
N I E L S J O U B E R T, C R Y S TA L L E M I R E

G E T T I N G S TA R T E D W I T H
L I S Z T

A U G U S T 2 0 1 1

getting started with liszt 3

This tutorial walks you through the Liszt programming language step-
by-step. We assume some familiarity with solving partial differential
equations using computational methods on a domain described by a
mesh, and a basic understanding of programming languages - vari-
ables, functions, types, and control flow. We will introduce Liszt using
an example-driven approach, with you following along by writing and
extending a small application.

Contents

1 Installing Liszt 5

1.1 Mac OS X 10.5+ 5

1.2 64-bit Debian-based Linux 6

1.3 Testing your installation 6

2 What to expect from the Liszt language 7

3 Example 1: Starting a new Liszt Project 8

3.1 Project Configuration: liszt.cfg 8

3.2 Loading a mesh: mesh.msh 8

3.3 Hello World: Template.scala 8

4 Example 2: Variables, Values, and Type Inference 10

4.1 Liszt Value Types 10

5 Example 3: Topological types, operators and sets 11

5.1 Mesh Topology Operators 12

6 Example 4: The for-comprehension, and applying kernels to sets 13

6.1 Example 4.1: Scalar Reduction Variables 13

6.2 Functions in Liszt 14

6.3 Example 4.2: Objects in Liszt 14

6.4 Special Mesh Element: Exterior Cell 15

6.5 Example 4.3: Boundary Sets 16

7 Vectors and Matrices 17

7.1 Liszt Value Types: Matrix 18

8 Example 5: Fields 19

8.1 Initializing Fields 20

8.2 Field Reads 20

8.3 Writing and Scattering to Fields 20

getting started with liszt 4

9 Example 6: Putting it all together 22

10 Viewing our Results in LisztVis (Mac Only) 23

10.1 Example 7: Using the ‘vis’ runtime 23

10.2 Example 8: Using watchpoints 25

10.3 Example 9: Using filters 26

11 Example Project: Scalar Convection 26

12 Advanced Topics 27

12.1 Traits and Mixins 27

12.2 Sparse Matrices 27

Indices 28

Linear Systems 28

Creating Indices 29

Mixins 30

Non-zeroes 30

getting started with liszt 5

1 Installing Liszt

Liszt is distributed as a source package consisting of a compiler,
a runtime library and a set of accompanying examples and docs.
It requires compilation of the compiler, which in turn requires the
dependencies of Liszt to be available on your system.
Liszt depends on:

· gcc-compatible C++ compiler

· OpenMPI,

· (optional) CUDA 4.0 SDK if the GPU runtime will be used,

· VTK 5.6 or higher, and

· Scala 2.8.1; which in turn requires

· Java Development Kit 6

1.1 Mac OS X 10.5+

We assume you already have xcode installed on your machine to
provide the necessary C++ compiler.

1. For Lion users: Install OpenMPI (comes shipped with OS X 10.5
and 10.6)

(a) Download OpenMPI 1.4 from http://www.open-mpi.org/

(b) Configure: ./configure --disable-mpi-f77 --disable-mpi-f90

(c) Install: make all install

2. Download Liszt, VTK and Scala 2.8.1 from http://liszt.stanford.edu/

3. Install the VTK 5.6.1 package

4. Extract the Scala 2.8.1 zip file and place the scala-2.8.1.final
directory in a convenient location.

5. Add the following line to ~/.bashrc, filling in the location of
scala-2.8.1.final, and reopen your terminal:
export PATH=$PATH:/WHERE/YOU/PLACED/scala-2.8.1.final/bin

6. Extract the Liszt file to a convenient location, henceforth referred
to as $LISZT_HOME.

7. Open a terminal at $LISZT_HOME\liszt_src and run make

8. Add the following line to ~/.bashrc, filling in the location of
liszt_src, and reopen your terminal:
export PATH=$PATH:/WHERE/YOU/PLACED/liszt_src/release/bin

getting started with liszt 6

If you want to use the CUDA or MPI runtime, you additionally need
to install CUDA 4 or OpenMPI respectively. This can be done with-
out reinstalling anything else.

1.2 64-bit Debian-based Linux

We assume you have the appropriate C++ and Fortran compilers in-
stalled. On Ubuntu this can be installed using the sudo apt-get install build-essential
command.

1. First install the required dependencies using
sudo apt-get install csh cmake autoconf automake libblas-dev openjdk-6-jdk

2. Download Liszt, and the Linux Dependencies Package from
http://liszt.stanford.edu/

3. Extract the Liszt and Linux Dependencies Packages in convenient
directory, hereby referred to as $LOCALDIR.

4. Add the following line to your ~/.bashrc, filling in the location
of LOCALDIR, then reopen your terminal:
export PATH=$LOCADIR/linux-deps/bin:$PATH

5. Navigate to the liszt_src directory in the extracted Liszt pack-
age and open the Makefile.inc file for editing. Modify the line
defining VTK_PREFIX as follows, filling in the location of $LO-
CALDIR, then save and close the file:
VTKPREFIX=$LOCALDIR/liszt-deps

6. From the same directory, run make.

7. Add the following line to ~/.bashrc, filling in the location of
liszt_src, and reopen your terminal:
export PATH=$PATH:/WHERE/YOU/PLACED/liszt_src/release/bin

1.3 Testing your installation

Run a quick test now:

· Navigate your terminal to $LISZT_HOME\liszt_src\tests

· Run ./run -r single SC

getting started with liszt 7

2 What to expect from the Liszt language

Welcome to Liszt, a high performance DSL1 for mesh-based pro- 1 Domain Specific Language

gramming. The Liszt DSL is embedded in the Scala programming
language. Liszt inherits many of Scala’s features, of which we’d like
to introduce the basic concepts now. We will briefly explain these
ideas before we dive into Liszt itself.

