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Problem definition
• Goal: measure shape similarity 

• Similarity: geometric, extrinsic vs. intrinsic, style similarity, etc. 
• Tasks: classification, retrieval, etc.

2Image from [Bronstein et al. 2006]



Applications: shape retrieval from large 
shape collection

3Image credit: M. Bronstein



Applications: fine-grained similarity for 
interactive shape modeling 
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Modeling by example 
[Funkhouser et al., 2004]



Applications: suggesting objects to 
match scene style

5[Lun et al. 2015]



Lecture outline
• Shape similarity and retrieval 

• Extrinsic shape similarity 
• Intrinsic shape similarity 
• Fine-grained similarity 
• Style similarity 

• Deformable shape matching 
• If time permits
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SHAPE SIMILARITY AND 
RETRIEVAL
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Earlier work
• Descriptor-based similarity 

• Requirements 
• Representative 
• Invariant (rigid transformations, small geometry changes, etc.) 
• Compact - for fast comparison
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Shape Distributions Light field descriptors

D.-Y. Chen et. al / On Visual Similarity Based 3D Model Retrieval

Figure 3: Comparing LightField Descriptors between two 3D models

rotated randomly. First, 20 images are rendered from ver-
tices of a dodecahedron for both the 3D model. As shown in
Figure 3 (b), we compare all the corresponding 2D images
from the same viewing angles, such as, the order 1∼5 be-
tween pig and cow model. Thus we get a similarity value un-
der this rotation of camera system. Then, we map the order
1∼5 differently as in Figure 3 (d), and get another similarity
value. After repeating this process, we find a rotation of cam-
era positions with the best similarity (cross-correlation being
highest), as shown in Figure 3 (d). Therefore, the similarity
between the two models is the summation of the similarities
among all the corresponding images.

Consequently, the LightField Descriptor is defined as the
basis representation of a 3D model, and is defined as features
of 10 images rendered from vertices of dodecahedron over
a hemisphere. A LightField Descriptor somehow eliminates
the rotation problem, but this is not exact enough. Therefore,
a set of light fields is applied to improve the robustness.

2.3. A set of LightField Descriptors for a 3D model

To be robust against rotations among 3D models, a set of
LightField Descriptors is applied to each 3D model. If there
are N LightField Descriptors, which are created from dif-
ferent camera system orientations for both 3D models, there
are (N × (N − 1) + 1)× 60 different rotations between the
two models. Therefore, the dissimilarity, DB, between two
3D models is then defined as:

DB = min DA (L j , Lk ) , j, k = 1 ..N (2)

where DA is defined in Equation (1), and L j and Lk are light
field descriptors of two models, respectively.

The relationship of the N light fields needs to be care-
fully set to ensure that all the cameras are distributed uni-
formly and able to cover different viewing angles to solve
the rotation problem effectively. The approach of generat-
ing the evenly distributing camera positions of the N light
fields comes from the idea in relaxation of random points
proposed by Turk 15. The process can be pre-processed, and
then all 3D models use the same distributed light fields to
generate corresponding descriptors. In our implementation,
we set N = 10, as shown in Figure 4, that is, the similar-
ity between two 3D models is obtained from the best one of
5,460 different rotations. Therefore, the average maximum
error of rotation angle between two 3D models is about 3.4
degree in longitude and latitude. That is:

180◦

x
× 360◦

x
= 5460 ⇒ x ∼= 3.4◦ (3)

which is small enough for our 3D model retrieval system
according to our experimental results. Of course, the number

Figure 4: A set of LightField Descriptors for a 3D model

c⃝ The Eurographics Association and Blackwell Publishers 2003.

Images from Princeton Shape Retrieval and Analysis Group webpage

http://gfx.cs.princeton.edu/proj/shape/


• Examples

Datasets
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Princeton Shape Benchmark 
1814 models, 90 classes 

SHREK’14 Large Scale Retrieval Contest 
8987 models, 171 classes

SHREK’11 Shape Retrieval Contest 
1237 models

SHREC'14 - Non-Rigid 3D Human Models track 
400 real and 300 synthetic models



SHREC - 3D Shape Retrieval Contests

• @Eurographics Workshop on 3D Object Retrieval 
• E.g., this year (2017)
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Large-scale retrieval contest using 
ShapeNet
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Image vs. 3D datasets
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State-of-the-art 3D shape dataset

Limited in 
• scale
• object classes
• diversity

Slide credit: H. Su



ShapeNet

13

…

~3 million models ~2,000 classes Rich annotations

Work in progress

…

Slide credit: H. Su



Large-scale retrieval contest using 
ShapeNet

• In 2016, all methods used deep learning 
• Best-performing method 

• (to be covered in the second part of the course) 
• All methods perform extrinsic shape retrieval
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M. Savva, F. Yu, H. Su et al. / SHREC’16 Track: Large-Scale 3D Shape Retrieval from ShapeNet Core55
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Figure 1: Overview for MVCNN Team. Illustrated using the 1st camera setup for non-perturbed shapes.

5.1. Multi-view Convolutional Neural Networks, by H. Su, S.
Maji, E. Kalogerakis, E. G. Learned-Miller

Our method is based on the Multi-view Convolutional Neural Net-
works (MVCNN) [SMKL15]. Our code is available at http:
//vis-www.cs.umass.edu/mvcnn/.

5.1.1. Pre-processing

Our method takes rendered views of 3D shapes as inputs. We
use two different camera setups for rendering. For the 1st cam-
era setup, we assume that the shapes are upright oriented along
a consistent axis (e.g. z-axis). The non-perturbed shapes provided
in the contest satisfy this assumption, as well as most modern on-
line shape repositories. In this case, we create 12 rendered views by
placing 12 virtual cameras around the shape every 30�. For the 2nd

camera setup, which is used for the perturbed shapes, we make no
assumption about the orientation of the shapes and place 20 virtual
cameras at the 20 vertices of an icosahedron enclosing the shape.
We generate 4 rendered views from each camera, using 0�, 90�,
180�, 270� in-plane rotations, yielding a total of 80 views.

The 55 categories in ShapeNetCore55 are highly imbalanced.
In the training set, the largest category has about 150 times more
shapes than the smallest category. The subcategories are even more
imbalanced. To perform category balancing, we apply Eq. 1 to the
training class distribution d, and randomly sample a training set
for each training epoch according to dbalanced . t is a parameter that
controls the trade-off between macro-averaged and micro-averaged
evaluation metrics. We set t to 0.5 for training the 55-category net-
work and 0.2 for the 204-subcategory network.

dbalanced(k) = avg(d) · ( d(k)
avg(d) )

t (1)

5.1.2. Network Architecture

As shown in Figure 1, each rendered view of a 3D shape is passed
through the first part of the network (CNN1) separately, aggre-
gated at a view-pooling layer using max-pooling, and then passed

through the remaining part of the network (CNN2). All branches of
CNN1 share the same parameters. CNN1 and CNN2 together con-
tain 5 convolutional layers (conv1,...,5) and 3 fully-connected layers
(fc6,...,8). For best performance, the view-pooling layer should be
placed somewhere between conv5 and fc7 [SMKL15]. We use fc7
for all our submitted results.

We initialize the parameters of the network from the VGG-M
network [CSVZ14], and fine-tune the network on ShapeNetCore55.

5.1.3. Retrieval

We train two networks for each camera setup: one for 55-way clas-
sification and another for 204-way subcategory classification. For
each query, we first predict its label and construct a retrieval set
containing all shapes with the same predicted label. Then we ex-
tract features for the query and the targets from the output layer of
the 204-way subcategory network (i.e. the features are the classi-
fication probabilities) and re-rank the results according to their L2
distances to the query. The re-ranking step will not influence preci-
sion and recall, and is designed mainly for improving NDCG.

In [SMKL15], we used the penultimate layer in the network as
features together with low-rank Mahalanobis metric learning for
dimension reduction. For this contest, we use the output layer as
features directly due to time constraints.

5.2. GIFT: A Real-time and Scalable 3D Shape Search
Engine, by S.Bai, Z.Zhou, M.Liao, X.Bai

Our method is based on GIFT [BBZ⇤16]. It is composed of four
components: projection rendering, view feature extraction, multi-
view matching and re-ranking (see Figure 2).

5.2.1. Projection rendering

For each 3D shape, we place its centroid at the origin of a unit
sphere and normalize its scale by resizing its maximum polar dis-
tance to unit length. Then we render the 3D shape into depth images
from Nv (Nv = 64 in our experiments) viewpoints located uniformly
on the surface of a sphere.

c� 2016 The Author(s)
Eurographics Proceedings c� 2016 The Eurographics Association.

[Su et al. 2015]



Today - intrinsic shape similarity
• Different from extrinsic, or rigid, similarity
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INTRINSIC SIMILARITYEXTRINSIC SIMILARITY

Image credit: A. Bronstein



Today - intrinsic shape similarity
• Different from extrinsic, or rigid, similarity 

• Approaches we will discuss today 
• Shape Google [Bronstein et al. 2011] 
• Supervised Bag-of-features [Litman et al. 2014]
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INTRINSIC SIMILARITYEXTRINSIC SIMILARITY

Image credit: A. Bronstein
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Bag of words
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Notre Dame de Paris is a Gothic cathedral in the fourth 
quarter of Paris, France. It was the first Gothic architecture 
cathedral, and its construction spanned the Gothic period.
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St. Peter’s basilica is the largest church in world, located in 
Rome, Italy. As a work of architecture, it is regarded as the 
best building of its age in Italy.

Notre Dame de Paris is a Gothic cathedral in the fourth 
quarter of Paris, France. It was the first Gothic architecture 
cathedral, and its construction spanned the Gothic period.

St. Peter’s basilica is the largest church in world, located in 
Rome, Italy. As a work of architecture, it is regarded as the 
best building of its age in Italy.

Slide credit: M. Bronstein



Bags of visual features
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Visual vocabulary

Zisserman et al.

Think of an image as a 
collection of primitive elements

Slide credit: M. Bronstein



Local shape descriptors
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Curvature

Rigid Bending TopologyScale

Spin image2

Shape context3

Representation

HKS4

Color HKS6

vHKS7

1 Aubry et al. 2011; 2 Johnson, Hebert 1999; 3 Belongie et al. 2002; 4 Sun et al. 2009; Gebal et al. 2009

Mesh

Mesh

Mesh

Mesh

Mesh

Volume/Mesh

5 B, Kokkinos 2010; 6 Kovnatsky, BB, Kimmel 2010; 7 Raviv, BB, Kimmel 2010 

SI-HKS5 Mesh

WKS1 Mesh

Slide credit: M. Bronstein



Heat kernel signature

21

Diagonal of heat kernel

Multi-scale point descriptor
Heat diffusion on a 

manifold

Slide credit: M. Bronstein



Heat kernel signature
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Heat kernel signatures represented in RGB space

Slide credit: M. Bronstein



Heat kernel signature
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Invariant to isometric deformations Localized sensitivity 
to topological noise

Not scale invariant 
(scale-invariant HKS in [B&Kokkinos 2010])

Slide credit: M. Bronstein



Shape
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Geometric vocabulary

Bag of geometric words

Think of a shape as a 
collection of primitive 

elements
Slide credit: M. Bronstein



Shape
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Geometric vocabulary

Bag of geometric words

Shape descriptors can 
be computed at stable 
points, or at all points

Slide credit: M. Bronstein



BoGW - computation details
• A vocabulary                               of size V is a set of 

representative vectors in the descriptor space 
• It is obtained using vector quantization through k-means in the 

HKS descriptor space 

26

Vocabulary P

Shape Google: Geometric Words and Expressions for Invariant Shape Retrieval • 1:7

2007]. For triangular meshes, a popular choice adopted in this arti-
cle is the cotangent weight scheme [Pinkall and Polthier 1993] and
its variants [Meyer et al. 2003], in which wij = (cot αij + cot βij)/2
for j in the 1-ring neighborhood of vertex i and zero otherwise,
where αij and βij are the two angles opposite to the edge between
vertices i and j in the two triangles sharing the edge. It can be
shown [Wardetzky et al. 2008] that this discretization preserves
many important properties of the continuous Laplace-Beltrami op-
erator, such as positive semidefiniteness, symmetry, and locality.
For shapes represented as point clouds, the discretization of Belkin
et al. [2009] can be used.

