
Designing the Language Liszt for Building Portable
Mesh-based PDE Solvers

Zachary DeVito
Stanford University

E-mail: zdevito@stanford.edu

Pat Hanrahan
Stanford University

E-mail: hanrahan@cs.stanford.edu

Abstract. Complex physical simulations have driven the need for exascale computing, but reaching
exascale will require more power-efficient supercomputers. Heterogenous hardware offers one way to
increase efficiency, but is difficult to program and lacks a unifying programming model. Abstracting
problems at the level of the domain rather than hardware offers an alternative approach.

In this paper we describe the design of Liszt, a domain-specific language for solving partial-differential
equations on meshes. There have been many domain-specific languages and frameworks proposed for
physical simulation. Liszt is unique in that it targets current and future heterogeneous platforms. We
have found that designing a DSL requires a careful balance between features that allow for automatic
parallelization, and features that make the language flexible.

1. Introduction
The desire for increasingly accurate and complex physical simulation has driven the need for more
powerful supercomputers. Until recently, these computers were typically composed of a cluster
of homogenous machines connected with a high-speed interconnect. The desire to reach exascale
computing will require more power-efficient designs.

One way to increase efficiency is to use accelerators. By specializing the hardware for massively
data-parallel operations, it is possible to build hardware that executes more FLOPs per Watt. This
approach is exemplified by modern graphics hardware. However, applications contain a mix of
sequential and data-parallel code, making it beneficial to use heterogeneous hardware that contains
both CPU and GPU nodes. Recent supercomputers such as the Tianhe-1A, or Cray’s XK-6 take this
approach [22, 9]. Unfortunately, heterogeneous systems are more difficult to program; a programmer
needs to use multiple programming models such as MPI, pthreads, and CUDA/OpenCL [21, 19] to
implement a single application.

One approach to solving the problem of programming complex hardware is to program at a higher
level of abstraction that is specialized for a specific domain. In the same way that hardware has gained
efficiency by specialization, specialized software can also perform efficiently. Raising the level of
abstraction also has the advantage that it leads to a more productive programming environment. High-
level domain-specific languages (DSLs) like matlab and R are already widely used in computational



science because they speed rapid prototyping and experimentation.
The domain we tackle is physical simulation; in particular, the case of solving partial differential

equations on meshes. Several domain-specific languages already exist to help solve these equations.
One popular platform is OpenFOAM. In OpenFOAM, a programmer expresses the problem in code
as a PDE [29]. Figure 1 shows an example PDE and its equivalent representation as expressed in
OpenFOAM.

∂ρU

∂t
+∇ · φU−∇ · µ∇U = −∇p

solve
(

fvm::ddt(rho, U)
+ fvm::div(phi, U)
- fvm::laplacian(mu, U)
==

- fvc::grad(p)
);

Figure 1: A partial differential equation, and its
equivalent OpenFOAM representation as described
in the OpenFOAM user guide [23].

This domain-specific approach has several ad-
vantages. Since the program does not specify a
machine-specific implementation, a developer of
OpenFOAM is free to create an implementation
of the PDE solver for any architecture. This de-
sign allows a single problem specification, and
provides the potential for forward portability to
future heterogenous architectures. Furthermore, a
higher-level abstraction typically makes program-
ming these applications more productive since
low-level details of the parallel implementation
are handled automatically.

The portability and productivity of domain-
specific design comes at the cost of flexibility
in expression. OpenFOAM provides a set of
discretization approaches to solve PDEs, but researchers often need to develop their own numerical
techniques, requiring them to extend the library itself [29].

There are many challenges in a designing a DSL. First, it should make it possible to express the
most important problems in the domain. Second, it should be clean and elegant so that programmers
are productive. Finally, it should be possible to implement it efficiently on a range of parallel hardware.
With these challenges in mind, we have developed a new domain-specific language for solving PDEs
on meshes called Liszt. The same Liszt code can be compiled to run on clusters, traditional SMPs, and
GPUs; it performs comparably to hand-written code on each architecture.