· A mixed Procedural and Functional programming style.

· Variables and Values for mutable and immutable storage.

· Static Types with Type Inference and Type Annotations.

· Integers and Floating Point numbers

· Basic Control Flow in the form of if and while statements.

· Function Calls with return values.

· Singleton Objects as namespaces for organizing code.

Liszt extends this subset of Scala by adding:

· Data-Parallel Constructs and Semantics.

· Topological types, sets and operators to work with a mesh

· Vectors and Matrices with associated mathematical operators.

· Data storage in terms of Fields

We are interested in your background:

· Who are you?

· What are you working on?

· What languages and libraries do you regularly use for this?

· What are you thinking of implementing today?

getting started with liszt 8

3 Example 1: Starting a new Liszt Project

A Liszt project consists of a directory containing at least the follow-
ing three files. Download our template project at http://liszt.stanford.edu
and extract the tarball to produce a directory containing:

1. liszt.cfg - specifying runtime and compiler options.

2. mesh.msh - any VTK compatible mesh or Fluent file.

3. Template.scala - a source code file, for you to fill in

4. MeshUtility.scala - example mesh algorithms

3.1 Project Configuration: liszt.cfg

{
"runtimes": ["single"],
"main-class": "example",
"mesh-file": "mesh.msh",
"redirect-to-log": false,
"num-procs": 1,
"debug": true,
"log": "Progress"

}

The runtimes setting by default specifies the single-core scalar
runtime. It can also be one of mpi, smp or gpu to run your code on a
different runtime.2 The main-class setting specifies the Liszt object 2 When using the mpi or gpu runtime

we compile Liszt using OpenMPI or
CUDA, respectively. If you want to use
these runtimes, you need to have the
appropriate compiler and hardware
available. Liszt is compatible only with
NVIDIA Fermi-based graphics cards.

on which the def main() function resides - the entrypoint of any Liszt
execution. The mesh-file setting is self-explanatory.

3.2 Loading a mesh: mesh.msh

Liszt derives its performance by deeply integrating mesh topology
with computation, thus it requires loading a mesh as part of the
project’s configuration. The mesh path is specified in liszt.cfg, and
accepts all VTK-compatible formats and Fluent File meshes (the .msh
file we include is a Fluent mesh).

3.3 Hello World: Template.scala

Finally, here is our first Liszt code example:

import Liszt.Language._

@lisztcode
object Template {

def main() {
Print("Hello world!")

}
}

getting started with liszt 9

Let’s run this by typing liszt at the command line in the project
directory. If your path is set up correctly, this will invoke the Liszt
compiler, compile the code, and execute the resulting binaries trans-
parently.

The basic elements of any Liszt program can be identified in this example:

· All Liszt code - every variable, constant and function (including
main) - is inside an object annotated using the @lisztcode annota-
tion. These objects are singletons and enable namespaces.

· Each Liszt .scala file starts with import Liszt.Language._

· The function main is a member of the object specified by main-class

and takes no arguments.

· Semicolons are optional in Scala.

· Liszt is statically typed, but type inference means we don’t have to
specify types if it can be inferred.

· To write to standard output, you use Print(...).

getting started with liszt 10

4 Example 2: Variables, Values, and Type Inference

Let’s extend our example to print multiple outputs:

import Liszt.Language._

@lisztcode
object Template {

def main() {
val words = "Hello Number "
var i = 0
while (i < 10) {

Print(words, i)
i += 1

}
}

}

Liszt, like Scala, supports both constant values such as words

(immutables) and variables such as i (mutables). i can be reas-
signed, but words stays constant after assignment. The type definition
syntax varies for constant values or variables as follows, where T

specifies the type of the variable:

· val – For constant values, the syntax is as following:
val a : T = <my code> 3 3 T is the type of a

· var – For variable values, the declaration is as following:

var a : T = <my code>

Notice that we never specified any types in our example! Type infer-
ence allows us to simplify the syntax further by dropping the type
when it can be inferred by the assignment: var i = 0 4 4 i is a automatically made a variable

with type Integer, since the compiler
can infer the type of i by the value
being assigned to it.

You only need to provide types in the following situations:

· A variable declaration without assigning a value: val name : String;

· All method parameters: def foo(amt: Float)

· Method return values if you explicitly call return, or the inferred
type is too general.

Control flow is directly borrowed from scala: while-loops and if-
statements are the same as in any of the C family of languages.

