Homework 1

Due: Friday, October 16, 2009

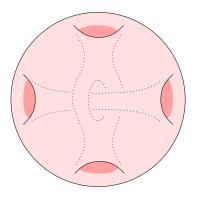
Problem 1

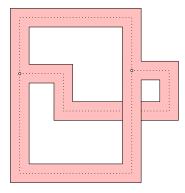
Homeomorphisms. (10 points.) Give explicit homeomorphisms to show that the following spaces with topologies inherited from the respective containing Euclidean spaces are homeomorphic:

- \mathbb{R} , the real line;
- (0,1), the open interval;
- $\mathbb{S}^1 \{(0,1)\}$, the circle with one point removed.

Problem 2

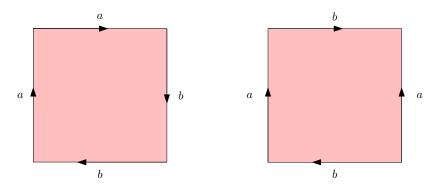
Classifying 2-manifolds. (20 points.) Characterize the two surfaces below in terms of genus, boundary, and orientability.





Problem 3

Klein bottle. (20 points.) Cut and paste the standard polygonal schema for the Klein bottle (a, a, b, b) to obtain the polygonal schema in which opposite edges of a square are identified (a, b, a^{-1}, b) .



Problem 4

Order complex. (20 points.) A *flag* in a simplicial complex K in \mathbb{R}^d is a nested sequence of proper faces, $\sigma_0 < \sigma_1 < \ldots < \sigma_k$. The collection of flags form an abstract simplicial complex A sometimes referred to as the *order complex* of K. Prove that A has a geometric realization in \mathbb{R}^d .

Problem 5

Alpha complexes. (10 points.) Let $S \subseteq \mathbb{R}^d$ be a finite set of points in general position. Recall that $\check{C}ech(r)$ and Alpha(r) are the $\check{C}ech$ and alpha complexes for radius $r \ge 0$, $\check{C}ech(r) = Nrv\{B_x(r)\}_{x\in S}$, and $Alpha(r) = Nrv\{B_x(r) \cap Vor_x\}_{x\in S}$. Is it true that $Alpha(r) = \check{C}ech(r) \cap Delaunay$? If yes, prove the following two subcomplex relations. If no, give examples to show which subcomplex relations are not valid.

- 1. Alpha $(r) \subseteq \operatorname{\check{C}ech}(r) \cap \operatorname{Delaunay}$
- 2. $\check{\mathrm{Cech}}(r) \cap \mathrm{Delaunay} \subseteq \mathrm{Alpha}(r)$

Extra credit

Deciding Isomorphism. (30 points.) What is the computational complexity of recognizing isomorphic abstract simplicial complexes?