r, r(1+\varepsilon), \alpha, \beta)$-sensitive family for Hypercube
- Can answer Decision-ANN with:

$$
\begin{aligned}
& O\left(d n+n^{1+\rho}\right) \text { space } \\
& O(d n \rho) \text { query time }
\end{aligned}
$$

- Show:

$$
\rho=\frac{\ln 1 / \alpha}{\ln 1 / \beta}=\frac{\ln \left(1-\frac{\mathrm{r}}{\mathrm{~d}}\right)}{\ln \left(1-\frac{(1+\varepsilon) \mathrm{r}}{\mathrm{~d}}\right)} \leq \frac{1}{1+\varepsilon}
$$

Complexity of LSH

- Given: $(r, r(1+\varepsilon), \alpha, \beta)$-sensitive family for Hypercube
- Can answer Decision-ANN with:

$$
\begin{aligned}
& O\left(d n+n^{1+1 /(1+\varepsilon)}\right) \text { space } \\
& O\left(d n^{1 /(1+\varepsilon)}\right) \text { query time }
\end{aligned}
$$

Complexity of LSH

- Can amplify success probability
- Build $O(\log n)$ structures
- Can answer Decision-ANN with:

$$
\begin{aligned}
& O\left(d n+n^{1+1 /(1+\varepsilon)} \log n\right) \text { space } \\
& O\left(d n^{1 /(1+\varepsilon)} \log n\right) \text { query time }
\end{aligned}
$$

Complexity of LSH

- Can answer ANN on the Hypercube:
- Build $O\left(\varepsilon^{-1} \log n\right)$ structures with $r_{i}=(1+\varepsilon)^{i}$

$$
\begin{aligned}
& O\left(d n+n^{1+1 /(1+\varepsilon)} \varepsilon^{-1} \log ^{2} n\right) \text { space } \\
& O\left(d n^{1 /(1+\varepsilon)} \log \left(\varepsilon^{-1} \log n\right)\right) \text { query time }
\end{aligned}
$$

LSH - Summary

- Randomized Monte-Carlo algorithm for ANN
- First truly sub-linear query time for ANN
- Need to examine only logarithmic number of coordinates
- Can be extended to any metric space if we can find a hash function for it!
- Easy to update dynamically
- Can reduce ANN in R^{d} to ANN on hypercube

Overview

Overview

- Introduction
- Locality Sensitive Hashing
- Hash Functions Based on p-Stable Distributions
- The basic idea
- The details (more formal)
- Analysis, experimental results

LSH by Random Projections

Idea:

- Hash function is a projection to a line of random orientation
- One composite hash function is a random grid
- Hashing buckets are grid cells
- Multiple grids are used for prob. amplification
- Jitter grid offset randomly (check only one cell)
- Double hashing: Do not store empty grid cells

LSH by Random Projections

Basic Idea:

LSH by Random Projections

Questions:

- What distribution should be used for the projection vectors?
- What is a good bucket size?
- Local sensitivity:
- How many lines per grid?
- How many hash grids overall?
- Depends on sensitivity (as explained before)
- How efficient is this scheme?

The Details

p-Stable Distributions

Distribution for the Projection Vectors:

- Need to make the projection process formally accessible
- Mathematical tool: p-stable distributions

p-Stable Distributions

p-Stable Distributions:

A prob. distribution D is called p-stable $: \Leftrightarrow$

- For any $v_{1}, \ldots, v_{n} \in \mathbb{R}$
- And i.i.d. random variables $X_{1}, \ldots, X_{n} \sim D$
$\sum_{i} v_{i} X_{i}$ has the same distribution as $\left[\sum_{i}\left|v_{i}\right| p\right]^{1 / p} X$ where $X \sim D$

Gaussian Distribution

Gaussian Normal Distributions are 2-stable

More General Distributions

Other distributions:

- Cauchy distribution $\frac{1}{\pi\left(1+x^{2}\right)}$ is 1 -stable

(must have infinite variance
so that the central limit theorem is not violated)
- Distributions exists for $p \in(0,2]$
- No closed form, but can be sampled
- Sampling sufficient for LSH-algorithm

Projection

Projection Algorithm:

- Chose p according to metric of the space l_{p}
- Compute vector with entries according to a p-stable distribution
[for example: Gaussian noise entries]
- Each vector v_{i} yields a hash function h_{i}
- Compute: $h_{i}(x)=\left\lfloor\frac{\left\langle v_{i}, x\right\rangle+b}{r_{2}}\right\rfloor \xrightarrow{\begin{array}{r}\text { random value } \\ \in[0 \ldots r]\end{array}}$

Locality Sensitive HF

Locality Sensitive Hash Functions

$H=\{h: S \rightarrow U\}$ is $\left(r_{1}, r_{2}, \alpha, \beta\right)$-sensitive $: \Leftrightarrow$

$$
\begin{aligned}
& v \in \mathrm{~B}\left(q, r_{1}\right) \Rightarrow \operatorname{Pr}(\operatorname{collision}(p, q)) \geq \alpha \\
& v \notin \mathrm{~B}\left(q, r_{2}\right) \Rightarrow \operatorname{Pr}(\operatorname{collision}(p, q)) \leq \beta
\end{aligned}
$$

Performance
$\rho=\frac{\ln \alpha}{\ln \beta}\left(\mathrm{O}\left(d n+n^{1+\rho}\right)\right.$ space, $\mathrm{O}\left(d n^{\rho}\right)$ query time $)$

Locality Sensitivity

Computing the Locality "Sensitivity"
Distance $c=\left\|v_{1}-v_{2}\right\|_{p}$

$$
\left[h_{i}(x)=\left\lfloor\frac{\left\langle v_{i}, x\right\rangle+b}{r}\right\rfloor\right]
$$

$c X$-distributed, X from p-stable distr.

$$
\underbrace{\operatorname{Pr}(\text { collision })}_{=: p(c)}=\int_{0}^{r} \frac{1}{c} \underbrace{f_{p}\left(\frac{t}{c}\right)}_{\text {abs. density }} \underbrace{\left(1-\frac{t}{r}\right)}_{\text {hit bucket }} d t
$$

The constructed family of hash functions is
$\left(r_{1}, r_{2}, \alpha, \beta\right)$-sensitive for

$$
\alpha=p(1), \beta=p(c), r_{2} / r_{1}=c
$$

Numerical Computation

Numerical result: $\rho \sim 1 / c=1 /(1+\varepsilon)$
$\left[\rho=\frac{\ln \alpha}{\ln \beta}, \mathrm{O}\left(d n+n^{1+\rho}\right)\right.$ space, $\mathrm{O}\left(d n^{\rho}\right)$ query time $]$

Numerical Computation

Width Parameter r

- Intuitively: In the range of ball radius
- Num. result: not too small (too large increases k)
- Practice: factor 4 (E2LSH manual)

Experimental Results

LSH vs. ANN

Comparison with ANN (Mount, Arya, kD/BBD-trees)

MNIST handwritten digits, 60000×28^{2} pix $(d=784)$

LSH vs. ANN

Remarks:

- ANN with $c=10$ is comparably fast and 65% correct, but there are no guarantees [Indyk]
- LSH needs more memory: 1.2GB vs. 360MB [Indyk]
- Empirically, LSH shows linear performance when forced to use linear memory [Goldstein et al. 05]
- Benchmark searches only for points in the data set, LSH is much slower for negative results [Goldstein et al. 05, report ~ 1.5 ord. of mag.]