While designing Liszt, we have found that it is not sufficient to simply add high-level abstractions of
the domain to a general purpose language. A DSL must carefully consider the performance implications
of each language feature, in some cases restricting the language to ensure that the code will run
efficiently. In particular, our approach to automatically parallelize code on different architectures relies
on the ability of our platform to determine the data-dependencies of any Liszt expression. To do this,
we express data accesses relative to the mesh topology of the decomposed domain.

In this paper, we discuss the design decisions that we made while developing Liszt. Furthermore, we
present different possible designs, and compare our choices to those made in other related systems.

2. Language
To make the discussion of design decisions concrete, we start with a simple example of a complete Liszt
application that models heat-conduction, and follow with a discussion of the design. Figure 2 shows
Liszt code for calculating equilibrium temperature distribution on an unstructured grid of rods using
Jacobi iteration. Unlike the OpenFOAM example, Liszt code is written at the level of the discretized
mesh representing the physical domain rather than at the level of the continuous PDEs.

The mesh is expressed in terms of abstract data types:

Vertex Edge Face Cell



//Initialize data storage
val Position =

FieldWithLabel[Vertex,Float3]("position")
val Temperature = FieldWithConst[Vertex,Float](0.f)

5 val Flux = FieldWithConst[Vertex,Float](0.f)
val JacobiStep = FieldWithConst[Vertex,Float](0.f)
//Set initial conditions
val Kq = 0.20f
for (v <- vertices(mesh)) {

10 if (ID(v) == 1)
Temperature(v) = 1000.0f

else
Temperature(v) = 0.0f

}
15 //Perform Jacobi iterative solve

var i = 0;
while (i < 1000) {

for (e <- edges(mesh)) {
val v1 = head(e)

20 val v2 = tail(e)
val dP = Position(v2) - Position(v1)
val dT = Temperature(v2) - Temperature(v1)
val step = 1.0f/(length(dP))
Flux(v1) += dT*step

25 Flux(v2) -= dT*step
JacobiStep(v1) += step
JacobiStep(v2) += step

}
for (p <- vertices(mesh)) {

30 Temperature(p) += 0.01f*Flux(p)/JacobiStep(p)
}
for (p <- vertices(mesh)) {

Flux(p) = 0.f; JacobiStep(p) = 0.f;
}

35 i += 1
}

Figure 2: Example code written in Liszt that
calculates the temperature equilibrium due to heat
conduction.

In our example code, lines 2–6 initialize a
number of fields. A field is a parameterized
type that implements an associative map from a
mesh element to a value. It is similar in concept
to the fields in Sandia’s Sierra framework [28].
Temperature is a field that stores a Float value
at each vertex. It is indexed with a value of
type Vertex (e.g. Temperature(v)). Fields are
initialized with either a constant (FieldWithConst)
or from external data (FieldWithLabel). Fields
are designed to hold the degrees of freedom that
are used to approximate a continuous function
defined over the domain using a set of basis
functions.

Lines 9–14 use a parallel for-comprehension
to set up an initial condition with temperature
concentrated at one point. A for-comprehension
expresses computation for all elements in a set.
We use the term comprehension rather than loop
since each element is processed independently
similarly to a parallel map. Though not shown
in the example, nested for-comprehensions are
supported.

The for-comprehension operates over a topo-
logical set, vertices(mesh), which contains all
vertices in the discretized mesh and has type

Set[Vertex]. Sets in Liszt are a parameterized type that holds a particular type of element. Bound-
ary sets, which represent a subset of entire mesh, are supported with the BoundarySet function which
loads them from a configuration file.