4.1 Liszt Value Types

The simple types you are familiar with from other languages are
“value types” in Liszt - types such as Int, Float, Double, String, Boolean,
Vec and Mat. Values types are passed and return by value through
functions. Value types may be declared as val (for constant usage) or
var (for variable usage). Later we will introduce Fields - A construct
with a Field type is not copied but passed my reference. 5 5 Please see the Liszt Language Specifi-

cation for precise definitions of all the
value types.

getting started with liszt 11

5 Example 3: Topological types, operators and sets

Once Liszt imports your mesh, it makes the mesh topology available
through a set of mesh types and functions. Mesh types are always
declared as val, and are therefore constant. This reflects the current
state of Liszt - your mesh topology is static over the course of your
program, and accessed through the mesh global variable.6 6 Liszt is designed so that our compiler

can track how your code uses the mesh,
and produce parallel code for different
platforms.

Let’s extend our hello world example to print information about
the mesh:

import Liszt.Language._

@lisztcode
object Template {

def main() {
val c : Set[Cell] = cells(mesh)
val f = faces(mesh)
val e = edges(mesh)
val v = vertices(mesh)
Print("Cells: ", size(c))
Print("Faces: ", size(f))
Print("Edges: ", size(e))
Print("Vertices: ", size(v))

}
}

In this example we use four built-in topological operators - cells(),
faces(), edges() and vertices() - passing the global variable mesh,
assigning the resulting sets of elements to immutable variables.7 7 See the cheat sheet or language refer-

ence for a list of topological operators.We then call the size(s : Set) function on each of these immutable
variables to retrieve an integer size for each set. It is not possible to
construct mesh elements using integer indexing, they can only be
accessed using these built-in topological operators.8 8 As for any rule, there is an exception.

See the set of label-based extractors on
the cheat sheet, which allows extracting
a given topological element from a
higher-dimensional element using an
integer to specify its relative location in
a canonical ordering.

The topological operators in Liszt always returns individual or sets
of mesh elements. These mesh elements have associated topological
types, on which type inference works as expected:

· Vertex — A 0-dimension element, representing a single point on the
mesh.

· Edge — A 1-dimensional element, connecting two vertices.

· Face — A 2-dimensional element (triangle, quadrilateral, etc.),
composed of several edges.

· Cell — A 3-dimensional element (tetrahedron, hexahedron, etc.),
composed of several faces.

· Mesh — An entire mesh. Currently the only build-in expression
with type Mesh is mesh.

· Set[T <: MeshObj] — A set of vertices, edges, faces, or cells.

getting started with liszt 12

5.1 Mesh Topology Operators

Liszt provides built-in functions to access mesh topology, such as
vertices(mesh), edges(mesh), cells(mesh), faces(mesh) and, for example,
faces(cell). Each of these functions are overloaded to take many
different topological types - for example, the cells() function can be
called on mesh, or on individual mesh elements. Please see the Liszt
Language Specification’s section on Mesh Topology Functions for a
full list.

getting started with liszt 13

6 Example 4: The for-comprehension, and applying kernels to sets

We now introduce our parallel constructs - applying a computational
kernel to every element in a set of mesh elements. We will do this by
extending our example to print data per mesh element:

import Liszt.Language._

@lisztcode
object Template {

def main() {
for (c <- cells(mesh)) {

val id = ID(c)
val fs = faces(c)
Print("Cell ", id, " has ", size(fs), " faces");

}
}

}

This example maps the body (the “kernel”) of the for-comprehension
to each element in the set of mesh cells. Mapping computation over
a set of elements does not guarantee a sequential order, and does
not have any loop-carried dependencies. Each cell runs in isolation
and potentially in parallel.9 The kernel runs once for each element, 9 This is one of the most fundamental

aspects of the Liszt language, and
allows us to distribute elements across
many parallel processors.

using different parallel approaches depending on the runtime.

Things to note:

· c inside the for-comprehension is of type Cell

· faces(c) retrieves the faces of the given cell, returning type Set[Face]

· Liszt does not have for loops - the only looping construct is while

6.1 Example 4.1: Scalar Reduction Variables

Lets write our own size() function.10 To count every element inside 10 We now introduce both functions and
reductions in Liszt.a set, we need to aggregate data across the for-comprehension. Liszt

provides scalar reduction variables for this purpose:

import Liszt.Language._

@lisztcode
object Template {

def facecount() : Int = {
var redvar = 0
for (c <- faces(mesh)) {

redvar += 1
}
return redvar

}
def main() {

Print("Mesh contains ", facecount(), " faces");
}

}

getting started with liszt 14

Scalar reduction variables allow the programmer to use an as-
sociative operator across all the elements in a mesh set. Liszt will
automatically implement a parallel tree reduction to calculate a final
value for the variable in a parallel environment. It is for this rea-
son that you can only use a single operator on a scalar reduction
variable inside the same for-comprehension - you cannot read and
write it in the same comprehension, you can only use the built-in
associative operators. This code will not compile:

var redvar = 0
for (c <- faces(mesh)) {

redvar += 1
Print("Redvar so far: ", redvar) \\BUG! Cannot read and apply +=

}

This example also introduces a function. Note the type annotation
on the function declaration: def countCells() : Int = <body>

6.2 Functions in Liszt

Liszt programs are built using function calls that takes multiple val-
ues and returns a single type. All arguments are passed by value -
copied into the function - and returned by value as well. Functions
must be declared inside an object. Function definition syntax is:
def foo(x1 : T1, ..., xn :Tn) : Tr = <exp>

x1 is an argument variable, Ti is the type of argument xi, Tr is the
return type. If <exp> returns a value, you precede it by an “=”. If it
returns nothing (the equivalent of void in C) you can omit the “=”.

