Shape retrieval Intrinsic shape matching

Anastasia Dubrovina Computer Science Dept. Stanford University

Problem definition

- Goal: measure shape similarity

- Similarity: geometric, extrinsic vs. intrinsic, style similarity, etc.
- Tasks: classification, retrieval, etc.

Applications: shape retrieval from large shape collection

Applications: fine-grained similarity for interactive shape modeling

Modeling by example
[Funkhouser et al., 2004]

Applications: suggesting objects to match scene style

Lecture outline

- Shape similarity and retrieval
- Extrinsic shape similarity
- Intrinsic shape similarity
- Fine-grained similarity
- Style similarity
- Deformable shape matching
- If time permits

SHAPE SIMILARITY AND RETRIEVAL

Earlier work

- Descriptor-based similarity

Shape Distributions

Light field descriptors

- Requirements
- Representative
- Invariant (rigid transformations, small geometry changes, etc.)
- Compact - for fast comparison

Datasets

- Examples

Princeton Shape Benchmark
1814 models, 90 classes

SHREK'14 Large Scale Retrieval Contest 8987 models, 171 classes

SHREC'14 - Non-Rigid 3D Human Models track 400 real and 300 synthetic models

SHREC - 3D Shape Retrieval Contests

- @Eurographics Workshop on 3D Object Retrieval
 - E.g., this year (2017)

Tracks

The following tracks are organized. For description of tasks, the collections, queries, the evaluation procedure, and time schedule, follow the links

1. RGB-D Object-to-CAD Retrieval

Organizers: Binh-Son Hua, Quang-Hieu Pham, Minh-Khoi Tran, Quang-Trung Truong (Singapore University of Technology and Design) Contact: Binh-Son Hua, binhson.hua at gmail.com
Web page: http://people.sutd.edu.sg/~saikit/projects/sceneNN/shrec17/index.html
2. 3D Hand Gesture Recognition Using a Depth and Skeletal Dataset

Organizers: Quentin De Smedt, Hazem Wannous, Jean-Phillipe Vandeborre
Contact: Quentin de Smedt, quentin.desmedt@telecom-lille.fr
Weh page. $\mathrm{htth} \cdot / / \mathrm{wanow}$-rech telecom_lille fr/chrec2017-hand/
3. Large-scale 3D Shape Retrieval from ShapeNet Core55

Organizers: Manolis Savva, Hao Su (Stanford University), Fisher Yu, Tom Funkhouser (Princeton University)
Contact: Manolis Savva, manolis.savva at gmail.com
Web page: https://shapenet.cs.stanford.edu/shrec17/
4. Classifieationef protein shapes

Organizers: Haiguang Liu (Beijing Computational Science Research Center)
Contact: Haiguang Liu, hgliu at csrc.ac.cn
Web page: http://liulab.csrc.ac.cn/dokuwiki/doku.php?id=shrec2017
5. Point-Cloud Shape Retrieval of Non-Rigid Toys

Organizers: Frederico A. Limberger, Richard C. Wilson (University of York)
Contact: Frederico Limberger, fal504 at york.ac.uk
Web page: https://www.cs.york.ac.uk/cvpr/pronto/

Large-scale retrieval contest using ShapeNet

Shape范ET

Home Introduction News Dataset Procedure/Schedule Evaluation Results Team References

LARGE-SCALE 3D SHAPE RETRIEVAL FROM SHAPENET CORE55

3D content is becoming increasingly prevalent and important to everyday life. With commodity depth sensors, everyone can easily scan 3D models from the real world. Better 3D modeling tools are allowing designers to produce 3D models more easily. And with the advent of virtual reality, the demand for high quality 3D models will only increase. The increasing availability of 3D models requires scalable and efficient algorithms to manage and analyze them. A key research problem is retrieval of relevant 3D models and the community has been actively working on this task for more than a decade. However, existing algorithms are usually evaluated on datasets with only thousands of models, even though millions of 3D models are now available on the Internet. Thanks to the efforts of the ShapeNet [1] team, we can now use a much bigger dataset of 3D models to develop and evaluate new algorithms. In this track, we aim to evaluate the performance of 3D shape retrieval methods on a subset of the ShapeNet dataset.