Lines 17–36 perform 1000 Jacobi iterations to solve for the steady-state temperature distribution.

cells(e : Cell) : Set[Cell]
vertices(e : Cell) : Set[Vertex]
faces(e : Cell) : Set[Face]
edges(e : Cell) : Set[Edge]

BoundarySet1[ME <: MeshElement](name : String) : Set[ME]
vertices(e : Mesh) : Set[Vertex]
cells(e : Mesh) : Set[Cell]
edges(e : Mesh) : Set[Edge]
faces(e : Mesh) : Set[Face]

vertices(e : Vertex) : Set[Vertex]
cells(e : Vertex) : Set[Cell]
edges(e : Vertex) : Set[Edge]
faces(e : Vertex) : Set[Face]

cells(e : Face) : Set[Cell]
edgesCCW2(e : Face) : Set[Edge]
vertices(e : Face) : Set[Vertex]
inside3(e : Face) : Cell
outside3(e : Face) : Cell
flip4(e : Face) : Face
towards5(e : Face,t : Cell) : Face

vertices(e : Edge) : Set[Vertex]
facesCCW2(e : Edge) : Set[Face] 
cells(e : Edge) : Set[Cell]
head(e : Edge) : Vertex
tail(e : Edge) : Vertex
flip4(e : Edge) : Edge
towards5(e : Edge, t : Vertex) : Edge

H
F E

C
B

D G 1
5

810
11 73 

0
24

69

A

1 A subset of elements; defined in a configuration file
2 The faces/edges are oriented counter-clockwise (CCW) around element e
3 The dual operators of head and tail, returning the cells on either side of the face 
4 Flips the orientation of the element (e.g. head(e)=tail(flip(e)) )
5 Orients the element e to point towards t (e.g. head(towards(e,t)) = t)

Figure 3: Liszt’s built-in topological relations. Liszt represents meshes as manifolds. Manifolds support
duality. For every operation on a vertex (edge) there is a dual operation for the cell (face).



During each iteration, the expressions head(e) and tail(e) extract the mesh vertices on either side of
the edge. These topological functions relate mesh elements to neighboring elements or sets of elements.
Figure 3 summarizes the topological functions built into to Liszt. We support unstructured meshes in
three dimensions that represent 3-manifolds. Since manifolds support the notion of duality, each built-in
function has a dual (e.g. edges(e : Vertex) and faces(e : Cell)) An application programmer interacts
with it using built-in operators. For simplicity, we currently do not allow the topology of the mesh to
change during program execution.

Finally, reduction operators on lines 24–27 are used to calculate new values for the Flux and
JacobiStep fields at each iteration. Since for-comprehension are a parallel operator, the semantics of
the language dictate that these reductions are performed atomically. In addition to summations, other
associative and commutative operators like multiplication, or min/max are provided.

3. Design
The design of a language or library for solving PDEs must balance competing goals of flexibility,
productivity, and efficiency. Here we examine several of the important decisions that were made while
designing the Liszt language. First, we chose to abstract the domain at the level of an element-wise
formulation of the PDE. At this level, the problem is expressed in terms of basis functions defined over
discrete elements. An element-wise formulation must present an abstraction for interacting with the
discretized domain, and storing data for each element to represent fields. Liszt choses the approach
of using a discretized mesh and topological functions to represent the domain. Furthermore, the
compiler or framework must transform code based on the chosen abstraction to an efficient parallel
implementation for a given parallel programming model. To implement this abstraction in parallel,
Liszt automatically infers the data-dependencies in each operation using program analysis, and provides
language semantics that promote parallel code. Finally, we provide a simple interface for using external
libraries. We examine the rationale for each of these decisions in detail.

3.1. Choosing the level of abstraction
When developing methods to solve PDEs, scientists reason at several levels of abstraction. These levels
provide a natural starting point for exploring the space of possible designs. We examine three separate
levels here that have been used to create successful libraries for solving PDEs.

Continuous PDEs The highest level defines a set of governing equations over a spatial domain. In
OpenFOAM [29] and Sandia’s Sundance [15], the programmer represent the problem in terms of
the PDEs themselves using abstract data-types representing fields and operators. The FreeFEM
and FEniCS projects also use similar formulations [25, 13]. The particular numeric discretization
and solvers are provided by the library, and are configurable in the API. These libraries then also
provide parallel implementations for solving the discretized problem. OpenFOAM, for example,
provides an MPI-accelerated implementation [23].