Main Function Example:

@lisztcode
object Template {

def main() { // Notice that the ‘‘=’’ is omitted.
<liszt code>

}
}

Function with arguments and a return value example:

@lisztcode
object MyObject {

def MyFunction(a: Int, b: Int) : Boolean = {
val c = (a == b)
return c

}
}

6.3 Example 4.2: Objects in Liszt

Let’s modularize our facecount() function into a separate module to
support good coding style, and memoize it to improve efficiency:

getting started with liszt 15

import Liszt.Language._

@lisztcode
object MeshCounts {

var savedcount = 0
def facecount() : Int = {

if (savedcount == 0) {
for (c <- faces(mesh)) {

savedcount += 1
}

}
return savedcount

}
}

@lisztcode
object Template {

def main() {
Print("Mesh contains ", MeshCounts.facecount(), " faces");

}
}

Objects in Liszt are modules11. Objects cannot be nested, and must 11 You can think of modules as a C++
Namespace or a Singleton Classstart with @lisztcode. Everything in an object is public, and code

outside of functions are executed on initialization.

Things to note:

· savedcount is a variable at object level (outside of any function), and
can therefore be accessed by other objects and their functions.

· Calling a function or a variable on a different object uses an <object>.<identifier>

or <object>.<function>() syntax.

6.4 Special Mesh Element: Exterior Cell

The exterior cell is a special cell element with global id equal to zero.
This allows you to find the exterior of the mesh. For example:

@lisztcode
object Template {

for (f <- faces(mesh)) {
val c0 = inside(f)
val c1 = outside(f)

if (ID(c0) == 0) {
// c0 is the exterior cell and c1 is interior

} else if (ID(c1) == 0) {
// c1 is the exterior cell and c0 is interior

} else {
// c0 and c1 are interior cells

}
}

}

getting started with liszt 16

6.5 Example 4.3: Boundary Sets

It is possible that your mesh contains partitions of elements. Bound-
ary sets allow you to access these subsets of the total mesh topology,
as defined by the sets in your input mesh file. Boundary sets are not
defined inside Liszt - it is already present in the mesh file. Boundary
sets are made available as a set alongside the built-in sets such as
edges(mesh), as this example shows

import Liszt.Language._

@lisztcode
object Template {

...
<MeshCounts code from previous example>
...
val interior = BoundarySet[Face]("default-interior")
def main() {

for (f <- interior) {
Print("Interior face: ", ID(f))

}
Print("Mesh contains ", MeshCounts.facecount(), " faces");
Print("Interior contains", size(interior), " faces");

}
}

Our example mesh happens to contain a set called "default-
interior".

Boundary sets must always be declared as val. The elements con-
tained in the boundary set are identified inside the mesh file using
a characteristic string name. They can now be used in the same way
as any of the sets returned by the built-in mesh operators. They are
generally declared as:

· BoundarySet[A <: MeshObj] — A is one of Vertex, Edge, Face or Cell

depending on the definition inside the mesh file.

getting started with liszt 17

7 Vectors and Matrices

Vectors are fixed-length containers holding a single type of values,
and are value types just like Int or Float. Vectors are defined as:

Vec[N <: IntM, T] — A dense vector type of length N, where N is
a meta-integer. T is any Liszt value type. Meta-integers are integer
literals preceded with underscores. You need to use them to declare
vectors and matrices. You may access vectors and matrices with
either normal integer values or with meta-integers.12 For example: 12 Meta-integers are used when Liszt

expects a constant value at compile
time, which allows for static checking
and optimizations. You should use
meta-integers when possible to enable
optimizations.

@lisztcode
object Template {

def main() {
val someVector : Vec[_3,Float] = Vec(0.f, 0.f, 0.f)
Print("Some vector is: ", someVector)

}
}

someVector stores 3 Float values. We can again rely on type infer-
ence, and drop the type definition, leading to: val myFirstVector = Vec(0.f, 0.f, 0.f).

Reading an entry in a Vec is done by accessing the desired ele-
ment by specifying the desired position with a meta-integer, starting
from meta-integer _0. Alternatively, the first four elements may be
accessed by calling member variables x, y, z and w respectively. A
normal integer can be used to access a vector as well.13 A vector de- 13 This lookup cannot be as well-

optimized at compile time, thus we
prefer to use meta-integers when possi-
ble.

clared as a val (constant) cannot be modified. On the other hand, a
vector declared as a var can have it’s entries written to.