Finite elements. Direct computation of the eigenfunction without
explicit discretization of the Laplace-Beltrami operator is possible
using the Finite Elements Method (FEM). By the Green formula, the
Laplace-Beltrami eigenvalue problem #Xφ = λφ can be expressed
in the weak form as

⟨#Xφ,α⟩L2(X) = λ⟨φ,α⟩L2(X) (10)

for any smooth α, where ⟨f, g⟩L2(X) =
∫

X
f (x)g(x)dµ(x) and µ(x)

is the standard area measure on X. Given a finite basis {α1, . . . , αq}
spanning a subspace of L2(X), the solution φ can be expanded
as φ(x) ≈ u1α1(x) + · · · + uqαq (x). Substituting this expansion
into (10) results in a system of equations

q∑

j=1

uj ⟨#Xαj ,αr⟩L2(X) = λ

q∑

j=1

uj ⟨αj , αr⟩L2(X),

for r = 1, . . . , q, which, in turn, is posed as a generalized eigenvalue
problem

Au = λBu. (11)

(here A and B are q × q matrices with elements arj =
⟨#Xαj ,αr⟩L2(X) and brj = ⟨αj , αr⟩L2(X)). Solution of (11) gives
eigenvalues λ and eigenfunctions φ = u1α1 + · · · + uqαq of #X .

As the basis, linear, quadratic, or cubic polynomials defined on
the mesh can be used. The FEM approach is quite general, and in
particular, the cotangent scheme can be derived as its instance by
using piecewise linear hat functions centered on the vertices and
supported within the 1-ring neighborhood. Since the inner products
in FEM are computed on the surface, the method can be less sensitive
to the shape discretization than the direct approach based on the
discretization of the Laplace-Beltrami operator. This is confirmed
by numerical studies performed by Reuter et al. who showed the
advantage in accuracy of higher-order FEM schemes at the expense
of computational and storage complexity [Reuter et al. 2005]. In
Bronstein et al. [2010b], linear FEM method produced comparable
results in the discretization of HKS compared to cotangent weights
(note that the sole difference between these methods is the use of a
lumped mass matrix to get a diagonal matrix A for the latter).

4. BAGS OF FEATURES

Given local descriptor computed at a set of stable feature points
(or alternatively, a dense descriptor), similarly to feature-based ap-
proaches in computer vision, our next step is to quantize the descrip-
tor space in order to obtain a compact representation in a vocabulary
of “geometric words.” A vocabulary P = {p1, . . . , pV } of size V
is a set of representative vectors in the descriptor space, obtained
by means of unsupervised learning (vector quantization through
k-means).

Given a vocabulary P , for each point x ∈ X with the descriptor
p(x), we define the feature distribution θ (x) = (θ1(x), . . . , θV (x))T,

a V × 1 vector whose elements are

θi(x) = c(x)e−
∥p(x)−pi ∥2

2
2σ2 , (12)

and the constant c(x) is selected in such a way that ∥θ (x)∥1 = 1.
θi(x) can be interpreted as the probability of the point x to be
associated with the descriptor pi from the vocabulary P .

Eq. (12) is a “soft” version of vector quantization. “Hard” vector
quantization is obtained as a particular case of (12) by choosing
σ ≈ 0, in which case θi(x) = 1 (where i is the index of the
vocabulary element pi closest to p in the descriptor space) and zero
otherwise.

Integrating the feature distribution over the entire shape X yields
a V × 1 vector

f(X) =
∫

X

θ (x)dµ(x), (13)

which we refer to as a Bag of Features (or BoF for short). Using
this representation, we can define a distance between two shapes X
and Y as a distance between bags of features in IRV ,

dBoF(X, Y ) = ∥f(X) − f(Y )∥. (14)

An example of bags of features using a vocabulary of size 64 is
shown in Figure 7 (top).

4.1 Spatially Sensitive Bags of Features

The disadvantage of bags of features is the fact that they consider
only the distribution of the words and lose the relations between
them. Resorting again to a text search example, in a document
about “matrix decomposition” the words “matrix” and “decompo-
sition” are frequent. Yet, a document about the movie Matrix and a
document about decomposition of organic matter will also contain
these words, which will result in a similar word statistics and, con-
sequently, similar bags of features. In the most pathological case, a
random permutation of words in a text will produce identical bags
of words. In order to overcome this problem, text search engines
commonly use vocabularies consisting not only of single words but
also of combinations of words or expressions. The combination of
words “matrix decomposition” will be thus frequently found in a
document about the algebraic notion, but unlikely in a document
about the Matrix movie (Figure 6).1

In case of shapes, the phenomenon may be even more pro-
nounced, as shapes, being poorer in features, tend to have many
similar geometric words. The analogy of expressions in shapes
would be sets of spatially close geometric words. Instead of look-
ing at the frequency of individual geometric words, we look at the
frequency of word pairs, thus accounting not only for the frequency
but also for the spatial relations between features. For this purpose,
we define the following generalization of a bag of features, referred
to as a Spatially Sensitive Bags of Features (SS-BoF).

F(X) =
∫

X×X

θ (x)θT(y)Kt (x, y)dµ(x)dµ(y) (15)

The resulting representation F is a V × V matrix, representing the
frequency of appearance of nearby geometric words or “geometric
expressions” i, j . It can be considered as a bag of features in a
vocabulary of size V 2 consisting of pairs of words (see Figure 7,

1For this reason, Web search engines return different results when the search
string is written with quotation marks (“matrix decomposition”) and without
(matrix decomposition).

ACM Transactions on Graphics, Vol. 30, No. 1, Article 1, Publication date: January 2011.
k-means

Slide credit: M. Bronstein



BoGW - computation details
• A vocabulary                               of size V is a set of 

representative vectors in the descriptor space 
• It is obtained using vector quantization through k-means in the 

HKS descriptor space  
• Given a point x with a descriptor p(x), compute 

• Integrate over the whole shape X
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2007]. For triangular meshes, a popular choice adopted in this arti-
cle is the cotangent weight scheme [Pinkall and Polthier 1993] and
its variants [Meyer et al. 2003], in which wij = (cot αij + cot βij)/2
for j in the 1-ring neighborhood of vertex i and zero otherwise,
where αij and βij are the two angles opposite to the edge between
vertices i and j in the two triangles sharing the edge. It can be
shown [Wardetzky et al. 2008] that this discretization preserves
many important properties of the continuous Laplace-Beltrami op-
erator, such as positive semidefiniteness, symmetry, and locality.
For shapes represented as point clouds, the discretization of Belkin
et al. [2009] can be used.

Finite elements. Direct computation of the eigenfunction without
explicit discretization of the Laplace-Beltrami operator is possible
using the Finite Elements Method (FEM). By the Green formula, the
Laplace-Beltrami eigenvalue problem #Xφ = λφ can be expressed
in the weak form as

⟨#Xφ,α⟩L2(X) = λ⟨φ,α⟩L2(X) (10)

for any smooth α, where ⟨f, g⟩L2(X) =
∫

X
f (x)g(x)dµ(x) and µ(x)

is the standard area measure on X. Given a finite basis {α1, . . . , αq}
spanning a subspace of L2(X), the solution φ can be expanded
as φ(x) ≈ u1α1(x) + · · · + uqαq (x). Substituting this expansion
into (10) results in a system of equations

q∑

j=1

uj ⟨#Xαj ,αr⟩L2(X) = λ

q∑

j=1

uj ⟨αj , αr⟩L2(X),

for r = 1, . . . , q, which, in turn, is posed as a generalized eigenvalue
problem

Au = λBu. (11)

(here A and B are q × q matrices with elements arj =
⟨#Xαj ,αr⟩L2(X) and brj = ⟨αj , αr⟩L2(X)). Solution of (11) gives
eigenvalues λ and eigenfunctions φ = u1α1 + · · · + uqαq of #X .

As the basis, linear, quadratic, or cubic polynomials defined on
the mesh can be used. The FEM approach is quite general, and in
particular, the cotangent scheme can be derived as its instance by
using piecewise linear hat functions centered on the vertices and
supported within the 1-ring neighborhood. Since the inner products
in FEM are computed on the surface, the method can be less sensitive
to the shape discretization than the direct approach based on the
discretization of the Laplace-Beltrami operator. This is confirmed
by numerical studies performed by Reuter et al. who showed the
advantage in accuracy of higher-order FEM schemes at the expense
of computational and storage complexity [Reuter et al. 2005]. In
Bronstein et al. [2010b], linear FEM method produced comparable
results in the discretization of HKS compared to cotangent weights
(note that the sole difference between these methods is the use of a
lumped mass matrix to get a diagonal matrix A for the latter).

4. BAGS OF FEATURES

Given local descriptor computed at a set of stable feature points
(or alternatively, a dense descriptor), similarly to feature-based ap-
proaches in computer vision, our next step is to quantize the descrip-
tor space in order to obtain a compact representation in a vocabulary
of “geometric words.” A vocabulary P = {p1, . . . , pV } of size V
is a set of representative vectors in the descriptor space, obtained
by means of unsupervised learning (vector quantization through
k-means).

Given a vocabulary P , for each point x ∈ X with the descriptor
p(x), we define the feature distribution θ (x) = (θ1(x), . . . , θV (x))T,

a V × 1 vector whose elements are

θi(x) = c(x)e−
∥p(x)−pi ∥2

2
2σ2 , (12)

and the constant c(x) is selected in such a way that ∥θ (x)∥1 = 1.
θi(x) can be interpreted as the probability of the point x to be
associated with the descriptor pi from the vocabulary P .

Eq. (12) is a “soft” version of vector quantization. “Hard” vector
quantization is obtained as a particular case of (12) by choosing
σ ≈ 0, in which case θi(x) = 1 (where i is the index of the
vocabulary element pi closest to p in the descriptor space) and zero
otherwise.

Integrating the feature distribution over the entire shape X yields
a V × 1 vector

f(X) =
∫

X

θ (x)dµ(x), (13)

which we refer to as a Bag of Features (or BoF for short). Using
this representation, we can define a distance between two shapes X
and Y as a distance between bags of features in IRV ,

dBoF(X, Y ) = ∥f(X) − f(Y )∥. (14)

An example of bags of features using a vocabulary of size 64 is
shown in Figure 7 (top).

4.1 Spatially Sensitive Bags of Features

The disadvantage of bags of features is the fact that they consider
only the distribution of the words and lose the relations between
them. Resorting again to a text search example, in a document
about “matrix decomposition” the words “matrix” and “decompo-
sition” are frequent. Yet, a document about the movie Matrix and a
document about decomposition of organic matter will also contain
these words, which will result in a similar word statistics and, con-
sequently, similar bags of features. In the most pathological case, a
random permutation of words in a text will produce identical bags
of words. In order to overcome this problem, text search engines
commonly use vocabularies consisting not only of single words but
also of combinations of words or expressions. The combination of
words “matrix decomposition” will be thus frequently found in a
document about the algebraic notion, but unlikely in a document
about the Matrix movie (Figure 6).1

In case of shapes, the phenomenon may be even more pro-
nounced, as shapes, being poorer in features, tend to have many
similar geometric words. The analogy of expressions in shapes
would be sets of spatially close geometric words. Instead of look-
ing at the frequency of individual geometric words, we look at the
frequency of word pairs, thus accounting not only for the frequency
but also for the spatial relations between features. For this purpose,
we define the following generalization of a bag of features, referred
to as a Spatially Sensitive Bags of Features (SS-BoF).

F(X) =
∫

X×X

θ (x)θT(y)Kt (x, y)dµ(x)dµ(y) (15)

The resulting representation F is a V × V matrix, representing the
frequency of appearance of nearby geometric words or “geometric
expressions” i, j . It can be considered as a bag of features in a
vocabulary of size V 2 consisting of pairs of words (see Figure 7,

1For this reason, Web search engines return different results when the search
string is written with quotation marks (“matrix decomposition”) and without
(matrix decomposition).

ACM Transactions on Graphics, Vol. 30, No. 1, Article 1, Publication date: January 2011.