Image vs. 3D datasets

ShapeNet

~3 million models

~2,000 classes

Rich annotations

Work in progress

Large-scale retrieval contest using ShapeNet

- In 2016, all methods used deep learning
- Best-performing method

[Su et al. 2015]
- (to be covered in the second part of the course)
- All methods perform extrinsic shape retrieval

Today - intrinsic shape similarity

- Different from extrinsic, or rigid, similarity

EXTRINSIC SIMILARITY

INTRINSIC SIMILARITY

Today - intrinsic shape similarity

- Different from extrinsic, or rigid, similarity

EXTRINSIC SIMILARITY

INTRINSIC SIMILARITY

- Approaches we will discuss today
- Shape Google [Bronstein et al. 2011]
- Supervised Bag-of-features [Litman et al. 2014]

Shape Google

Geometric words and expressions for shape retrieval

SIGGRAPH 2011, Vancouver, Canada

Bag of words

Notre Dame de Paris is a Gothic cathedral in the fourth quarter of Paris, France. It was the first Gothic architecture cathedral, and its construction spanned the Gothic period.

St. Peter's basilica is the largest church in world, located in Rome, Italy. As a work of architecture, it is regarded as the best building of its age in Italy.

Bags of visual features

Visual vocabulary

Think of an image as a collection of primitive elements

Local shape descriptors

${ }^{1}$ Aubry et al. 2011; ${ }^{2}$ Johnson, Hebert 1999; ${ }^{3}$ Belongie et al. 2002; ${ }^{4}$ Sun et al. 2009; Gebal et al. 2009
${ }^{5}$ B, Kokkjos 2010; ${ }^{6}$ Kovnatsky, BB, Kimmel 2010; ${ }^{7}$ Raviv, BB, Kimmel 2010

Heat kernel signature

Diagonal of heat kernel $h_{t}(x, x)$

Heat diffusion on a manifold

Multi-scale point descriptor

$$
p(x)=\left(h_{t}(x, x), \ldots, h_{a^{n} t}(x, x)\right)
$$

Heat kernel signature

Heat kernel signatures represented in RGB space

Heat kernel signature

Invariant to isometric deformations

Localized sensitivity to topological noise

Not scale invariant

Shape Google

Shape Google

BoGW - computation details

- A vocabulary $\mathcal{P}=\left\{\mathrm{p}_{1}, \ldots, \mathrm{p}_{V}\right\}$ of size V is a set of representative vectors in the descriptor space
- It is obtained using vector quantization through k-means in the HKS descriptor space

BoGW - computation details

- A vocabulary $\mathcal{P}=\left\{\mathrm{p}_{1}, \ldots, \mathrm{p}_{V}\right\}$ of size V is a set of representative vectors in the descriptor space
- It is obtained using vector quantization through k-means in the HKS descriptor space
- Given a point x with a descriptor $\mathrm{p}(\mathrm{x})$, compute

$$
\theta_{i}(x)=c(x) e^{-\frac{\left\|p(x)-p_{i}\right\|_{2}^{2}}{2 \sigma^{2}}}
$$

> "probability of the point x to be associated with the descriptor pi"

- Integrate over the whole shape X

$$
\mathrm{f}(X)=\int_{X} \theta(x) d \mu(x)
$$

Bags of features

Disadvantage of the bag of features approaches: they lose information about the spatial location of features in the image

Expressions

In math science, matrix decomposition is a factorization of a matrix into some canonical form. Each type of decomposition is used in a particular problem.

In biological science, decomposition is the process of organisms to break down into simpler form of matter. Usually, decomposition occurs after death.

> Matrix is a science fiction movie released in 1999. Matrix refers to a simulated reality created by machines in order to subdue the human population.

Expressions

In math science, matrix decomposition is a factorization of a matrix into some canonical form. Each type of decomposition is used in a particular problem.