@lisztcode
object Template {

val v = Vec(9,8,7)
var vv = Vec(1,2,3)

\\READING:
Print(v) //Will print (9,8,7)
Print("(", v.x ,",", v(1) ,",", v(_2) ,")") //Will print (9,8,7)

\\WRITING ELEMENTS:
vv(0) = v(0)
Print(vv) //Will print (9,2,3)

}

We provide pointwise multiply, scalar multiplication, cross prod-
uct, dot product and normalization functions that work on vectors:

def main() {
val v1 = Vec(0,1,0)
val v2 = Vec(0,2,3)

Print(cross(v1,v2))
Print(dot(v1,v2))
Print(normalize(v2))
Print(v1 * v2) //pointwise multiplication
Print(5 * v2) //scalar-vector multiplication

}

getting started with liszt 18

7.1 Liszt Value Types: Matrix

Matrices are fixed-size 2D storage in Liszt, built from vectors of rows.
For example:

@lisztcode
object Template {

val myFirstMatrix : Mat[_2, _3, Float]= Mat(Vec(0.f, 0.f, 0.f), Vec(0.f, 0.f, 0.f))
}

myFirstMatrix is a 2 rows by 3 columns dense matrix. Each row in
the matrix is declared as a Liszt vector of length C.

Access to individual elements

Indexing into a matrix is possible by specifying the desired 2D posi-
tion using meta-integers or integers. The first element corresponds to
the row and the second element specifies the column:

@lisztcode
object Template {

val m = Mat(Vec(1,0), Vec(0, 1))
val a01 = m(_0,_1)

}

A matrix declared as a var may be modified:

@lisztcode
object Template {

val m = Mat(Vec(1,0), Vec(0,1))
m = Mat(Vec(2,3), Vec(0.1)) // bug! v cannot be modified

var mm = Mat(Vec(0,0), Vec(0,0))
mm(_0,_0) = 1
mm = Mat(Vec(1,0), Vec(0,1))

}

We provide useful mathematical functions for matrices

Our support is, unfortunately, relatively limited as this is a research
language.

def main() {
val v1 = Vec(0,1,0)
val m1 = Mat(Vec(1, 0, 0), Vec(1, 1, 0), Vec(1, 1, 1))

val v2 = Vec(0,2,3)
Print(m1)
Print(5 * m1) //scalar * matrix
Print(m1 + m1) //Pointwise addition
Print(m1 * m1) //Matrix-Matrix Multiply
Print(m1 * v1) //Matrix-Vector Multiple

}

getting started with liszt 19

8 Example 5: Fields

Our examples so far store global variables and accesses individ-
ual elements of a set in parallel. We now introduce the last com-
ponent necessary to write a real Liszt application - storing data
on mesh elements, using a construct called Fields.14 Fields map 14 A field in the Physics sense is a

physical quantity associated with each
point in a space. Fields in Liszt take
on a similar role - associating a value
with every instance of a specific type of
topology.

a topological type to a value type. That is, a field stores a specific
type of value on each mesh element of a specific type, for example
FieldWithConst[Face, Int](0) stores an integer on each face. Let’s con-
sider a simple example that calculates the center of each face in the
mesh:

import Liszt.Language._

@lisztcode
object Geometry {

val float3_zero = Vec(0.f,0.f,0.f)
val position = FieldWithLabel[Vertex,Vec[_3,Float]]("position")
val face_center = FieldWithConst[Face, Vec[_3,Float]](float3_zero)

def precalculate() {
for (f <- faces(mesh)) {

calcFaceCenter(f)
}

}

def calcFaceCenter(f : Face) : Vec[_3,Float] = {
var center = Vec(0.f,0.f,0.f)
for(v <- vertices(f)) {

center += position(v)
}
center = center / size(vertices(f))
face_center(f) = center

}
}

@lisztcode
object Template {

def main() {
Geometry.precalculate()
for (f <- faces(mesh)) {

Print("Face center: ", ID(f), " ", Geometry.face_center(f))
}

}
}

Fields support synchronization and are atomically updated during
for-comprehensions. They are global data structures that must be
declared at object scope. Fields are passed to functions as reference
and cannot be returned from functions. A field has to be declared as
val. However, the stored value T behaves as var and therefore can be
modified. They are defined as:

· Field[A <: MeshObj, T] — A is one of Vertex, Edge, Face or Cell. T is
any Liszt value type.

getting started with liszt 20

8.1 Initializing Fields

There are two way of initializing fields:

· FieldWithConst[A, T](<value>) – Initializes each entry in the field
with the value passed as an argument

· FieldWithLabel[Vertex, Float3](‘‘position’’) – Every element in the
field is initialized with a value from the mesh file according to the
position of of the vertex.

@lisztcode
object Template {

//each entry set to 0.f:
val cellField = FieldWithConst[Cell,Float](0.f)

//entries read from mesh file:
val positionField = FieldWithLabel[Vertex,Vec[_3,Float]]("position")

}

8.2 Field Reads

Fields are indexed by topological element. The return type of a field
read is the type stored in the field. For example:

@lisztcode
object Template {

val positionField = FieldWithLabel[Vertex,Vec[_3,Float]]("position")

for (v <- vertices(mesh)) {
val pos : Vec[_3,Float] = positionField(v)

}
}

8.3 Writing and Scattering to Fields

Fields cannot be written to and read from in the same loop.15 Like 15 This restriction allows the Liszt com-
piler to extract much more parallelism.scalar reduction variables, Fields support associative reductions inside

for-comprehensions, but you cannot apply associative operators and
read or write the field inside the same for-comprehension. If two
operators are mutually associative and commutative (eg. + and -),
then you can use them both inside the for-comprehension.