“probability of the point x to be 
associated with the descriptor pi” 
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2007]. For triangular meshes, a popular choice adopted in this arti-
cle is the cotangent weight scheme [Pinkall and Polthier 1993] and
its variants [Meyer et al. 2003], in which wij = (cot αij + cot βij)/2
for j in the 1-ring neighborhood of vertex i and zero otherwise,
where αij and βij are the two angles opposite to the edge between
vertices i and j in the two triangles sharing the edge. It can be
shown [Wardetzky et al. 2008] that this discretization preserves
many important properties of the continuous Laplace-Beltrami op-
erator, such as positive semidefiniteness, symmetry, and locality.
For shapes represented as point clouds, the discretization of Belkin
et al. [2009] can be used.

Finite elements. Direct computation of the eigenfunction without
explicit discretization of the Laplace-Beltrami operator is possible
using the Finite Elements Method (FEM). By the Green formula, the
Laplace-Beltrami eigenvalue problem #Xφ = λφ can be expressed
in the weak form as

⟨#Xφ,α⟩L2(X) = λ⟨φ,α⟩L2(X) (10)

for any smooth α, where ⟨f, g⟩L2(X) =
∫

X
f (x)g(x)dµ(x) and µ(x)

is the standard area measure on X. Given a finite basis {α1, . . . , αq}
spanning a subspace of L2(X), the solution φ can be expanded
as φ(x) ≈ u1α1(x) + · · · + uqαq (x). Substituting this expansion
into (10) results in a system of equations

q∑

j=1

uj ⟨#Xαj ,αr⟩L2(X) = λ

q∑

j=1

uj ⟨αj , αr⟩L2(X),

for r = 1, . . . , q, which, in turn, is posed as a generalized eigenvalue
problem

Au = λBu. (11)

(here A and B are q × q matrices with elements arj =
⟨#Xαj ,αr⟩L2(X) and brj = ⟨αj , αr⟩L2(X)). Solution of (11) gives
eigenvalues λ and eigenfunctions φ = u1α1 + · · · + uqαq of #X .

As the basis, linear, quadratic, or cubic polynomials defined on
the mesh can be used. The FEM approach is quite general, and in
particular, the cotangent scheme can be derived as its instance by
using piecewise linear hat functions centered on the vertices and
supported within the 1-ring neighborhood. Since the inner products
in FEM are computed on the surface, the method can be less sensitive
to the shape discretization than the direct approach based on the
discretization of the Laplace-Beltrami operator. This is confirmed
by numerical studies performed by Reuter et al. who showed the
advantage in accuracy of higher-order FEM schemes at the expense
of computational and storage complexity [Reuter et al. 2005]. In
Bronstein et al. [2010b], linear FEM method produced comparable
results in the discretization of HKS compared to cotangent weights
(note that the sole difference between these methods is the use of a
lumped mass matrix to get a diagonal matrix A for the latter).

4. BAGS OF FEATURES

Given local descriptor computed at a set of stable feature points
(or alternatively, a dense descriptor), similarly to feature-based ap-
proaches in computer vision, our next step is to quantize the descrip-
tor space in order to obtain a compact representation in a vocabulary
of “geometric words.” A vocabulary P = {p1, . . . , pV } of size V
is a set of representative vectors in the descriptor space, obtained
by means of unsupervised learning (vector quantization through
k-means).

Given a vocabulary P , for each point x ∈ X with the descriptor
p(x), we define the feature distribution θ (x) = (θ1(x), . . . , θV (x))T,

a V × 1 vector whose elements are

θi(x) = c(x)e−
∥p(x)−pi ∥2

2
2σ2 , (12)

and the constant c(x) is selected in such a way that ∥θ (x)∥1 = 1.
θi(x) can be interpreted as the probability of the point x to be
associated with the descriptor pi from the vocabulary P .

Eq. (12) is a “soft” version of vector quantization. “Hard” vector
quantization is obtained as a particular case of (12) by choosing
σ ≈ 0, in which case θi(x) = 1 (where i is the index of the
vocabulary element pi closest to p in the descriptor space) and zero
otherwise.

Integrating the feature distribution over the entire shape X yields
a V × 1 vector

f(X) =
∫

X

θ (x)dµ(x), (13)

which we refer to as a Bag of Features (or BoF for short). Using
this representation, we can define a distance between two shapes X
and Y as a distance between bags of features in IRV ,

dBoF(X, Y ) = ∥f(X) − f(Y )∥. (14)

An example of bags of features using a vocabulary of size 64 is
shown in Figure 7 (top).

4.1 Spatially Sensitive Bags of Features

The disadvantage of bags of features is the fact that they consider
only the distribution of the words and lose the relations between
them. Resorting again to a text search example, in a document
about “matrix decomposition” the words “matrix” and “decompo-
sition” are frequent. Yet, a document about the movie Matrix and a
document about decomposition of organic matter will also contain
these words, which will result in a similar word statistics and, con-
sequently, similar bags of features. In the most pathological case, a
random permutation of words in a text will produce identical bags
of words. In order to overcome this problem, text search engines
commonly use vocabularies consisting not only of single words but
also of combinations of words or expressions. The combination of
words “matrix decomposition” will be thus frequently found in a
document about the algebraic notion, but unlikely in a document
about the Matrix movie (Figure 6).1

In case of shapes, the phenomenon may be even more pro-
nounced, as shapes, being poorer in features, tend to have many
similar geometric words. The analogy of expressions in shapes
would be sets of spatially close geometric words. Instead of look-
ing at the frequency of individual geometric words, we look at the
frequency of word pairs, thus accounting not only for the frequency
but also for the spatial relations between features. For this purpose,
we define the following generalization of a bag of features, referred
to as a Spatially Sensitive Bags of Features (SS-BoF).

F(X) =
∫

X×X

θ (x)θT(y)Kt (x, y)dµ(x)dµ(y) (15)

The resulting representation F is a V × V matrix, representing the
frequency of appearance of nearby geometric words or “geometric
expressions” i, j . It can be considered as a bag of features in a
vocabulary of size V 2 consisting of pairs of words (see Figure 7,

1For this reason, Web search engines return different results when the search
string is written with quotation marks (“matrix decomposition”) and without
(matrix decomposition).
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2007]. For triangular meshes, a popular choice adopted in this arti-
cle is the cotangent weight scheme [Pinkall and Polthier 1993] and
its variants [Meyer et al. 2003], in which wij = (cot αij + cot βij)/2
for j in the 1-ring neighborhood of vertex i and zero otherwise,
where αij and βij are the two angles opposite to the edge between
vertices i and j in the two triangles sharing the edge. It can be
shown [Wardetzky et al. 2008] that this discretization preserves
many important properties of the continuous Laplace-Beltrami op-
erator, such as positive semidefiniteness, symmetry, and locality.
For shapes represented as point clouds, the discretization of Belkin
et al. [2009] can be used.

Finite elements. Direct computation of the eigenfunction without
explicit discretization of the Laplace-Beltrami operator is possible
using the Finite Elements Method (FEM). By the Green formula, the
Laplace-Beltrami eigenvalue problem #Xφ = λφ can be expressed
in the weak form as

⟨#Xφ,α⟩L2(X) = λ⟨φ,α⟩L2(X) (10)

for any smooth α, where ⟨f, g⟩L2(X) =
∫

X
f (x)g(x)dµ(x) and µ(x)

is the standard area measure on X. Given a finite basis {α1, . . . , αq}
spanning a subspace of L2(X), the solution φ can be expanded
as φ(x) ≈ u1α1(x) + · · · + uqαq (x). Substituting this expansion
into (10) results in a system of equations

q∑

j=1

uj ⟨#Xαj ,αr⟩L2(X) = λ

q∑

j=1

uj ⟨αj , αr⟩L2(X),

for r = 1, . . . , q, which, in turn, is posed as a generalized eigenvalue
problem

Au = λBu. (11)

(here A and B are q × q matrices with elements arj =
⟨#Xαj ,αr⟩L2(X) and brj = ⟨αj , αr⟩L2(X)). Solution of (11) gives
eigenvalues λ and eigenfunctions φ = u1α1 + · · · + uqαq of #X .

As the basis, linear, quadratic, or cubic polynomials defined on
the mesh can be used. The FEM approach is quite general, and in
particular, the cotangent scheme can be derived as its instance by
using piecewise linear hat functions centered on the vertices and
supported within the 1-ring neighborhood. Since the inner products
in FEM are computed on the surface, the method can be less sensitive
to the shape discretization than the direct approach based on the
discretization of the Laplace-Beltrami operator. This is confirmed
by numerical studies performed by Reuter et al. who showed the
advantage in accuracy of higher-order FEM schemes at the expense
of computational and storage complexity [Reuter et al. 2005]. In
Bronstein et al. [2010b], linear FEM method produced comparable
results in the discretization of HKS compared to cotangent weights
(note that the sole difference between these methods is the use of a
lumped mass matrix to get a diagonal matrix A for the latter).

4. BAGS OF FEATURES

Given local descriptor computed at a set of stable feature points
(or alternatively, a dense descriptor), similarly to feature-based ap-
proaches in computer vision, our next step is to quantize the descrip-
tor space in order to obtain a compact representation in a vocabulary
of “geometric words.” A vocabulary P = {p1, . . . , pV } of size V
is a set of representative vectors in the descriptor space, obtained
by means of unsupervised learning (vector quantization through
k-means).

Given a vocabulary P , for each point x ∈ X with the descriptor
p(x), we define the feature distribution θ (x) = (θ1(x), . . . , θV (x))T,

a V × 1 vector whose elements are

θi(x) = c(x)e−
∥p(x)−pi ∥2

2
2σ2 , (12)

and the constant c(x) is selected in such a way that ∥θ (x)∥1 = 1.
θi(x) can be interpreted as the probability of the point x to be
associated with the descriptor pi from the vocabulary P .

Eq. (12) is a “soft” version of vector quantization. “Hard” vector
quantization is obtained as a particular case of (12) by choosing
σ ≈ 0, in which case θi(x) = 1 (where i is the index of the
vocabulary element pi closest to p in the descriptor space) and zero
otherwise.

Integrating the feature distribution over the entire shape X yields
a V × 1 vector

f(X) =
∫

X

θ (x)dµ(x), (13)

which we refer to as a Bag of Features (or BoF for short). Using
this representation, we can define a distance between two shapes X
and Y as a distance between bags of features in IRV ,

dBoF(X, Y ) = ∥f(X) − f(Y )∥. (14)

An example of bags of features using a vocabulary of size 64 is
shown in Figure 7 (top).

4.1 Spatially Sensitive Bags of Features

The disadvantage of bags of features is the fact that they consider
only the distribution of the words and lose the relations between
them. Resorting again to a text search example, in a document
about “matrix decomposition” the words “matrix” and “decompo-
sition” are frequent. Yet, a document about the movie Matrix and a
document about decomposition of organic matter will also contain
these words, which will result in a similar word statistics and, con-
sequently, similar bags of features. In the most pathological case, a
random permutation of words in a text will produce identical bags
of words. In order to overcome this problem, text search engines
commonly use vocabularies consisting not only of single words but
also of combinations of words or expressions. The combination of
words “matrix decomposition” will be thus frequently found in a
document about the algebraic notion, but unlikely in a document
about the Matrix movie (Figure 6).1

In case of shapes, the phenomenon may be even more pro-
nounced, as shapes, being poorer in features, tend to have many
similar geometric words. The analogy of expressions in shapes
would be sets of spatially close geometric words. Instead of look-
ing at the frequency of individual geometric words, we look at the
frequency of word pairs, thus accounting not only for the frequency
but also for the spatial relations between features. For this purpose,
we define the following generalization of a bag of features, referred
to as a Spatially Sensitive Bags of Features (SS-BoF).

F(X) =
∫

X×X

θ (x)θT(y)Kt (x, y)dµ(x)dµ(y) (15)

The resulting representation F is a V × V matrix, representing the
frequency of appearance of nearby geometric words or “geometric
expressions” i, j . It can be considered as a bag of features in a
vocabulary of size V 2 consisting of pairs of words (see Figure 7,

1For this reason, Web search engines return different results when the search
string is written with quotation marks (“matrix decomposition”) and without
(matrix decomposition).
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factorization of a matrix 
into some canonical form. 
E a c h t y p e o f 
decomposition is used in 
a particular problem.

In biological science, 
decomposit ion is the 
process of organisms to 
break down into simpler 
form of matter. Usually, 
decomposition occurs 
after death.