In particular matrix used type a some science, decomposition form a factorization of is canonical. matrix math decomposition is in a Each problem. into of

Bags of geometric expressions

Spatially Sensitive Bags of Features (SS-BoF)

Bags of geometric expressions

Feature descriptor

Geometric words

Geometric expressions

Bag of geometric words

Shapes as binary codes: similarity-sensitive hashing

Spatially-sensitive bag of words

Metric learning

Shape hash: just 64 bits!

Training

SHREC 2010: Robust shape retrieval benchmark

Results

Results

Shape Google (Scale-invariant HKS)

Results

Shape Google+Metric learning

Query

0001.sometry. 3

Toldo et al. 2009

Shape Google

Drawback of the standard BoF construction

- The dictionary is constructed in an unsupervised manner using clustering, unaware of the following learning stage

Drawback of the standard BoF construction

- The dictionary is constructed in an unsupervised manner using clustering, unaware of the following learning stage
- Suggested improvement: add supervision to the BoF training "Supervised learning of bag-of-features shape descriptors using sparse coding" [Litman et al. 2014]

BoF computation flow - simplified

- Compute local descriptors - e.g., HKS

BoF computation flow - simplified

- Compute local descriptors - e.g., HKS
- Get a dictionary (= vocabulary) by vector quantization (VQ)

BoF computation flow - simplified

- Compute local descriptors - e.g., HKS
- Get a dictionary (= vocabulary) by vector quantization (VQ)
- Replace each descriptor by a binary indicator vector

BoF computation flow - simplified

- Compute local descriptors - e.g., HKS
- Get a dictionary (= vocabulary) by vector quantization (VQ)
- Replace each descriptor by a binary indicator vector
- Sum up all indicator vector to obtain the BoF

Suggested improvements

Space coding instead of VQ

Sparse coding

- Represent data \mathbf{X} as a sparse linear combination of atoms of dictionary D
- Dates back to [Olshausen and Field 1996]

Sparse coding

- Very successful when dictionary \mathbf{D} is learned from data
- State-of-the-art in many applications.

Sparse coding for BoF - example

Positive - S_{+}
Negative - S_{-}

Sparse coding for BoF - example

Positive - S_{+}
Negative - S_{-}

See the paper for implementation details

Descriptor pooling example

Pooled descriptors example: $\mathrm{h}\left(\mathbf{Z}^{*}\right), \mathbf{h}\left(\mathbf{Z}_{+}^{*}\right), \mathrm{h}\left(\mathbf{Z}_{-}^{*}\right)$

Dictionary learning

- Dictionary learning is task-driven - specified by a loss function
- Input: labeled set of training shapes S
- Each shape has an attached BoF $h(S)$
- Optimize over dictionary \mathbf{D} to minimize loss of training set

$$
\min _{\mathrm{D}} \sum_{S \in \mathcal{S}} \ell(\mathrm{~h})
$$

Dictionary learning using triplet loss

Make $\left\|\mathrm{h}(\mathbb{Z})-\mathrm{h}\left(\mathbf{Z}_{+}\right)\right\|$small and $\left\|\mathrm{h}(\mathbb{Z})-\mathrm{h}\left(\mathbf{Z}_{-}\right)\right\|$larger (in comarison) by minimizing

$$
\begin{aligned}
\ell & =\alpha \ell_{+}+(1-\alpha) \ell_{-} \\
\ell_{+}\left(\mathbf{Z}, \mathbf{Z}_{+}\right) & =\left\|\mathbf{h}(\mathbf{Z})-\mathbf{h}\left(\mathbf{Z}_{+}\right)\right\|_{1} \\
\ell_{-}\left(\mathbf{Z}, \mathbf{Z}_{+}, \mathbf{Z}_{-}\right) & =\max \left\{0, \mu+\left\|\mathbf{h}(\mathbf{Z})-\mathbf{h}\left(\mathbf{Z}_{+}\right)\right\|_{1}-\left\|\mathbf{h}(\mathbf{Z})-\mathbf{h}\left(\mathbf{Z}_{-}\right)\right\|_{1}\right\}
\end{aligned}
$$