Element-wise Formulation To solve the continuous problem formulation, a second level of abstraction
is introduced where the domain is discretized into a mesh of elements; continuous fields are
approximated with a set of basis functions with local support in each element. Liszt itself uses
the element-wise formulation as its starting point: computation and data is expressed in terms of
the discretized mesh; the specific data-structures or model for parallelization are left abstract. In
addition to Liszt, a variety of frameworks take this approach. Giles et al.’s OP2 library expresses the
mesh as a set of user defined relationships between elements [14]. SBLOCK, a solver for structured
meshes [5], expresses computation as kernels that operate on a local neighborhood around an
element. Sandia’s Sierra framework also expresses computation in terms of the discretized
mesh, but incorporates communication primitives that assume parallelization is based on domain
partitioning [28].



Explicit parallel programming At the lowest level, the programmer works in a specific parallel
programming model such as MPI. The data structures for storing the mesh and the solution are
designed to work specifically with the parallel programming model. Many production PDE solvers
are written this way. Libraries that support this style of programming such as PETSc, or Sandia’s
Sierra framework provide utility functions for partitioning the mesh across different memory spaces
and communicating between them [4, 28]. The MuM framework, used in Stanford’s PSAAP
program, follows this approach [24]. The framework partitions the mesh and data across different
MPI nodes. On each node, code is written in a single-threaded style expressed as computation
on the local partition. When non-local data is required, specific calls are inserted to perform
communication via MPI.

Continuous PDEs are ideal for users who have a particular problem they want to solve using already
established numeric methods. However, this level of abstraction is less useful for researchers who want
to experiment with new numerical methods that are not already built into the library.

The expression of the problem using an explicit parallel programming model gives the programmer
the most flexibility in choice of numeric method and solvers. However, it may not run efficiently on
architectures that do not match the programming model. For example, frameworks like Sierra and
Stanford’s PSAAP solvers use an abstraction that assigns each thread of execution a partition of the
mesh [28, 24]. Since threads must communicate across the boundary of the partitions, performance
depends on minimizing the size of the boundary. However, modern graphics hardware has thousands of
threads of execution. Using this approach on graphics hardware is inefficient since each partition will
be very small, resulting in large boundaries.

We chose to abstract at the level of the element-wise formulation because it provides the flexibility
of the low-level approach to express different numeric formulations while keeping the details of the
parallel implementation abstract. This abstraction provides the potential for automatic portability to
different parallel programming models.

3.2. Abstracting meshes and fields
The element-wise formulation is based on a discretized domain. A language or library for the element-
wise formulation must provide a way to access the elements of the domain and store data for each
element. Several approaches are commonly taken in practice.

Ad-hoc Storage A common approach to representing the domain is with ad-hoc data structures. For
instance, in Stanford’s PSAAP solvers, the connectivity of the mesh needed by the application is
provided in arrays using the compressed row storage (CRS) format [24]. Elements themselves
are assigned contiguous integer IDs, and data is stored in arrays addressed by ID. Typically the
frameworks only build the connectivity that is needed for the particular applications being handled,
leading to representations that are inconsistent across different programs.

Mesh Topology One way to represent this domain in a consistent way is with a mesh of topological
elements. Liszt takes this approach by providing a three-dimensional mesh representing a three
dimensional manifold. Neighboring mesh elements are accessed using topological functions. To
ensure we have a complete set of topological functions suitable to a wide range of programs, we
designed our operators based on the primitives suggested by Laszlo and Dobkin [11]. Figure 3
summarizes their behavior.

Relations An alternative method, taken by OP2, is to create a set of user-defined relations over
elements [14]. These elements may represent mesh topology like vertices, but they are user-
defined, so they conceptually can represent other entities like the nodes of a higher-order finite
element. Relations define a 1 to N mapping from one type of user-defined element x to another
type y:

r(x) = {y0, y1, ..., yN}



For instance, a relation may represent a 1 to 2 mapping of edges to their adjacent vertices:

edges(e0) = {v0, v1}

These relations are defined explicitly using a graph data-structure that maps elements from the
domain to the set of elements in the range.