Matrix is a science fiction 
movie released in 1999. 
M a t r i x r e f e r s t o a 
simulated reality created 
by machines in order to 
s u b d u e t h e h u m a n 
population.

m
at

rix
 d

ec
om

po
si

tio
n 

m
at

rix
 fa

ct
or

iz
at

io
n 

sc
ie

nc
e 

fic
tio

n 
ca

no
ni

ca
l f

or
m

In math science, matrix 
d e c o m p o s i t i o n i s a 
factorization of a matrix 
into some canonical form. 
E a c h t y p e o f 
decomposition is used in 
a particular problem.

In biological science, 
decomposit ion is the 
process of organisms to 
break down into simpler 
form of matter. Usually, 
decomposition occurs 
after death.

Matrix is a science fiction 
movie released in 1999. 
M a t r i x r e f e r s t o a 
simulated reality created 
by machines in order to 
s u b d u e t h e h u m a n 
population.

m
at

rix
 

de
co

m
po

si
tio

n is
 a 

th
e of

 
in

 
to

 
by

 
sc

ie
nc

e 
fo

rm

In math science, matrix 
d e c o m p o s i t i o n i s a 
factorization of a matrix 
into some canonical form. 
E a c h t y p e o f 
decomposition is used in 
a particular problem.

Matrix is a science fiction 
movie released in 1999. 
M a t r i x r e f e r s t o a 
simulated reality created 
by machines in order to 
s u b d u e t h e h u m a n 
population.

Slide credit: M. Bronstein



30

In math science, matrix 
d e c o m p o s i t i o n i s a 
factorization of a matrix 
into some canonical form. 
E a c h t y p e o f 
decomposition is used in 
a particular problem.

m
at

rix
 

de
co

m
po

si
tio

n is
 a 

th
e of

 
in

 
to

 
by

 
sc

ie
nc

e 
fo

rm

In particular matrix used 
type a some science, 
decomposition form a 
f a c t o r i z a t i o n o f i s 
canonical. matrix math 
decomposition is in a 
Each problem. into of

m
at

rix
 d

ec
om

po
si

tio
n 

m
at

rix
 fa

ct
or

iz
at

io
n 

sc
ie

nc
e 

fic
tio

n 
ca

no
ni

ca
l f

or
m

Expressions

Slide credit: M. Bronstein



Bags of geometric expressions

31

Geometric vocabulary

Bag of geometric words (BoF)Bag of geometric expressions (SS-BoF)
Slide credit: M. Bronstein



Bag of geometric expressions (SS-BoF)

Spatially Sensitive Bags of Features 
(SS-BoF)

32

Shape Google: Geometric Words and Expressions for Invariant Shape Retrieval • 1:7

2007]. For triangular meshes, a popular choice adopted in this arti-
cle is the cotangent weight scheme [Pinkall and Polthier 1993] and
its variants [Meyer et al. 2003], in which wij = (cot αij + cot βij)/2
for j in the 1-ring neighborhood of vertex i and zero otherwise,
where αij and βij are the two angles opposite to the edge between
vertices i and j in the two triangles sharing the edge. It can be
shown [Wardetzky et al. 2008] that this discretization preserves
many important properties of the continuous Laplace-Beltrami op-
erator, such as positive semidefiniteness, symmetry, and locality.
For shapes represented as point clouds, the discretization of Belkin
et al. [2009] can be used.

Finite elements. Direct computation of the eigenfunction without
explicit discretization of the Laplace-Beltrami operator is possible
using the Finite Elements Method (FEM). By the Green formula, the
Laplace-Beltrami eigenvalue problem #Xφ = λφ can be expressed
in the weak form as

⟨#Xφ,α⟩L2(X) = λ⟨φ,α⟩L2(X) (10)

for any smooth α, where ⟨f, g⟩L2(X) =
∫

X
f (x)g(x)dµ(x) and µ(x)

is the standard area measure on X. Given a finite basis {α1, . . . , αq}
spanning a subspace of L2(X), the solution φ can be expanded
as φ(x) ≈ u1α1(x) + · · · + uqαq (x). Substituting this expansion
into (10) results in a system of equations

q∑

j=1

uj ⟨#Xαj ,αr⟩L2(X) = λ

q∑

j=1

uj ⟨αj , αr⟩L2(X),

for r = 1, . . . , q, which, in turn, is posed as a generalized eigenvalue
problem

Au = λBu. (11)

(here A and B are q × q matrices with elements arj =
⟨#Xαj ,αr⟩L2(X) and brj = ⟨αj , αr⟩L2(X)). Solution of (11) gives
eigenvalues λ and eigenfunctions φ = u1α1 + · · · + uqαq of #X .

As the basis, linear, quadratic, or cubic polynomials defined on
the mesh can be used. The FEM approach is quite general, and in
particular, the cotangent scheme can be derived as its instance by
using piecewise linear hat functions centered on the vertices and
supported within the 1-ring neighborhood. Since the inner products
in FEM are computed on the surface, the method can be less sensitive
to the shape discretization than the direct approach based on the
discretization of the Laplace-Beltrami operator. This is confirmed
by numerical studies performed by Reuter et al. who showed the
advantage in accuracy of higher-order FEM schemes at the expense
of computational and storage complexity [Reuter et al. 2005]. In
Bronstein et al. [2010b], linear FEM method produced comparable
results in the discretization of HKS compared to cotangent weights
(note that the sole difference between these methods is the use of a
lumped mass matrix to get a diagonal matrix A for the latter).

4. BAGS OF FEATURES

Given local descriptor computed at a set of stable feature points
(or alternatively, a dense descriptor), similarly to feature-based ap-
proaches in computer vision, our next step is to quantize the descrip-
tor space in order to obtain a compact representation in a vocabulary
of “geometric words.” A vocabulary P = {p1, . . . , pV } of size V
is a set of representative vectors in the descriptor space, obtained
by means of unsupervised learning (vector quantization through
k-means).

Given a vocabulary P , for each point x ∈ X with the descriptor
p(x), we define the feature distribution θ (x) = (θ1(x), . . . , θV (x))T,

a V × 1 vector whose elements are

θi(x) = c(x)e−
∥p(x)−pi ∥2

2
2σ2 , (12)

and the constant c(x) is selected in such a way that ∥θ (x)∥1 = 1.
θi(x) can be interpreted as the probability of the point x to be
associated with the descriptor pi from the vocabulary P .

Eq. (12) is a “soft” version of vector quantization. “Hard” vector
quantization is obtained as a particular case of (12) by choosing
σ ≈ 0, in which case θi(x) = 1 (where i is the index of the
vocabulary element pi closest to p in the descriptor space) and zero
otherwise.

Integrating the feature distribution over the entire shape X yields
a V × 1 vector

f(X) =
∫

X

θ (x)dµ(x), (13)

which we refer to as a Bag of Features (or BoF for short). Using
this representation, we can define a distance between two shapes X
and Y as a distance between bags of features in IRV ,

dBoF(X, Y ) = ∥f(X) − f(Y )∥. (14)

An example of bags of features using a vocabulary of size 64 is
shown in Figure 7 (top).

4.1 Spatially Sensitive Bags of Features

The disadvantage of bags of features is the fact that they consider
only the distribution of the words and lose the relations between
them. Resorting again to a text search example, in a document
about “matrix decomposition” the words “matrix” and “decompo-
sition” are frequent. Yet, a document about the movie Matrix and a
document about decomposition of organic matter will also contain
these words, which will result in a similar word statistics and, con-
sequently, similar bags of features. In the most pathological case, a
random permutation of words in a text will produce identical bags
of words. In order to overcome this problem, text search engines
commonly use vocabularies consisting not only of single words but
also of combinations of words or expressions. The combination of
words “matrix decomposition” will be thus frequently found in a
document about the algebraic notion, but unlikely in a document
about the Matrix movie (Figure 6).1

In case of shapes, the phenomenon may be even more pro-
nounced, as shapes, being poorer in features, tend to have many
similar geometric words. The analogy of expressions in shapes
would be sets of spatially close geometric words. Instead of look-
ing at the frequency of individual geometric words, we look at the
frequency of word pairs, thus accounting not only for the frequency
but also for the spatial relations between features. For this purpose,
we define the following generalization of a bag of features, referred
to as a Spatially Sensitive Bags of Features (SS-BoF).

F(X) =
∫

X×X

θ (x)θT(y)Kt (x, y)dµ(x)dµ(y) (15)

The resulting representation F is a V × V matrix, representing the
frequency of appearance of nearby geometric words or “geometric
expressions” i, j . It can be considered as a bag of features in a
vocabulary of size V 2 consisting of pairs of words (see Figure 7,

1For this reason, Web search engines return different results when the search
string is written with quotation marks (“matrix decomposition”) and without
(matrix decomposition).
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SHREC 2010: Robust shape retrieval benchmark
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construction

• The dictionary is constructed in an unsupervised manner using 
clustering, unaware of the following learning stage
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Drawback of the standard BoF 
construction

• The dictionary is constructed in an unsupervised manner using 
clustering, unaware of the following learning stage 

• Suggested improvement: add supervision to the BoF training 
    “Supervised learning of bag-of-features shape descriptors 
    using sparse coding” [Litman et al. 2014]
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BoF computation flow - simplified

• Compute local descriptors - e.g., HKS
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R. Litman, A. Bronstein, M. Bronstein & U. Castellani / Supervised learning of bag-of-features descriptors

local intrinsic feature descriptor referred to as the heat kernel
signature (HKS)

x(si) = (hat1 (si,si), . . . ,hatq (si,si))
>. (2)

Note that HKS is not invariant to shape scaling transforma-
tions.

SI-HKS. Bronstein and Kokkinos [BK10] developed a
scale-invariant version of the HKS by first constructing a
scale-covariant heat kernel

h̄t(si,si) =
�Âl�1 llat logae�ll at

f2
l (si)

Âl�1 e�ll at f2
l (si)

(3)

that undergoes shift in t by 2loga c as a result of shape scal-
ing by a factor of c. In the Fourier domain, this shift results in
a complex phase H̄(w)e�iw2 loga c, where H̄(w) denotes the
Fourier transform of h̄t w.r.t. t. Finally, the scale-invariant
HKS (SI-HKS) descriptor is constructed by taking the abso-
lute value of H(w) (thus undoing the phase) and then sam-
pling |H(w)| at q frequencies,

x(si) = (|H(w1)|, . . . , |H(wq)|)>. (4)

2.2. Bag-of-features

Given a set of local q-dimensional descriptors computed
w.l.o.g. at all the n points of the shape, we represent them
as a q⇥n matrix

X = (x1, . . . ,xn) = (x(s1), . . . ,x(sn)).

A bag-of-features is a global shape descriptor constructed
by replacing the local descriptors with closest entries in a
geometric dictionary and then computing the frequency of
appearance of these geometric words, as shown in Figure 1
(top).

Geometric dictionary is a q ⇥ v matrix D = (d1, . . . ,dv)
whose columns are ‘representative’ descriptors referred to
as geometric words or atoms. The geometric dictionary is
constructed offline using a large collection of shapes, by
clustering the respective descriptors (points in q-dimensional
descriptor space) into v Voronoi regions using, e.g., the k-
means algorithm.

Quantization. Given a dictionary D, each local descriptor
x is replaced by the closest entry

i⇤ = arg min
i=1,...,v

kx�dik2

in the geometric dictionary, which can be represented as the
v-dimensional code vector z⇤ containing one at the i⇤-th po-
sition and zeros elsewhere. This process is known as vector
quantization (VQ) and can be posed as the problem of con-
strained sparse coding

Z⇤(X,D) = arg min
Z2{0,1}v⇥n

kX�DZkF s.t. Z>1 = 1, (5)

Vector
quantization

Sum
pooling

Fixed
dictionary

Local
descriptors BoF

Input
shape

S X Z⇤ h

D

S X Z⇤ h

D

Figure 1: Top: a flow diagram of a traditional BoF frame-
work using VQ in a fixed dictionary. Bottom: flow diagram
of the proposed framework. VQ is replaced by sparse cod-
ing, and the dictionary is learned by a bi-level optimization
scheme that tries to maximize the discriminativity of the re-
sulting BoFs on a training set.

in which the codes are binary and are allowed to have only
one non-zero element. The output of VQ is a v⇥ n matrix
Z⇤ containing the v-dimensional code for each shape point.