BoF after dictionary learning

Pooled descriptors example: $\mathrm{h}\left(\mathbf{Z}^{*}\right), \mathbf{h}\left(\mathbf{Z}_{+}^{*}\right), \mathrm{h}\left(\mathbf{Z}_{-}^{*}\right)$

BoF after dictionary learning

Distance ratios $\frac{\left\|\mathbf{h}\left(\mathbf{Z}^{*}\right)-\mathbf{h}\left(\mathbf{Z}_{+}^{*}\right)\right\|_{1}}{\left\|\mathbf{h}\left(\mathbf{Z}^{*}\right)-\mathbf{h}\left(\mathbf{Z}_{-}^{*}\right)\right\|_{1}}$
6.26
\downarrow
3.53
\uparrow

0.98
\downarrow

(unsupervised)

SHREC'14 Dataset

- Goal: given a human model, detect this model in other poses

SHREC'14 results

- Goal: given a human model, detect this model in other poses

Query example - nearest neighbor

Questions so far?

Fine-grained shape classification

- Global shape descriptors - work well for shapes from different classes
- Next: a method for fine-grained sub-class classification from a sparse and noisy set of labeled shapes

Fine-grained shape classification

- Global shape descriptors - work well for shapes from different classes
- Next: a method for fine-grained sub-class classification from a sparse and noisy set of labeled shapes

- "Fine grained semi supervised labeling of large shape collections" [Huang et al. 2013]

Problem definition

- Large shape collection
E.g., 5850 chairs, 26 classes
- Sparse and noisy labels for each class
label = shape class
- Subtle geometric differences
- Goal: produce labels for all shapes in collection

Swivel

Approach overview

Shape matching

- Global phase: global affine shape alignment

$$
\begin{gathered}
T_{i}:(x, y, z) \in S_{i} \rightarrow\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \\
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}
s_{i}^{x} & 0 \\
0 & s_{i}^{y}
\end{array}\right) R\left(\theta_{i}\right)\binom{x}{y}+\binom{t_{i}^{x}}{t_{i}^{y}}, \quad z^{\prime}=s_{i}^{\bar{z}} z
\end{gathered}
$$

- Joint alignment - via MRF optimization

- Local phase: local non-rigid registration using free-form deformation

Distance learning

- Learn distance metric using the aligned labeled shapes - per class
- Distance between pair of shapes =
 parameterized using fixed-size voxels

$$
\operatorname{dist}(\cdot, \cdot)=\sum_{k \in \text { Voxels }} \mathbf{x}^{T} \operatorname{dist}(k) \text { Distance per voxel }
$$

- Learning formulated to
- Minimize distances between shape pairs in the similar sets
- Maximize distances between shapes from dissimilar sets

Learned metric - illustration

Graph-based classification

- Per class: create similarity graph using k-NN of each shape
- Assign labels via graph partitioning using graph diffusion distances

Labeling results

Propeller planes

Comparison to linear classifier result

Propeller planes

Questions?

Style similarity

- Two papers presented in Siggraph 2015

Stylistically incompatible

Stylistically compatible

Style similarity

- Two papers presented in Siggraph 2015

Stylistically compatible
Lun et al. 2015
Liu et al. 2015

Style compatibility for furniture models

Stylistically incompatible

Stylistically compatible
Liu et al. 2015

Style compatibility for furniture models

- Crowdsource compatibility between pairs of models

Crowdsourcing compatibility preferences

Design of user study [Wilber et al. 2014]

Please select the two most compatible pairs

Crowdsourcing compatibility preferences

Rater's selection

and 4 more triplets ...

Crowdsourcing compatibility preferences

Collected 63,800 triplets for living room and 20,200 for dining room

Part-aware geometric features

Step 1: Consistent segmentation [Kim et al. 2013] (next lecture)

Part-aware geometric features

Step 2: Computing geometry features for each part

Curvature histogram

Shape diameter histogram

Bounding box dimensions

Normalized surface area

Part-aware geometric features

Step 3: Concatenating features of all parts

Learning object-class specific embeddings

Style-aware shape retrieval

Query model

 Dining chair

Most incompatible chairs

Slide credit: T. Liu

Learning perceptual style similarity

Lun et al. 2015

Learning perceptual style similarity

Which of the two shapes (B or C) is more similar style-wise to shape A?