@lisztcode
object Template {

val cellField = FieldWithConst[Cell,Int](1)

for (c <- cells(mesh)) {
cellField(c) += ID(c) \\valid
cellField(c) -= ID(c) \\valid since + and - and associative and commutative

}

}

getting started with liszt 21

The following code would produce a compiler error:

@lisztcode
object Template {

val cellField = FieldWithConst[Cell,Int](1)
for (c <- cells(mesh)) {

cellField(c) += ID(c)
cellField(c) -= 1
val r = cellField(c) //BUG! Cannot change operator type inside a for comprehension

}
}

Fields writes are atomic, so it is safe to write code that has mul-
tiple instances of a for-comprehension writing to the same entry in
a field. Even if this code runs in parallel, race conditions do not ex-
ist and the correct answer is calculated. We call this type of writes
“scatters”16: 16 The term “scatter” comes from

vector operations. When a vector of
values needs to be stored into memory,
but each element of the vector needs
to be stored in an arbitrary location
in memory, the vector elements are
“scattered” into memory, with multiple
elements potentially writing to the
same memory location. The wider
community has adopted this term to
describe writes from a data-parallel
kernel that touches memory that does
not belong exclusively to the kernel
itself.

val Position = FieldWithLabel[Vertex,Float3]("position")
val Flux = FieldWithConst[Vertex,Float](0.f)

def flux_calc(e : Edge) : Float = {
return length(position(tail(e)) - position(head(e)))

}

for (e <- edges(mesh)) {
val v1 = head(e)
val v2 = tail(e)
val flux = flux_calc(e)
Flux(v1) += flux
Flux(v2) -= flux

}

getting started with liszt 22

9 Example 6: Putting it all together

Let’s write a very simple heat conduction code using Jacobi iteration
to solve for temperature across a mesh of rods.

{
"runtimes": ["single"],
"main-class": "HeatTransferExample",

...
}

import Liszt.Language._

@lisztcode
object HeatTransferExample {

val rl = 1; val Kq = 0.20f;
val Position = FieldWithLabel[Vertex,Float3]("position")
val Temperature = FieldWithConst[Vertex,Float](0.f)
val Flux = FieldWithConst[Vertex,Float](0.f)
val Jacobi = FieldWithConst[Vertex,Float](0.f)

def main() {
//initialize a single point
for (v <- vertices(mesh)) {

if (ID(v) == 1) {
Temperature(v) = 1000.0f;

} else {
Temperature(v) = 0.f;

}
}
//run Jacobi iteration
var i = 0;
while (i < 100) {

for (e <- edges(mesh)) {
val v1 = head(e)
val v2 = tail(e)
val dP = Position(v2) - Position(v1)
val dT = Temperature(v2) - Temperature(v1)
val step = 1.0f/(length(dP))
Flux(v1) += dT*step
Flux(v2) -= dT*step
Jacobi(v1) += step
Jacobi(v2) += step

}
for (p <- vertices(mesh)) {

Temperature(p) += 0.1f*Flux(p)/Jacobi(p)
}
for (p <- vertices(mesh)) {

Flux(p) = 0.f
Jacobi(p) = 0.f

}
i += 1

}
for (p <- vertices(mesh)) {

Print("Temp ", Temperature(p))
}

}
}

getting started with liszt 23

10 Viewing our Results in LisztVis (Mac Only)

LisztVis is our visual debugging tool. It visualizes the data stored
in fields. It further supports watchpointing a field to capture every
change in value the field goes through. It further allows visualizing
field values on specific topological elements. It is very useful for
understanding results and debugging code.

10.1 Example 7: Using the ‘vis’ runtime

Edit the liszt.cfg file of the HeatTransferExample code. The vis

runtime instruments your code to track field state changes. This will
hurt performance but enable the extraction of fine-grain debugging
data. Alternatively, you can run just liszt vis and only see the
result of running your code without inspecting field values over time.

{
"runtimes": ["vis"],
"main-class": "HeatTransferExample",

...
}

If you now run liszt you will see LisztVis opening, as follows:

The User Interface is broken up into a control panel on the left and
a viewport on the right. The control panel allows us to associate data
from our code with the visual elements in the viewport, for each of
the mesh types.

getting started with liszt 24

Let’s visualize the temperature of the vertices:

1. Switch to the Edges tab and uncheck Visible.

2. Switch to the Faces tab and uncheck Visible.

3. In the Verts tab:

(a) Check visible.

(b) Inside Vert Fields, widen the Name column.

(c) Drag HeatTransferExample___Temperature into the Color box.

(d) Drag HeatTransferExample___Temperature into the Size box.

4. Navigate through the viewport using your mouse:

(a) Left button drag: Rotate around current center

(b) Right button drag: Translate from center

(c) Middle button drag/scroll: Zoom

You should now see, after moving your viewport around:

Things to note:

· The control panel allows for adjusting 6 visual elements for each
topological element: Label text, Visibility, Color, Size, Vector, and the
Vertex Position (vertices only)

· The legend colors are automatically assigned, and shown for the
topological type of the currently selected tab.

· Ditto for the fields table.

To see more detail about a specific element, click on it to open a
detail view of the data associated with it, as shown on the right.

getting started with liszt 25

10.2 Example 8: Using watchpoints

Since we’re using the vis runtime we can watchpoint fields to track
how its contents change. We use the inspector window, shown on the
right, for this.