Pooling. Finally, the codes are pooled into a single v-
dimensional bag-of-features vector h(X,D) = Z⇤(X,D)p,
where, in the simplest case, p = 1

n 1 (mean pooling). In
this case, h can be regarded as the frequency of appear-
ance of different geometric words on the shape. More accu-
rately, the pooling should account for possible non-uniform
sampling, weighting each point by its area element ai,
p = (a1, . . . ,an)

>/Ân
i=1 ai. Finally, more elaborate weight-

ing can also account for the overall frequency of the words,
downweighing common words (a strategy referred to as term
frequency-inverse document frequency, or tf-idf [SZ03]).

The main drawback of the standard BoF construction out-
lined above is that all the stages are performed indepen-
dently. In particular, the dictionary construction is unaware
of the following quantization and pooling stages. As a result,
even though the local descriptors may show good invariance
under the desired class of transformations, the final BoFs
may differ significantly (consider a pathological case where
the descriptors are close the boundaries of the Voronoi cells
in the descriptor space and, due to noise and numerical inac-
curacies, are quantized to very different code vectors).

3. Learning BoFs

The key idea of this paper is to revisit the aforementioned
BoF construction procedure, performing it in a supervised
manner. First, we replace the VQ stage with sparse cod-
ing. Second, the unsupervised dictionary learning is re-
placed with supervised learning maximizing the end-to-end
retrieval performance. The flow of the proposed method is
depicted in Figure 1 (bottom).
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BoF computation flow - simplified

• Compute local descriptors - e.g., HKS 
• Get a dictionary (= vocabulary) by vector quantization (VQ)
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local intrinsic feature descriptor referred to as the heat kernel
signature (HKS)

x(si) = (hat1 (si,si), . . . ,hatq (si,si))
>. (2)

Note that HKS is not invariant to shape scaling transforma-
tions.

SI-HKS. Bronstein and Kokkinos [BK10] developed a
scale-invariant version of the HKS by first constructing a
scale-covariant heat kernel

h̄t(si,si) =
�Âl�1 llat logae�ll at

f2
l (si)

Âl�1 e�ll at f2
l (si)

(3)

that undergoes shift in t by 2loga c as a result of shape scal-
ing by a factor of c. In the Fourier domain, this shift results in
a complex phase H̄(w)e�iw2 loga c, where H̄(w) denotes the
Fourier transform of h̄t w.r.t. t. Finally, the scale-invariant
HKS (SI-HKS) descriptor is constructed by taking the abso-
lute value of H(w) (thus undoing the phase) and then sam-
pling |H(w)| at q frequencies,

x(si) = (|H(w1)|, . . . , |H(wq)|)>. (4)

2.2. Bag-of-features

Given a set of local q-dimensional descriptors computed
w.l.o.g. at all the n points of the shape, we represent them
as a q⇥n matrix

X = (x1, . . . ,xn) = (x(s1), . . . ,x(sn)).

A bag-of-features is a global shape descriptor constructed
by replacing the local descriptors with closest entries in a
geometric dictionary and then computing the frequency of
appearance of these geometric words, as shown in Figure 1
(top).

Geometric dictionary is a q ⇥ v matrix D = (d1, . . . ,dv)
whose columns are ‘representative’ descriptors referred to
as geometric words or atoms. The geometric dictionary is
constructed offline using a large collection of shapes, by
clustering the respective descriptors (points in q-dimensional
descriptor space) into v Voronoi regions using, e.g., the k-
means algorithm.

Quantization. Given a dictionary D, each local descriptor
x is replaced by the closest entry

i⇤ = arg min
i=1,...,v

kx�dik2

in the geometric dictionary, which can be represented as the
v-dimensional code vector z⇤ containing one at the i⇤-th po-
sition and zeros elsewhere. This process is known as vector
quantization (VQ) and can be posed as the problem of con-
strained sparse coding

Z⇤(X,D) = arg min
Z2{0,1}v⇥n

kX�DZkF s.t. Z>1 = 1, (5)

Vector
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pooling

Fixed
dictionary
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D
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Figure 1: Top: a flow diagram of a traditional BoF frame-
work using VQ in a fixed dictionary. Bottom: flow diagram
of the proposed framework. VQ is replaced by sparse cod-
ing, and the dictionary is learned by a bi-level optimization
scheme that tries to maximize the discriminativity of the re-
sulting BoFs on a training set.

in which the codes are binary and are allowed to have only
one non-zero element. The output of VQ is a v⇥ n matrix
Z⇤ containing the v-dimensional code for each shape point.

Pooling. Finally, the codes are pooled into a single v-
dimensional bag-of-features vector h(X,D) = Z⇤(X,D)p,
where, in the simplest case, p = 1

n 1 (mean pooling). In
this case, h can be regarded as the frequency of appear-
ance of different geometric words on the shape. More accu-
rately, the pooling should account for possible non-uniform
sampling, weighting each point by its area element ai,
p = (a1, . . . ,an)

>/Ân
i=1 ai. Finally, more elaborate weight-

ing can also account for the overall frequency of the words,
downweighing common words (a strategy referred to as term
frequency-inverse document frequency, or tf-idf [SZ03]).

The main drawback of the standard BoF construction out-
lined above is that all the stages are performed indepen-
dently. In particular, the dictionary construction is unaware
of the following quantization and pooling stages. As a result,
even though the local descriptors may show good invariance
under the desired class of transformations, the final BoFs
may differ significantly (consider a pathological case where
the descriptors are close the boundaries of the Voronoi cells
in the descriptor space and, due to noise and numerical inac-
curacies, are quantized to very different code vectors).

3. Learning BoFs

The key idea of this paper is to revisit the aforementioned
BoF construction procedure, performing it in a supervised
manner. First, we replace the VQ stage with sparse cod-
ing. Second, the unsupervised dictionary learning is re-
placed with supervised learning maximizing the end-to-end
retrieval performance. The flow of the proposed method is
depicted in Figure 1 (bottom).
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BoF computation flow - simplified

• Compute local descriptors - e.g., HKS 
• Get a dictionary (= vocabulary) by vector quantization (VQ) 
• Replace each descriptor by a binary indicator vector
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local intrinsic feature descriptor referred to as the heat kernel
signature (HKS)

x(si) = (hat1 (si,si), . . . ,hatq (si,si))
>. (2)

Note that HKS is not invariant to shape scaling transforma-
tions.

SI-HKS. Bronstein and Kokkinos [BK10] developed a
scale-invariant version of the HKS by first constructing a
scale-covariant heat kernel

h̄t(si,si) =
�Âl�1 llat logae�ll at

f2
l (si)

Âl�1 e�ll at f2
l (si)

(3)

that undergoes shift in t by 2loga c as a result of shape scal-
ing by a factor of c. In the Fourier domain, this shift results in
a complex phase H̄(w)e�iw2 loga c, where H̄(w) denotes the
Fourier transform of h̄t w.r.t. t. Finally, the scale-invariant
HKS (SI-HKS) descriptor is constructed by taking the abso-
lute value of H(w) (thus undoing the phase) and then sam-
pling |H(w)| at q frequencies,

x(si) = (|H(w1)|, . . . , |H(wq)|)>. (4)

2.2. Bag-of-features

Given a set of local q-dimensional descriptors computed
w.l.o.g. at all the n points of the shape, we represent them
as a q⇥n matrix

X = (x1, . . . ,xn) = (x(s1), . . . ,x(sn)).

A bag-of-features is a global shape descriptor constructed
by replacing the local descriptors with closest entries in a
geometric dictionary and then computing the frequency of
appearance of these geometric words, as shown in Figure 1
(top).

Geometric dictionary is a q ⇥ v matrix D = (d1, . . . ,dv)
whose columns are ‘representative’ descriptors referred to
as geometric words or atoms. The geometric dictionary is
constructed offline using a large collection of shapes, by
clustering the respective descriptors (points in q-dimensional
descriptor space) into v Voronoi regions using, e.g., the k-
means algorithm.

Quantization. Given a dictionary D, each local descriptor
x is replaced by the closest entry

i⇤ = arg min
i=1,...,v

kx�dik2

in the geometric dictionary, which can be represented as the
v-dimensional code vector z⇤ containing one at the i⇤-th po-
sition and zeros elsewhere. This process is known as vector
quantization (VQ) and can be posed as the problem of con-
strained sparse coding

Z⇤(X,D) = arg min
Z2{0,1}v⇥n

kX�DZkF s.t. Z>1 = 1, (5)
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Figure 1: Top: a flow diagram of a traditional BoF frame-
work using VQ in a fixed dictionary. Bottom: flow diagram
of the proposed framework. VQ is replaced by sparse cod-
ing, and the dictionary is learned by a bi-level optimization
scheme that tries to maximize the discriminativity of the re-
sulting BoFs on a training set.

in which the codes are binary and are allowed to have only
one non-zero element. The output of VQ is a v⇥ n matrix
Z⇤ containing the v-dimensional code for each shape point.

Pooling. Finally, the codes are pooled into a single v-
dimensional bag-of-features vector h(X,D) = Z⇤(X,D)p,
where, in the simplest case, p = 1

n 1 (mean pooling). In
this case, h can be regarded as the frequency of appear-
ance of different geometric words on the shape. More accu-
rately, the pooling should account for possible non-uniform
sampling, weighting each point by its area element ai,
p = (a1, . . . ,an)

>/Ân
i=1 ai. Finally, more elaborate weight-

ing can also account for the overall frequency of the words,
downweighing common words (a strategy referred to as term
frequency-inverse document frequency, or tf-idf [SZ03]).

The main drawback of the standard BoF construction out-
lined above is that all the stages are performed indepen-
dently. In particular, the dictionary construction is unaware
of the following quantization and pooling stages. As a result,
even though the local descriptors may show good invariance
under the desired class of transformations, the final BoFs
may differ significantly (consider a pathological case where
the descriptors are close the boundaries of the Voronoi cells
in the descriptor space and, due to noise and numerical inac-
curacies, are quantized to very different code vectors).

3. Learning BoFs

The key idea of this paper is to revisit the aforementioned
BoF construction procedure, performing it in a supervised
manner. First, we replace the VQ stage with sparse cod-
ing. Second, the unsupervised dictionary learning is re-
placed with supervised learning maximizing the end-to-end
retrieval performance. The flow of the proposed method is
depicted in Figure 1 (bottom).
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BoF computation flow - simplified

• Compute local descriptors - e.g., HKS 
• Get a dictionary (= vocabulary) by vector quantization (VQ) 
• Replace each descriptor by a binary indicator vector 
• Sum up all indicator vector to obtain the BoF
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local intrinsic feature descriptor referred to as the heat kernel
signature (HKS)

x(si) = (hat1 (si,si), . . . ,hatq (si,si))
>. (2)

Note that HKS is not invariant to shape scaling transforma-
tions.

SI-HKS. Bronstein and Kokkinos [BK10] developed a
scale-invariant version of the HKS by first constructing a
scale-covariant heat kernel

h̄t(si,si) =
�Âl�1 llat logae�ll at

f2
l (si)

Âl�1 e�ll at f2
l (si)

(3)

that undergoes shift in t by 2loga c as a result of shape scal-
ing by a factor of c. In the Fourier domain, this shift results in
a complex phase H̄(w)e�iw2 loga c, where H̄(w) denotes the
Fourier transform of h̄t w.r.t. t. Finally, the scale-invariant
HKS (SI-HKS) descriptor is constructed by taking the abso-
lute value of H(w) (thus undoing the phase) and then sam-
pling |H(w)| at q frequencies,

x(si) = (|H(w1)|, . . . , |H(wq)|)>. (4)

2.2. Bag-of-features

Given a set of local q-dimensional descriptors computed
w.l.o.g. at all the n points of the shape, we represent them
as a q⇥n matrix

X = (x1, . . . ,xn) = (x(s1), . . . ,x(sn)).

A bag-of-features is a global shape descriptor constructed
by replacing the local descriptors with closest entries in a
geometric dictionary and then computing the frequency of
appearance of these geometric words, as shown in Figure 1
(top).