Each of these designs has different advantages. Ad-hoc storage based on arrays and integer indexing
is very flexible and can be tailored to a specific problem, but the lack of a common interface makes
it difficult to incorporate into platforms that need to generate parallel code on different architectures.
Relations are also flexible, but they still require the user to define an appropriate set of connectivity for
the program by hand.

We chose to use mesh-based topological functions since they are an intuitive and familiar way
of working with an element, and are closely related to the way programmers visualize the domain.
Additionally, using the mesh as the basic data structure provides additional semantic knowledge of mesh
relationships, which can be used by the platform to produce more efficient algorithms. For instance,
Liszt can use the facet-edge representation suggested by Laszlo and Dobkin [11] to create efficient
data structures for partitioning a mesh across many cluster nodes. This is especially useful for large
problems, where the mesh cannot fit in the memory of a single machine, since writing code that can
load the mesh in parallel for ad-hoc representations is tedious.

Building the semantics of the mesh into the language also offers additional opportunities for the
specialization of data-structure for particular problems. For example, if the input mesh is a regular grid,
it would be possible to implement the topological functions using simple affine transforms, and provide
better implementations of operations such as mesh partitioning.

In addition to representing a domain, an abstraction must provide a way to store user-provided data.
For ad-hoc data-structures based on integer indexing, programmers usually store data in arrays indexed
by element ID. Relational models like OP2 let the programmer store data in associative maps from
user-defined elements to values [14].

Liszt’s mesh-based representation naturally leads to storing data at mesh elements using fields. For
this storage we specifically decided to use a struct of arrays form (e.g. Temperature(cell)), rather than
an array of structs form (e.g. cell.Temperature). We believe that the struct of arrays form, where fields
are defined independently of the element, is more intuitive when a single program is solving multiple
equations each with a different set of unrelated fields.

Mesh-based storage works well for simple programs. For instance, piece-wise linear basis functions
for triangular elements can be represented using a field defined over faces. For continuity across the
domain, linear basis functions can be represented using three degrees of freedom, one at each vertex,
coupled to neighboring elements using a field defined at vertices. However, storing the degrees of
freedom for a quadratic triangular element requires six degrees of freedom, three at each vertex and
three along the edges of the triangle. In Liszt we can represent this with two fields, one on the edges and
one on the vertices:

dof_f : Field[Face,Float] val dof : Field[Vertex,Float] dof_v : Field[Vertex,Float] 
dof_e : Field[Edge,Float]

Constant Linear Quadratic

However, using multiple fields in this way in awkward, and becomes increasingly complicated for
higher-order elements. In this case, a user-defined relation mapping an element directly to its degrees-
of-freedom, would be more intuitive. Despite this complexity, we chose to use element-based storage
to make the most common operations simpler to implement. As we continue to develop Liszt we
may consider making our built-in functions extendable to address the ability to work with higher-order
elements.



3.3. Inferring data dependencies with stencils
An implementation of a DSL must be able to translate code that uses abstractions like meshes and fields
into an efficient program. To produce efficient code on modern architectures, a domain-specific compiler
must be able to find parallelism, expose memory locality, and minimize the synchronization of parallel
tasks. Since the same operations are mapped to each element, the problems have a large degree of data-
parallelism. Since the basis functions are typically designed to have local support, computation will only
access data from local topological neighborhood around the element. We refer to this neighborhood as
the computation’s stencil. Since computation occurs in data-parallel phases, synchronization is typically
only required between phases.

To exploit these features of the domain, a DSL must be able to extract this information from the
program. One approach is to reason about the data-dependencies for a computation. If the DSL can
determine the set of reads and writes that an arbitrary expression will perform, it can determine if
two expressions can be run in parallel, schedule operations using the same data to run locally (either
spatially or temporally), and insert synchronization where it is necessary to fulfill a dependency. Since
PDE solvers are typically iterative, the DSL can perform this reasoning before the first iteration, and
reuse it for subsequent iterations.