1. Open the inspector from the menu: Window > Inspector

2. Click the + to create a new watchpoint.

3. Into the Expression of the new watchpoint, type the name of the
field to watchpoint, HeatTransferExample___Temperature

4. Click Run Simulation to rerun your code, recording the field state
every time it changes.

5. After a moment, the list of snapshots appear. Click on a snapshot
to select it as the currently active field values. This will change the
viewport to display the data at the selected point in time.

6. If you have TextWrangler installed, you can double-click a snap-
shot and see the code line where the value changed.

Use your up and down keys to scroll through the snapshots to ani-
mate the viewport.

getting started with liszt 26

10.3 Example 9: Using filters

We now use filters to show a subset of the vertices in the mesh by
writing an expression against which vertices are filtered. Say we want
to see only the first 10 vertices if their temperature is bigger than 50

Kelvin.

1. Delete the contents of the Size box. This is not necessary but im-
proves the visual result for our example.

2. Into the Filter box, type id < 10 && HeatTransferExample___Temperature > 50

and hit enter.

3. As you scroll through the snapshots, you should see only 10 ver-
tices.

11 Example Project: Scalar Convection

For a larger example project, see the Scalar Convection code bundled
with the compiler at: liszt_src/examples/scalar_convection

getting started with liszt 27

12 Advanced Topics

12.1 Traits and Mixins

Liszt supports a subset of the trait and mixin interface that scala
provides, which lets you reuse common pieces of code by mixing
them into your objects. To create a reusable piece of code you can
declare a trait:

@lisztcode trait A {
var a = 1

}
@lisztcode trait B {

val b = 2
}

@lisztcode object C extends A with B {
def main() {

D.a = 3
Print(a," ",b," ",D.a) //prints "1 2 3"

}
}
@lisztcode object D extends A

Here we declare two traits A and B and then mix them into a single
object C. You can mix the same trait into multiple objects, allowing
you to reuse the same code in multiple places, as we have done with
D. Liszt also allows traits to be parameterized:

@lisztcode trait Mult[N <: IntM] {
def run(a : Float, b : Vec[N,Float]) : Vec[N,Float] = a * b

}

@lisztcode object Mult3 extends Mult[_3]
@lisztcode object Main {

def main() {
Print(Mult3.run(Vec(1.f,2.f,3.f))) //prints "[2,4,6]"

}
}

Here the parameter list [N <: IntM] indicates that N must be a
meta-integer (IntM). Mult3 then supplices Mult with the meta-integer
_3 to create an instance of the Mult trait for use with vectors of size 3.
Parameterized traits allow you to write more general code and use it
in multiple places.

12.2 Sparse Matrices

Liszt supports solving linear-systems Ax = b defined over the liszt
mesh by interfacing with external solvers. This section describes how
linear systems are described and solved in liszt.

getting started with liszt 28

Indices

To get started, we introduce an abstract data type called Index. An
Index refers to a single row or column of a sparse matrix, or it refers
to a single entry in a sparse vector. An index is an abstract data type;
it not possible to perform integer math on an index. We will intro-
duce a way to construct indicies shortly, but for now let’s assume you
can obtain indicies and focus on how to use them. Here are some ex-
ample uses: (assume i1,i2,i3 ... are indicies, v1,v2,v3 ... are sparse
vectors, and m1,m2,m3 ... are sparse matrices. Variables are explicitly
typed for clarity, but these declarations are optional in Scala).

You can access vectors like so:

val f0 : Float = v1(i1)
val f1 : Float = m1(i1,i2)
val index_vector : Vec[_3,Index] = Vec(i3,i4,i5)

//gather a small dense vector from a sparse vector
val f2 : Float3 = v1(index_vector)

val index_vector2 : Vec[_3,Index] = Vec(i6,i7,i8)

//gather a small dense matrix that is the product of a vector of row indicies
//and a vector of column indicies
val f3 : Float3x3 = m1(index_vector,index_vector2)

Writing to these objects looks very similar:

v1(i1) = 1.f
m1(i1,i2) = 2.f
v1(index_vector) = Vec(1.f,2.f,3.f)
m1(index_vector,index_vector2) = f3

Linear Systems

We combine these new types into a linear system, which represents
the equation: Ax = b. You create a linear system object by mixing in
the LinearSystem trait when you want to use sparse matrix solvers.

trait LinearSystem {
type X <: Vector
type B <: Vector
type A <: Matrix

//constructors for the elements of the linear system
//calling each function returns a new object that can be used in a call to solve
def x() : X
def b() : B
val A() : A {

type RowIndex = B.Index
type ColIndex = X.Index

}

def solve(A : A, x : X, b : B) //solve for x given A and b
def nonzeros(non_zero_constructor : (A,X,B) => Any) //method to create non-zeros, see below for detail

}

getting started with liszt 29

Notice that the row and column indicies are different types, and
that RowIndex = B.Index, and ColIndex = X.Index. This ensures that all
accesses to these objects have the right index types. The solve method
actually invokes a solver, modifying x based on the values in A and b.