Geometric dictionary is a q ⇥ v matrix D = (d1, . . . ,dv)
whose columns are ‘representative’ descriptors referred to
as geometric words or atoms. The geometric dictionary is
constructed offline using a large collection of shapes, by
clustering the respective descriptors (points in q-dimensional
descriptor space) into v Voronoi regions using, e.g., the k-
means algorithm.

Quantization. Given a dictionary D, each local descriptor
x is replaced by the closest entry

i⇤ = arg min
i=1,...,v

kx�dik2

in the geometric dictionary, which can be represented as the
v-dimensional code vector z⇤ containing one at the i⇤-th po-
sition and zeros elsewhere. This process is known as vector
quantization (VQ) and can be posed as the problem of con-
strained sparse coding

Z⇤(X,D) = arg min
Z2{0,1}v⇥n

kX�DZkF s.t. Z>1 = 1, (5)
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Figure 1: Top: a flow diagram of a traditional BoF frame-
work using VQ in a fixed dictionary. Bottom: flow diagram
of the proposed framework. VQ is replaced by sparse cod-
ing, and the dictionary is learned by a bi-level optimization
scheme that tries to maximize the discriminativity of the re-
sulting BoFs on a training set.

in which the codes are binary and are allowed to have only
one non-zero element. The output of VQ is a v⇥ n matrix
Z⇤ containing the v-dimensional code for each shape point.

Pooling. Finally, the codes are pooled into a single v-
dimensional bag-of-features vector h(X,D) = Z⇤(X,D)p,
where, in the simplest case, p = 1

n 1 (mean pooling). In
this case, h can be regarded as the frequency of appear-
ance of different geometric words on the shape. More accu-
rately, the pooling should account for possible non-uniform
sampling, weighting each point by its area element ai,
p = (a1, . . . ,an)

>/Ân
i=1 ai. Finally, more elaborate weight-

ing can also account for the overall frequency of the words,
downweighing common words (a strategy referred to as term
frequency-inverse document frequency, or tf-idf [SZ03]).

The main drawback of the standard BoF construction out-
lined above is that all the stages are performed indepen-
dently. In particular, the dictionary construction is unaware
of the following quantization and pooling stages. As a result,
even though the local descriptors may show good invariance
under the desired class of transformations, the final BoFs
may differ significantly (consider a pathological case where
the descriptors are close the boundaries of the Voronoi cells
in the descriptor space and, due to noise and numerical inac-
curacies, are quantized to very different code vectors).

3. Learning BoFs

The key idea of this paper is to revisit the aforementioned
BoF construction procedure, performing it in a supervised
manner. First, we replace the VQ stage with sparse cod-
ing. Second, the unsupervised dictionary learning is re-
placed with supervised learning maximizing the end-to-end
retrieval performance. The flow of the proposed method is
depicted in Figure 1 (bottom).
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local intrinsic feature descriptor referred to as the heat kernel
signature (HKS)

x(si) = (hat1 (si,si), . . . ,hatq (si,si))
>. (2)

Note that HKS is not invariant to shape scaling transforma-
tions.

SI-HKS. Bronstein and Kokkinos [BK10] developed a
scale-invariant version of the HKS by first constructing a
scale-covariant heat kernel

h̄t(si,si) =
�Âl�1 llat logae�ll at

f2
l (si)

Âl�1 e�ll at f2
l (si)

(3)

that undergoes shift in t by 2loga c as a result of shape scal-
ing by a factor of c. In the Fourier domain, this shift results in
a complex phase H̄(w)e�iw2 loga c, where H̄(w) denotes the
Fourier transform of h̄t w.r.t. t. Finally, the scale-invariant
HKS (SI-HKS) descriptor is constructed by taking the abso-
lute value of H(w) (thus undoing the phase) and then sam-
pling |H(w)| at q frequencies,

x(si) = (|H(w1)|, . . . , |H(wq)|)>. (4)

2.2. Bag-of-features

Given a set of local q-dimensional descriptors computed
w.l.o.g. at all the n points of the shape, we represent them
as a q⇥n matrix

X = (x1, . . . ,xn) = (x(s1), . . . ,x(sn)).

A bag-of-features is a global shape descriptor constructed
by replacing the local descriptors with closest entries in a
geometric dictionary and then computing the frequency of
appearance of these geometric words, as shown in Figure 1
(top).

Geometric dictionary is a q ⇥ v matrix D = (d1, . . . ,dv)
whose columns are ‘representative’ descriptors referred to
as geometric words or atoms. The geometric dictionary is
constructed offline using a large collection of shapes, by
clustering the respective descriptors (points in q-dimensional
descriptor space) into v Voronoi regions using, e.g., the k-
means algorithm.

Quantization. Given a dictionary D, each local descriptor
x is replaced by the closest entry

i⇤ = arg min
i=1,...,v

kx�dik2

in the geometric dictionary, which can be represented as the
v-dimensional code vector z⇤ containing one at the i⇤-th po-
sition and zeros elsewhere. This process is known as vector
quantization (VQ) and can be posed as the problem of con-
strained sparse coding

Z⇤(X,D) = arg min
Z2{0,1}v⇥n

kX�DZkF s.t. Z>1 = 1, (5)
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Figure 1: Top: a flow diagram of a traditional BoF frame-
work using VQ in a fixed dictionary. Bottom: flow diagram
of the proposed framework. VQ is replaced by sparse cod-
ing, and the dictionary is learned by a bi-level optimization
scheme that tries to maximize the discriminativity of the re-
sulting BoFs on a training set.

in which the codes are binary and are allowed to have only
one non-zero element. The output of VQ is a v⇥ n matrix
Z⇤ containing the v-dimensional code for each shape point.

Pooling. Finally, the codes are pooled into a single v-
dimensional bag-of-features vector h(X,D) = Z⇤(X,D)p,
where, in the simplest case, p = 1

n 1 (mean pooling). In
this case, h can be regarded as the frequency of appear-
ance of different geometric words on the shape. More accu-
rately, the pooling should account for possible non-uniform
sampling, weighting each point by its area element ai,
p = (a1, . . . ,an)

>/Ân
i=1 ai. Finally, more elaborate weight-

ing can also account for the overall frequency of the words,
downweighing common words (a strategy referred to as term
frequency-inverse document frequency, or tf-idf [SZ03]).

The main drawback of the standard BoF construction out-
lined above is that all the stages are performed indepen-
dently. In particular, the dictionary construction is unaware
of the following quantization and pooling stages. As a result,
even though the local descriptors may show good invariance
under the desired class of transformations, the final BoFs
may differ significantly (consider a pathological case where
the descriptors are close the boundaries of the Voronoi cells
in the descriptor space and, due to noise and numerical inac-
curacies, are quantized to very different code vectors).

3. Learning BoFs

The key idea of this paper is to revisit the aforementioned
BoF construction procedure, performing it in a supervised
manner. First, we replace the VQ stage with sparse cod-
ing. Second, the unsupervised dictionary learning is re-
placed with supervised learning maximizing the end-to-end
retrieval performance. The flow of the proposed method is
depicted in Figure 1 (bottom).
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local intrinsic feature descriptor referred to as the heat kernel
signature (HKS)

x(si) = (hat1 (si,si), . . . ,hatq (si,si))
>. (2)

Note that HKS is not invariant to shape scaling transforma-
tions.

SI-HKS. Bronstein and Kokkinos [BK10] developed a
scale-invariant version of the HKS by first constructing a
scale-covariant heat kernel

h̄t(si,si) =
�Âl�1 llat logae�ll at

f2
l (si)

Âl�1 e�ll at f2
l (si)

(3)

that undergoes shift in t by 2loga c as a result of shape scal-
ing by a factor of c. In the Fourier domain, this shift results in
a complex phase H̄(w)e�iw2 loga c, where H̄(w) denotes the
Fourier transform of h̄t w.r.t. t. Finally, the scale-invariant
HKS (SI-HKS) descriptor is constructed by taking the abso-
lute value of H(w) (thus undoing the phase) and then sam-
pling |H(w)| at q frequencies,

x(si) = (|H(w1)|, . . . , |H(wq)|)>. (4)

2.2. Bag-of-features

Given a set of local q-dimensional descriptors computed
w.l.o.g. at all the n points of the shape, we represent them
as a q⇥n matrix

X = (x1, . . . ,xn) = (x(s1), . . . ,x(sn)).

A bag-of-features is a global shape descriptor constructed
by replacing the local descriptors with closest entries in a
geometric dictionary and then computing the frequency of
appearance of these geometric words, as shown in Figure 1
(top).

Geometric dictionary is a q ⇥ v matrix D = (d1, . . . ,dv)
whose columns are ‘representative’ descriptors referred to
as geometric words or atoms. The geometric dictionary is
constructed offline using a large collection of shapes, by
clustering the respective descriptors (points in q-dimensional
descriptor space) into v Voronoi regions using, e.g., the k-
means algorithm.

Quantization. Given a dictionary D, each local descriptor
x is replaced by the closest entry

i⇤ = arg min
i=1,...,v

kx�dik2

in the geometric dictionary, which can be represented as the
v-dimensional code vector z⇤ containing one at the i⇤-th po-
sition and zeros elsewhere. This process is known as vector
quantization (VQ) and can be posed as the problem of con-
strained sparse coding

Z⇤(X,D) = arg min
Z2{0,1}v⇥n

kX�DZkF s.t. Z>1 = 1, (5)
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Figure 1: Top: a flow diagram of a traditional BoF frame-
work using VQ in a fixed dictionary. Bottom: flow diagram
of the proposed framework. VQ is replaced by sparse cod-
ing, and the dictionary is learned by a bi-level optimization
scheme that tries to maximize the discriminativity of the re-
sulting BoFs on a training set.

in which the codes are binary and are allowed to have only
one non-zero element. The output of VQ is a v⇥ n matrix
Z⇤ containing the v-dimensional code for each shape point.

Pooling. Finally, the codes are pooled into a single v-
dimensional bag-of-features vector h(X,D) = Z⇤(X,D)p,
where, in the simplest case, p = 1

n 1 (mean pooling). In
this case, h can be regarded as the frequency of appear-
ance of different geometric words on the shape. More accu-
rately, the pooling should account for possible non-uniform
sampling, weighting each point by its area element ai,
p = (a1, . . . ,an)

>/Ân
i=1 ai. Finally, more elaborate weight-

ing can also account for the overall frequency of the words,
downweighing common words (a strategy referred to as term
frequency-inverse document frequency, or tf-idf [SZ03]).

The main drawback of the standard BoF construction out-
lined above is that all the stages are performed indepen-
dently. In particular, the dictionary construction is unaware
of the following quantization and pooling stages. As a result,
even though the local descriptors may show good invariance
under the desired class of transformations, the final BoFs
may differ significantly (consider a pathological case where
the descriptors are close the boundaries of the Voronoi cells
in the descriptor space and, due to noise and numerical inac-
curacies, are quantized to very different code vectors).

3. Learning BoFs

The key idea of this paper is to revisit the aforementioned
BoF construction procedure, performing it in a supervised
manner. First, we replace the VQ stage with sparse cod-
ing. Second, the unsupervised dictionary learning is re-
placed with supervised learning maximizing the end-to-end
retrieval performance. The flow of the proposed method is
depicted in Figure 1 (bottom).
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• Represent data X as a sparse linear combination of atoms 
of dictionary D 

• Dates back to [Olshausen and Field 1996]

Sparse coding

49Slide credit: R. Litman



Sparse coding

• Very successful when dictionary D is learned from data 
• State-of-the-art in many applications. 
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Sparse coding for BoF - example
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Sparse coding for BoF - example

52See the paper for implementation detailsSlide credit: R. Litman



Descriptor pooling example
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Dictionary learning

• Dictionary learning is task-driven - specified by a loss function 
• Input: labeled set of training shapes S 
• Each shape has an attached BoF h(S) 
• Optimize over dictionary D to minimize loss of training set
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local intrinsic feature descriptor referred to as the heat kernel
signature (HKS)

x(si) = (hat1 (si,si), . . . ,hatq (si,si))
>. (2)

Note that HKS is not invariant to shape scaling transforma-
tions.