Determining data dependencies is difficult in general since it requires reasoning about the behavior
of arbitrary programs. As an example, the statement A[f1(i)] = B[f2(i)] requires the DSL to understand
the behavior of f1(i) and f2(i), arbitrary expressions. Libraries for solving mesh-based PDEs solve this
problem by restricting f in different ways.

Affine partitioning For the restricted set of problems that only considers regular grids, the data needed
in a single element is almost always an affine transformation of the indices of the element. In this
case affine partitioning techniques can automatically determine efficient parallel implementations
when f(i) is an affine expression [20]. The PIPS compiler, used by many scientific programs, takes
this approach to parallelize code [2].

Explicitly Provided Dependencies Alternatively, the dependencies can be provided explicitly. In the
case of regular grids, the halo of data required for an element, eij can be declared explicitly for
each element as mathematical functions of i and j, which is the approach taken by SBLOCK [5].
Dependencies can also be explicitly defined for unstructured problems. In OP2, parallel
computation is then expressed as kernels that can that can only gather and scatter data from a
particular user-defined relation [14]. Relations are passed explicitly to the kernel, so the data used
at element e are precisely the data store on e and any data stored on elements in r(e) for the
relationship r.

Inferring Dependencies with Program Analysis Another approach is to infer the dependencies from
the use of built-in operators. Liszt can automatically determine data dependencies through program
analysis of its build-in mesh functions and the way that fields are used. To accomplish this
inference, Liszt makes the following semantic restrictions that enable our compiler to perform
program analysis to discover dependencies automatically:

• The mesh topology does not change.
• Mesh elements can only be obtained through topological functions, and data in fields can only

be access using the mesh element as the key.
• Assignments of variables to topological elements and fields are constant (i.e. there is a single

static assignment of a value to any variables that refers to mesh elements). This restriction
ensures that a while-loop cannot traverse the mesh. This restriction ensures that the stencil
only accesses a local neighborhood of the mesh.

Section 4.1 gives an overview of the approach to infer the dependencies.

Each approach has different trade-offs. Affine partitioning typically does not work for unstructured
meshes, where indices into arrays have data-dependencies on the mesh. Explicitly provided



dependencies can work for unstructured meshes, but it can be difficult to express more complicated
dependencies. For instance, in OP2, nested use of the relations is not allowed since it could result in
dependencies for element e that are not contained in r(e) [14]. For more complicated dependencies, the
programmer must explicitly create a new relation to represent it.

We chose to automatically infer the dependencies since it enables the programmer to code in a
style that is similar to single-threaded code but still produce a parallel implementation for unstructured
meshes. While performing this inference requires some restrictions on the language, we have found
them acceptable in practice since they enable the application programmer to express code without
worrying about explicitly declaring the dependencies. For instance, nested operations can be expressed
naturally as nested for-comprehension.

3.4. Choosing language semantics for parallelism
While analyzing data-dependencies is useful for determining a parallel implementation, it is also helpful
to add additional language features to encourage the programmer to write code that is parallelizable.
Liszt adds three additional language features to express the program in a parallel way: for-comprehen-
sion are parallel operators, reduction operations like += occur atomically, and fields have phases—during
a for-comprehension a field must be read-only, write-only, or reduce-only.

Consider an alternate design in which for-comprehension are implemented as loops, and reduction
operators are not atomic. Given this design, the reductions to Temperature and JacobiStep in Figure
2 would introduce a loop-carried dependency across the loop, forcing the writes to Temperature and
JacobiStep to serialize. These flux calculations are very common. By providing parallel for-comp-
rehensions and commutative/associative reductions, Liszt is free to reorder these writes, allowing for
efficient parallel implementations.

Field phases were added to reflect the fact that data-parallel operation in a PDE solver typically
produces data only for later operations. The phasing of fields in Liszt is handled automatically by
the compiler. This restriction ensures that a parallel for-comprehension does not introduce any non-
deterministic values for a given implementation. OP2 takes a similar approach to reduce dependencies
in data-parallel operations by having the user explicitly annotate data-storage as read only, write only,
or sum only during a kernel [14].