Creating Indices

Let us now revisit the way to construct Index values by first recalling
how we might create indices by hand in a non-dsl code. If we had a
simple first-order FEM code, our rows and columns of ours sparse
matrix map one-to-one with vertices in the mesh. so me might write
something like so:

type Index = Int
def rowIndex(v : Vertex) : Index = ID(v)
def colIndex(v : Vertex) : Index = ID(v)

A more complicated code might use linear transformations of
the ids of mesh elements to achieve the same effect, mapping mesh
topology to integer indicies.

In Liszt, we retain the concept of mappings from mesh topology to
indicies, but we make the mappings abstract. In liszt, you write:

@lisztcode
object MyLinearSystem1 extends LinearSystem {

def rowIndex(v : Vertex) : A.RowIndex = AutoIndex
def colIndex(v : Vertex) : A.ColIndex = AutoIndex

}

Instead of implementing these methods using linear transorma-
tion of IDs, Liszt will automatically implement these methods. Liszt
will assume that for each method, and for each set of unique argu-
ments to the method, a unique Index object should be created. Let’s
consider a more complicated 2nd order FEM case where indicies ex-
ists for edges and vertices. Here we just add additional methods to
return indicies for the edges:

@lisztcode
object MyLinearSystem2 extends LinearSystem {

def rowIndex(v : Vertex) : A.RowIndex = AutoIndex
def rowIndex(e : Edge) : A.RowIndex = AutoIndex

def colIndex(v : Vertex) : A.ColIndex = AutoIndex
def colIndex(e : Edge) : A.ColIndex = AutoIndex

}

You can also return Vec[N,Index] objects, which are useful if you
are solving a vector field:

@lisztcode
object MyLinearSystem1Vec extends LinearSystem {

def rowIndex(v : Vertex) : Vec[_3,A.RowIndex] = AutoIndex
def colIndex(v : Vertex) : Vec[_3,A.ColIndex] = AutoIndex

}

getting started with liszt 30

The arguments to these methods must be mesh topology, and the
return types must be indicies.

Mixins

We realize that declaring these mappings from topology to index is
tedious and verbose, especially in the simple FEM cases. To work
around this, we provide mixin traits for the most common cases
that already are set up correctly.17 You can think of these mixins as 17 This library is still in development

and is not yet completealready pre-built recipies that you can pick and choose when you
need. Here is an example for first-order FEM on triangles:

trait Trangle1 extends LinearSystem {
def rowIndex(v : Vertex) : A.RowIndex = AutoIndex
def colIndex(v : Vertex) : A.ColIndex = AutoIndex

def rowIndices(f : Face) = Vec(rowIndex(vertex(f,0)),
rowIndex(vertex(f,1)),
rowIndex(vertex(f,2)))

def colIndices(f : Face) = Vec(colIndex(vertex(f,0)),
colIndex(vertex(f,1)),
colIndex(vertex(f,2)))

def triangle1Nonzeros() //allocates non-zeros for first-order triangular FEM
}

Notice that we also provide two helper functions rowIndicies,
and colIndicies that produce vectors of indicies for the canonical
triangluar element. Given a triangle "f" and a linear system "l" you
might use them like so:

//declare linear system
@lisztcode
object LS extends Triangle1
object Main {

val A = LS.A()
for(f <- faces(mesh) {

//gather dense matrix from sparse matrix
val matrix : Float3x3 = A(LS.rowIndicies(f),LS.colIndicies(f))
//update dense matrix locally
performUpdate(matrix)
//scatter dense matrix back into sparse matrix
A(LS.rowIndicies(f),LS.colIndicies(f)) += matrix

}
}

We provide traits for the most common FEM types, so for the most
part simple codes will only need to call a few functions to access the
matrix.

Non-zeroes

Finally, we need a way to declare where non-zero entries are in these
objects. Declaring non-zero entries explicitly ensures that the solvers
are always working with the minimum number of non-zero entries.

getting started with liszt 31

Otherwise we would need to rely on compiler analysis which may be
overly conservative and lead to slower solvers.

For this we provide the nonzeroes() method in LinearSystem. This
is called when you want to change the layout of non-zeroes in the
LinearSystem. For 1st order FEM , you might call it like so:

l.nonzeroes {
nz =>

for(v <- vertices) {
nz.x(l.colIndex(v))
nz.b(l.rowIndex(v))

}
for(f <- mesh) {

for(v1 <- vertices(f)) {
for(v2 <- vertices(f)) {

nz.A(l.rowIndex(v1),l.rowIndex(v2))
}

}
}

}

Any entry referenced in the block given to nonzeroes will be pre-
sumed to be non-zero. LinearSystems are allocated assuming that
all values are zero. You must first call nonzeroes before using the
linear system. When nonzeroes is called, all old non-zero values in
any object derived from the linear system are invalidated. This allows
you to change the format of the matrix later on in the program (if,
for instance, you want to change the order of some elements). For
the common FEM cases, an already implemented nonzeroes helper
method will be provided in the mixin trait, so you will only need to
call it once to initialize the matrix.

	Installing Liszt
	What to expect from the Liszt language
	Example 1: Starting a new Liszt Project
	Example 2: Variables, Values, and Type Inference
	Example 3: Topological types, operators and sets
	Example 4: The for-comprehension, and applying kernels to sets
	Vectors and Matrices
	Example 5: Fields
	Example 6: Putting it all together
	Viewing our Results in LisztVis (Mac Only)
	Example Project: Scalar Convection
	Advanced Topics