SI-HKS. Bronstein and Kokkinos [BK10] developed a
scale-invariant version of the HKS by first constructing a
scale-covariant heat kernel

h̄t(si,si) =
�Âl�1 llat logae�ll at

f2
l (si)

Âl�1 e�ll at f2
l (si)

(3)

that undergoes shift in t by 2loga c as a result of shape scal-
ing by a factor of c. In the Fourier domain, this shift results in
a complex phase H̄(w)e�iw2 loga c, where H̄(w) denotes the
Fourier transform of h̄t w.r.t. t. Finally, the scale-invariant
HKS (SI-HKS) descriptor is constructed by taking the abso-
lute value of H(w) (thus undoing the phase) and then sam-
pling |H(w)| at q frequencies,

x(si) = (|H(w1)|, . . . , |H(wq)|)>. (4)

2.2. Bag-of-features

Given a set of local q-dimensional descriptors computed
w.l.o.g. at all the n points of the shape, we represent them
as a q⇥n matrix

X = (x1, . . . ,xn) = (x(s1), . . . ,x(sn)).

A bag-of-features is a global shape descriptor constructed
by replacing the local descriptors with closest entries in a
geometric dictionary and then computing the frequency of
appearance of these geometric words, as shown in Figure 1
(top).

Geometric dictionary is a q ⇥ v matrix D = (d1, . . . ,dv)
whose columns are ‘representative’ descriptors referred to
as geometric words or atoms. The geometric dictionary is
constructed offline using a large collection of shapes, by
clustering the respective descriptors (points in q-dimensional
descriptor space) into v Voronoi regions using, e.g., the k-
means algorithm.

Quantization. Given a dictionary D, each local descriptor
x is replaced by the closest entry

i⇤ = arg min
i=1,...,v

kx�dik2

in the geometric dictionary, which can be represented as the
v-dimensional code vector z⇤ containing one at the i⇤-th po-
sition and zeros elsewhere. This process is known as vector
quantization (VQ) and can be posed as the problem of con-
strained sparse coding

Z⇤(X,D) = arg min
Z2{0,1}v⇥n

kX�DZkF s.t. Z>1 = 1, (5)

Sparse
coding

Sum
pooling

Local
descriptors

optimal
dictionary

BoF
Input
shape

Bi-level
optimization

S X Z⇤ h

D

S X Z⇤ h

D

Figure 1: Top: a flow diagram of a traditional BoF frame-
work using VQ in a fixed dictionary. Bottom: flow diagram
of the proposed framework. VQ is replaced by sparse cod-
ing, and the dictionary is learned by a bi-level optimization
scheme that tries to maximize the discriminativity of the re-
sulting BoFs on a training set.

in which the codes are binary and are allowed to have only
one non-zero element. The output of VQ is a v⇥ n matrix
Z⇤ containing the v-dimensional code for each shape point.

Pooling. Finally, the codes are pooled into a single v-
dimensional bag-of-features vector h(X,D) = Z⇤(X,D)p,
where, in the simplest case, p = 1

n 1 (mean pooling). In
this case, h can be regarded as the frequency of appear-
ance of different geometric words on the shape. More accu-
rately, the pooling should account for possible non-uniform
sampling, weighting each point by its area element ai,
p = (a1, . . . ,an)

>/Ân
i=1 ai. Finally, more elaborate weight-

ing can also account for the overall frequency of the words,
downweighing common words (a strategy referred to as term
frequency-inverse document frequency, or tf-idf [SZ03]).

The main drawback of the standard BoF construction out-
lined above is that all the stages are performed indepen-
dently. In particular, the dictionary construction is unaware
of the following quantization and pooling stages. As a result,
even though the local descriptors may show good invariance
under the desired class of transformations, the final BoFs
may differ significantly (consider a pathological case where
the descriptors are close the boundaries of the Voronoi cells
in the descriptor space and, due to noise and numerical inac-
curacies, are quantized to very different code vectors).

3. Learning BoFs

The key idea of this paper is to revisit the aforementioned
BoF construction procedure, performing it in a supervised
manner. First, we replace the VQ stage with sparse cod-
ing. Second, the unsupervised dictionary learning is re-
placed with supervised learning maximizing the end-to-end
retrieval performance. The flow of the proposed method is
depicted in Figure 1 (bottom).

c� 2014 The Author(s)
Computer Graphics Forum c� 2014 The Eurographics Association and John Wiley & Sons Ltd.
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Dictionary learning using triplet loss

55[Weinberger and Saul 2009] Slide credit: R. Litman



BoF after dictionary learning

56Slide credit: R. Litman



BoF after dictionary learning

57Slide credit: R. Litman



SHREC’14 Dataset
• Goal: given a human model, detect this model in other 

poses

58Slide credit: R. Litman



SHREC’14 results
• Goal: given a human model, detect this model in other 

poses

59Slide credit: R. Litman



Query example - nearest neighbor

60Slide credit: R. Litman



Questions so far?
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Fine-grained shape classification
• Global shape descriptors - work well for shapes from different 

classes 
• Next: a method for fine-grained sub-class classification from a 

sparse and noisy set of labeled shapes
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Fine-grained shape classification
• Global shape descriptors - work well for shapes from different 

classes 
• Next: a method for fine-grained sub-class classification from a 

sparse and noisy set of labeled shapes 

• “Fine grained semi supervised labeling of large shape 
collections” [Huang et al. 2013]
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Problem definition
• Large shape collection 

 E.g., 5850 chairs, 26 classes 

• Sparse and noisy labels for 
each class 

• Subtle geometric differences 

• Goal: produce labels for all 
shapes in collection
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label = shape class

Image credit: H. Su



Approach overview
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Shape matching
• Global phase: global affine shape alignment 

• Joint alignment - via MRF optimization 

• Local phase: local non-rigid registration using free-form 
deformation

66

Pair-wise matching Op!mized orienta!ons Op!mized scalings&transla!ons

Global phase

Op!mized FFDs

Local phaseInput

Figure 3: Shape matching procedure. This figure shows the shape matching pipeline, consisting of a global phase followed by a local phase.
In the global phase, we first identify pairs of similar shapes and compute optimal affine transformations between them. Then, to embed the
shapes into a common space, we apply sequential joint optimizations to optimize their orientations, scalings and translations, in that order.
In the final local phase, we optimize a FFD for each shape to refine and improve the alignment.

4 Shape Matching

The proposed classification pipeline begins with aligning all the in-
put shapes. We divide this stage into a global affine matching phase
and then a local non-rigid alignment phase (See Figure 3).

4.1 Global Affine Matching

We formulate global affine matching as solving a discrete MRF,
which jointly optimizes the transformation of each shape Ti within
a discrete set of transformation samples. To make this formulation
tractable, i.e, to maintain a small sample set for each shape, we
consider a reduced transformation model, under which this MRF
optimization can be performed for each type of elementary trans-
formation (e.g., the rotation in the xy-plane) independently.

Reduced transformation model. The reduced deformation model
is based on the assumption that we match shapes by first aligning
their front orientations and then performing appropriate translation
and scaling along each axis. Specifically, we parameterize the affine
transformation Ti : (x, y, z) ∈ Si → (x′, y′, z′) ∈ Σ of each shape

Si using a rotation matrix R(θi) =
(

cos(θi) − sin(θi)
sin(θi) cos(θi)

)

(i.e.,

specifying the front orientation with respect to Σ) and a translation
ti = (txi , t

y
i )
T in the xy-plane, and three scalings (sxi , s

y
i , s

z
i ):

(

x′
y′

)

=

(

sxi 0
0 syi

)

R(θi)
(

x
y

)

+

(

txi
tyi

)

, z′ = szi z.

Accordingly, we represent a relative affine transformation T(i, j) :
(x, y, z) ∈ Si → (x′, y′, z′) ∈ Sj using 7 parameters:

(

x′
y′

)

= S(i, j)
(

x
y

)

+ t(i, j), z′ = sz(i, j)z.

Here S(i, j) is a 2× 2 matrix. Let S(i, j) =U(i, j)Λ(i, j)VT(i, j) be the SVD
of S(i, j). It is easy to see that the constraint T−1

j ◦ Ti = T(i, j) can be
expressed via the following decoupled constraints:

R(θi − θ j) = U(i, j)VT(i, j), szi/s
z
j = sz(i, j),

(

sxi /sxj 0
0 syi /s

y
j

)

= R(θ j)S(i, j)R(−θi) :=
( sxx(i, j),θ sxy(i, j),θ

syx(i, j),θ syy(i, j),θ

)

,

ti − t j =
(

sxi 0
0 syi

)

R(θ j)t(i, j) :=
( tx(i, j),θ ,s

ty(i, j),θ ,s

)

, (1)

where sxx(i, j),θ and t
x
(i, j),θ ,s are introduced to simplify the notations.

Constructing G via pairwise matching. We adopt a variant of
the procedure described in [Kim et al. 2012] for constructing the
similarity graph G , i.e., using descriptor-based nearest neighbor
computations and then estimating the associated transformations

using RANSAC. As these steps are rather standard, we leave the
details in the supplemental material.

Joint matching via MRF optimization. Based on Equation 1, we
decouple the optimization of Ti into the optimizations of {θi}, {sxi },
{syi }, {s

z
i}, {txi } and {tyi } in this order. For each subproblem, we

place K = 32 transformation samples per shape (see the table below
for details). Let f : {1, · · · ,N}→ {1, · · · ,K} be the map that picks
a transformation sample for each shape. We compute the optimal
map f ⋆ (which provides the optimized transformations) by solving
the following MRF problem:

f ⋆ = argmax
f

∑

(i, j)∈G

exp(−Qi j; f (i) f ( j)), (2)

where term Qi j; f (i) f ( j) evaluates the difference between the induced
transformation and the corresponding relative transformation. The
table below specifies the form of Q in each case.

Samples Qi j; f (i) f ( j)
θi, f (i) = 2π f (i)/K ∥R(θi, f (i) − θ j, f ( j))−U(i, j)VT(i, j)∥F

sxi, f (i) = exp(2 f (i)/K − 1) 2|sxi, f (i) − sxj, f ( j)s
11
(i, j),θ |

syi, f (i) = exp(2 f (i)/K − 1) 2|syi, f (i) − syj, f ( j)s
22
(i, j),θ |

szi, f (i) = exp(2 f (i)/K − 1) 2|szi, f (i) − szj, f ( j)s
z
(i, j)|

txi, f (i) = 2(2 f (i)/K − 1) 4|txi, f (i) − txj, f ( j) − tx(i, j),θ ,s |
tyi, f (i) = 2(2 f (i)/K − 1) 4|tyi, f (i) − tyj, f ( j) − ty(i, j),θ ,s |

We solve Equation 2 using the iterative coordinate ascent method
described in [Leordeanu and Hebert 2006] due to its simplicity and
efficiency. As Qi j; f (i) f ( j) only provides relative constraints, we fix
f (1) in each subproblem so that T1 is the identity transformation.

4.2 Local non-rigid registration

In the local phase, we start from the roughly aligned shapes, then
for each shape Si, we optimize a free-form deformation (FFD) Fi
[Sederberg and Parry 1986] to further refine the alignment. Follow-
ing [Huber 2002], we formulate this step as minimizing the sum
of distances between pairs of aligned shapes specified by G . To
formulate the objective function, we first perform pair-wise regis-
tration [Li et al. 2008] to establish a set of corresponding point pairs
(pii′k ∈ Si,qii′k ∈ Si′), k = 1, . . . , nii′ between each pair of shapes
(Si, Si′) ∈ G . Then we setup the objective function to minimize the
distances between pii′k and qii′k. To avoid optimizing FFDs over
all shapes simultaneously, we introduce a latent point mii′k for each
point pair (pii′k,qii′k) and setup the optimization problem as

fmultiple =
∑

(i,i′)∈G

nii′
∑

k=1

(∥Fi(pii′k)−mii′k∥
2 + ∥Fi′ (qii′k)−mii′k∥

2).

Pair-wise matching Op!mized orienta!ons Op!mized scalings&transla!ons

Global phase

Op!mized FFDs

Local phaseInput

Figure 3: Shape matching procedure. This figure shows the shape matching pipeline, consisting of a global phase followed by a local phase.
In the global phase, we first identify pairs of similar shapes and compute optimal affine transformations between them. Then, to embed the
shapes into a common space, we apply sequential joint optimizations to optimize their orientations, scalings and translations, in that order.
In the final local phase, we optimize a FFD for each shape to refine and improve the alignment.