Learn measure parameters via crowdsourcing

Which of the two objects on the bottom (B or C) is more similar stylewise to the object on the top (A) ?
(i) B
(ii) C
(iii) Both
(iv) Neither

Geometric criteria for element similarity

Proportions

- Style-related elements are frequently designed to be distinct

Algorithm for measuring style similarity

Input: a pair of shapes
Output: a measure of style dissimilarity (distance)

Extraction of matching elements

(a)

- Multi-scale segmentation
- Patches as initial seeds to detect elements

Extraction of matching elements

(a)
(b)

Align with affine transformation, measure patch stylistic similarity:

Extraction of matching elements

(b)
(c)

Group patches into matching elements

Algorithm for measuring style similarity

input shapes matching elements

Algorithm for measuring style similarity

input shapes matching elements distance đomponents

Computed for each element using geometric cues

Percentage of the area on both models not covered by any matched elements, weighted by their saliency

Algorithm for measuring style similarity

input shapes matching elements

distance components output distance

Parameter learning

Learn parameters from training triplets:

- element-similarity weights (w)
- saliency weights (v)
- prevalence penalty (t)
that maximize likelihood function \& regularizer to promote sparsity:

$$
\begin{aligned}
L(\mathbf{w}, \mathbf{v}, t) & =\sum_{\text {triplet }\{\mathrm{A}, \mathrm{~B}, \mathrm{C}\}} \operatorname{confidence}(\mathrm{B}) \cdot \log P(\mathrm{~B} \text { is more similar to } \mathrm{A} \text { than } \mathrm{C}) \\
& +\sum_{\text {triplet }\{\mathrm{A}, \mathrm{~B}, \mathrm{C}\}} \operatorname{confidence}(\mathrm{C}) \cdot \log P(\mathrm{C} \text { is more similar to } \mathrm{A} \text { than } \mathrm{B}) \\
& + \text { regularizer }(\mathbf{w}, \mathbf{v}, t)
\end{aligned}
$$

Validation

Does it work?

Our result

(i) $\mathrm{B}-90 \%$
(ii) $\mathrm{C}-0 \%$
(iii) Both - 0\%
(iv) Neither - 10\%

Failure case

Application:
 Style-based shape tagging

Questions?

Shape similarity and retrieval - another flavor

Joint shape and image embedding

[Li et al. 2015]

Shape based Image Retrieval

Image based Shape Retrieval

[Li et al. 2015]

DEFORMABLE SHAPE MATCHING

Mapping Between Data Sets

- Multiscale mappings
- Point/pixel level
- Part level

Maps capture what is the same or similar across two data sets

Why Do We Care About Maps and Alignments?

- To stitch data together
- To transfer information
- To compute distances and similarities
- To perform joint analysis

Problem definition

- Given a pair of shapes, find corresponding points

Problem definition

- Given a pair of shapes, find corresponding points
- When shapes differ by rigid transformation - 6 degrees of freedom
- Use rigid alignment algorithm

Problem definition

- Given a pair of shapes, find corresponding points
- When shapes differ by non-rigid transformation - degrees of freedom can grow rapidly
- If transformation is isometric, we can use isometryinvariant shape properties to find correspondence

Problem definition

- Given a pair of shapes, find corresponding points
- When shape differ by elastic / topological transformation

Input shapes

Chairs-with-arms

Club

Swivel

Rex

Matching algorithm: desired properties

- Given two (or more) shapes, find a map that is
- Automatic
- Fast to compute
- Bijective (if we expect to have a global correspondence)
- Low-distortion
- Confirm to cycle-consistency constraints - in shape collections

Why this is important?

- Supervised machine learning algorithms require having shape collections with consistent annotations
- Some applications require having consistent alignment
- Co-alignment in shape collections
- Harder than pairwise alignment
- Can produce better results that pairwise alignment
- More in the following lecture
- For overview of shape alignment methods take cs233