4 Shape Matching

The proposed classification pipeline begins with aligning all the in-
put shapes. We divide this stage into a global affine matching phase
and then a local non-rigid alignment phase (See Figure 3).

4.1 Global Affine Matching

We formulate global affine matching as solving a discrete MRF,
which jointly optimizes the transformation of each shape Ti within
a discrete set of transformation samples. To make this formulation
tractable, i.e, to maintain a small sample set for each shape, we
consider a reduced transformation model, under which this MRF
optimization can be performed for each type of elementary trans-
formation (e.g., the rotation in the xy-plane) independently.

Reduced transformation model. The reduced deformation model
is based on the assumption that we match shapes by first aligning
their front orientations and then performing appropriate translation
and scaling along each axis. Specifically, we parameterize the affine
transformation Ti : (x, y, z) ∈ Si → (x′, y′, z′) ∈ Σ of each shape

Si using a rotation matrix R(θi) =
(

cos(θi) − sin(θi)
sin(θi) cos(θi)
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Accordingly, we represent a relative affine transformation T(i, j) :
(x, y, z) ∈ Si → (x′, y′, z′) ∈ Sj using 7 parameters:
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)

= S(i, j)
(

x
y

)

+ t(i, j), z′ = sz(i, j)z.

Here S(i, j) is a 2× 2 matrix. Let S(i, j) =U(i, j)Λ(i, j)VT(i, j) be the SVD
of S(i, j). It is easy to see that the constraint T−1

j ◦ Ti = T(i, j) can be
expressed via the following decoupled constraints:

R(θi − θ j) = U(i, j)VT(i, j), szi/s
z
j = sz(i, j),

(

sxi /sxj 0
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= R(θ j)S(i, j)R(−θi) :=
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( tx(i, j),θ ,s

ty(i, j),θ ,s

)

, (1)

where sxx(i, j),θ and t
x
(i, j),θ ,s are introduced to simplify the notations.

Constructing G via pairwise matching. We adopt a variant of
the procedure described in [Kim et al. 2012] for constructing the
similarity graph G , i.e., using descriptor-based nearest neighbor
computations and then estimating the associated transformations

using RANSAC. As these steps are rather standard, we leave the
details in the supplemental material.

Joint matching via MRF optimization. Based on Equation 1, we
decouple the optimization of Ti into the optimizations of {θi}, {sxi },
{syi }, {s

z
i}, {txi } and {tyi } in this order. For each subproblem, we

place K = 32 transformation samples per shape (see the table below
for details). Let f : {1, · · · ,N}→ {1, · · · ,K} be the map that picks
a transformation sample for each shape. We compute the optimal
map f ⋆ (which provides the optimized transformations) by solving
the following MRF problem:

f ⋆ = argmax
f

∑

(i, j)∈G

exp(−Qi j; f (i) f ( j)), (2)

where term Qi j; f (i) f ( j) evaluates the difference between the induced
transformation and the corresponding relative transformation. The
table below specifies the form of Q in each case.

Samples Qi j; f (i) f ( j)
θi, f (i) = 2π f (i)/K ∥R(θi, f (i) − θ j, f ( j))−U(i, j)VT(i, j)∥F
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We solve Equation 2 using the iterative coordinate ascent method
described in [Leordeanu and Hebert 2006] due to its simplicity and
efficiency. As Qi j; f (i) f ( j) only provides relative constraints, we fix
f (1) in each subproblem so that T1 is the identity transformation.

4.2 Local non-rigid registration

In the local phase, we start from the roughly aligned shapes, then
for each shape Si, we optimize a free-form deformation (FFD) Fi
[Sederberg and Parry 1986] to further refine the alignment. Follow-
ing [Huber 2002], we formulate this step as minimizing the sum
of distances between pairs of aligned shapes specified by G . To
formulate the objective function, we first perform pair-wise regis-
tration [Li et al. 2008] to establish a set of corresponding point pairs
(pii′k ∈ Si,qii′k ∈ Si′), k = 1, . . . , nii′ between each pair of shapes
(Si, Si′) ∈ G . Then we setup the objective function to minimize the
distances between pii′k and qii′k. To avoid optimizing FFDs over
all shapes simultaneously, we introduce a latent point mii′k for each
point pair (pii′k,qii′k) and setup the optimization problem as
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Image credit: H. Su



Distance learning
• Learn distance metric using the                                               

aligned labeled shapes - per class 

• Distance between pair of shapes =                                               
parameterized using fixed-size voxels 

• Learning formulated to 
• Minimize distances between shape pairs in the similar sets 
• Maximize distances between shapes from dissimilar sets

67

dist(·, ·) =
X

k2Voxels

x

T dist(k)
Distance per voxel

Learned coefficients

Image credit: H. Su



Learned metric - illustration

68Image credit: H. Su



Graph-based classification
• Per class: create similarity graph                                          

using k-NN of each shape 

• Assign labels via graph partitioning                                             
using graph diffusion distances
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Learned metric

Diffusion distance

Learned metric

Diffusion distance

Image credit: H. Su



Labeling results

70Image credit: H. Su



Comparison to linear classifier result

71Image credit: H. Su



Questions?
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Style similarity
• Two papers presented in Siggraph 2015
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A
B

C

Lun et al. 2015

Stylistically incompatible

Stylistically compatible

Liu et al. 2015



Style similarity
• Two papers presented in Siggraph 2015
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Stylistically incompatible

Stylistically compatible

A
B

C

Lun et al. 2015 Liu et al. 2015
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Style compatibility for furniture models
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Stylistically incompatible

Stylistically compatible

Liu et al. 2015

Slide credit: T. Liu



Style compatibility for furniture models

• Crowdsource compatibility between pairs of models

76

CouchTable lamp

End table

Chair Armchair 

Floor lamp

Coffee table

Living room

(42)

(28) (39)

(23)

(37) (49) (36)

Slide credit: T. Liu



Crowdsourcing compatibility 
preferences
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Design of user study [Wilber et al. 2014] 

Please select the two most compatible pairs

Slide credit: T. Liu



Crowdsourcing compatibility 
preferences
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Rater’s selection

Slide credit: T. Liu
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>

>

>

>

Converted into 8 triplets

and 4 more triplets …

Slide credit: T. Liu



Crowdsourcing compatibility 
preferences
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Collected 63,800 triplets for living room  
and 20,200 for dining room

Dining roomLiving room

Slide credit: T. Liu



Step 1: Consistent segmentation [Kim et al. 2013] 
(next lecture)

Part-aware geometric features
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Armrest Back Legs Seat

Slide credit: T. Liu



Part-aware geometric features
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Back Curvature histogram

Shape diameter 
histogram

Bounding box 
dimensions

Normalized 
surface area

Step 2: Computing geometry features for each part

Slide credit: T. Liu



Part-aware geometric features
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Step 3: Concatenating features of all parts 

…

…… …
xback xlegs

x = [xback, xlegs,...]
…

Slide credit: T. Liu



Learning object-class specific 
embeddings

84Slide credit: T. Liu



Style-aware shape retrieval
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Dining chairQuery model

Most incompatible chairs

Slide credit: T. Liu
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Learning perceptual style similarity
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A
B

C

Lun et al. 2015

Slide credit: Z. Lun
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A
B C

Which of the two shapes (B or C) 
is more similar style-wise to shape A?

Learning perceptual style similarity

Slide credit: Z. Lun



Learn measure parameters via 
crowdsourcing
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A

B C

Which of the two 
objects on the 
bottom (B or C) is 
more similar style-
wise to the object 
on the top (A)? 

(i)   B 

(ii)  C 

(iii) Both 

(iv) Neither
Slide credit: Z. Lun



Geometric criteria for element 
similarity

90

Shape Proportions Lines

• Style-related elements are frequently designed to be distinct 
…Slide credit: Z. Lun



Algorithm for measuring style similarity

Input:     a pair of shapes 
Output:  a measure of style dissimilarity (distance) 
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D( ,   )=?

Slide credit: Z. Lun



Extraction of matching elements
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•  Multi-scale segmentation 
•  Patches as initial seeds to detect elements

Slide credit: Z. Lun



Extraction of matching elements
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distance(          ,          ) = w1×d1 (     ,     ) + w2×d2 (     ,     ) + w3×d3 (     ,     ) + …

Align with affine transformation, measure patch 
stylistic similarity:

surface point-to-
point distance

distance between 
feature curves

distance between 
curvature histograms

Slide credit: Z. Lun



Extraction of matching elements
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Group patches into matching elements

Slide credit: Z. Lun



Algorithm for measuring style similarity
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input shapes matching elements

Slide credit: Z. Lun



Algorithm for measuring style similarity
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input shapes matching elements

0.82×0.16

0.01×0.30

0.65×0.45

0.08×0.37

+0.16

+0.27

distance components

+

+

element 
distance

element 
saliency

element 
prevalence× +

Computed for each element 
using geometric cues

Same distance we used 
to match elements

Percentage of the area on 
both models not covered by 

any matched elements, 
weighted by their saliency

Slide credit: Z. Lun



Algorithm for measuring style similarity
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input shapes matching elements

0.82×0.16

0.01×0.30

0.65×0.45

0.08×0.37

+0.16

+0.27

distance components

D(   ,   )=0.29

output distance

D(   ,   )=0.59

+

+

element 
distance

element 
saliency

element 
prevalence× +

Slide credit: Z. Lun



Parameter learning

Learn parameters from training triplets:  
• element-similarity weights (w) 
• saliency weights (v) 
• prevalence penalty (t)   
that maximize likelihood function & regularizer to promote 
sparsity:
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L(w, v, t) = ∑
triplet {A,B,C}

confidence(B) · log P(B is more similar to A than C)

confidence(C) · log P(C is more similar to A than B)+

+ regularizer( w, v, t )

∑
triplet {A,B,C}

Slide credit: Z. Lun



Validation
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Does it 
work?

Slide credit: Z. Lun



Our result
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Slide credit: Z. Lun



Failure case
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Slide credit: Z. Lun
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Application:
Style-based shape tagging

Slide credit: Z. Lun
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Questions?
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Shape similarity and retrieval - another 
flavor

106
[Li et al. 2015]

Joint shape and 
image embedding



Shape based Image Retrieval

107
[Li et al. 2015]



Image based Shape Retrieval

108
[Li et al. 2015]

Multi-modal embeddings - in 
the second part of the course
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DEFORMABLE SHAPE 
MATCHING
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Mapping Between Data Sets
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• Multiscale mappings 
• Point/pixel level 
• Part level

Maps capture what 
is the same or similar  
across two data sets

Slide credit: L. Guibas



Why Do We Care About Maps and 
Alignments?

• To stitch data together 

• To transfer information 

• To compute distances and 
similarities 

• To perform joint analysis

112Slide credit: L. Guibas



Problem definition
• Given a pair of shapes, find corresponding points

113Image credit: L. Guibas, M. Ovsjanikov



• Given a pair of shapes, find corresponding points 
• When shapes differ by rigid transformation - 6 degrees of 

freedom 
• Use rigid alignment algorithm

Problem definition

114Image credit: L. Guibas, M. Ovsjanikov



Problem definition
• Given a pair of shapes, find corresponding points 
• When shapes differ by non-rigid transformation - degrees 

of freedom can grow rapidly 
• If transformation is isometric, we can use isometry-

invariant shape properties to find correspondence 

115Image credit: L. Guibas, M. Ovsjanikov



Problem definition
• Given a pair of shapes, find corresponding points 
• When shape differ by elastic / topological transformation
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SHREC'14 - Non-Rigid 3D Human Models track [Kreavoy and Sheffer 2004]

[Huang et al 2011]



Matching algorithm: desired properties

• Given two (or more) shapes, find a map that is 
• Automatic 
• Fast to compute 
• Bijective (if we expect to have a global 

correspondence) 
• Low-distortion 
• Confirm to cycle-consistency constraints - in shape 

collections
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Why this is important?
• Supervised machine learning algorithms require having 

shape collections with consistent annotations 
• Some applications require having consistent alignment 

• Co-alignment in shape collections 
• Harder than pairwise alignment 
• Can produce better results that pairwise alignment 

• More in the following lecture 

• For overview of shape alignment methods take cs233 
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