3.5. Working with external libraries
Since certain operations will fall outside the expressibility of a domain-specific language, a way to
interact with external libraries is necessary. Liszt currently has rudimentary support for calling external
libraries, with more support for common libraries like sparse matrix solvers left as future work. For
calls to external libraries, Liszt allows the declaration of external functions:

def foo(a : Int, b : Float) = __

The user must then provide an implementation of foo for every runtime that Liszt targets (e.g. a C
implementation for our MPI runtime, and a CUDA implementation for our GPU runtime). This makes
it easy to call routines written as libraries in other languages.

External interactions with data structures such as the mesh or fields are more complicated since Liszt
must reason about the data-dependencies of code that uses these structures. Interfacing with sparse
matrix solvers is an especially common case of this problem. We plan to address these interactions by
creating a sparse matrix interface inside of Liszt that can track data-dependencies. This interface can
then be hooked up to sparse-matrix solvers implemented outside of the Liszt language. This design
will allow the programmer to choose the solver most suited to their problem, but still write the code
that assembles the matrix in Liszt. An important choice for this design is how to represent the rows
and columns of the matrix in a way that interoperates well with the mesh elements and fields that Liszt
provides. Discussion of this issue is beyond the scope of this paper but one approach this is to use mesh
elements to address the rows and columns of the matrix.



.scala

scala frontend
platform-

independent 
analysis

mpicxx

nvcc

c++

.liszt

Liszt code

scala compiler

liszt cross-compiler native 
compiler

liszt plugin

runtime-
specific 
code gen

MPI 

CUDA 

pthreads 

.cpp

.cpp

.cpp

cluster

SMP

GPU

.mesh

platform

MPI
app

partitioning

runtime

pthreads
app

coloring

CUDA 
app
coloring

strategy

Figure 4: An overview of the stages of our Liszt implementation. Code is pre-processed by a plugin in
the Scala compiler to produce an intermediate representation. The Liszt cross-compiler then produces
code for one of our three runtimes.

4. Implementation
The design of Liszt balances the concerns of flexibility, productivity, and efficiency by providing
constructs that operate at the level of the element-wise formulation, while still allowing the compiler
to automatically determine the data-dependencies. To show that this design effectively captures the
necessary information for efficient implementations, we have created a compiler for Liszt that can
produce code for three parallel platforms: an SMP, a large cluster, and a modern GPU. To target these
architectures we use three runtimes: one based on MPI, one on pthreads, and one on CUDA. This
demonstrates our ability to run across different programming models. Furthermore, we demonstrate
two different approaches to parallelizing Liszt code. The first uses a partitioning-based approach to
target programming models like MPI which have disjoint memory spaces. The second, used in our
shared memory runtimes (pthreads, CUDA), determines how to parallelize a for-comprehension using a
graph-coloring approach.

We present an overview of the implementation here (Figure 4). DeVito et al. provide a more detailed
description [10]. Liszt’s syntax is a subset of the Scala programming language. A compiler plugin in
the Scala compiler generates an intermediate representation for Liszt code that is passed into a separate
Liszt-specific cross-compiler. We chose to use Scala as our front-end since it provides constructs that
are suited to creating embedded domain-specific languages [26]. Its rich type system allows expression
of Liszt’s abstract data types like mesh elements and files, while also providing type inference to reduce
the need for explicit type annotations in code. Additionally, its support for abstract for-comprehensions
made it simple to express Liszt programs without the need to create new syntax. The language features
of Scala also allow domain-specific languages to be embedded directly in the language as a library. Chafi
et al. present an overview of this approach—including an implementation of Liszt—which can produce
an intermediate representation of DSL code suitable for performing domain-specific optimizations at
runtime [6].

After generating the intermediate representation from Scala code, the Liszt cross-compiler performs
runtime-independent program transformations. In particular, it generates code that can produce the
data-dependencies for the program when given a particular mesh . This stencil code is used during
the initialization of a Liszt application to implement of our partitioning or coloring approaches. The
cross-compiler additionally inserts explicit enterPhase statements into the code where fields change



phase using a data-flow analysis. Runtimes can use these statements to perform actions such as cluster
communication when a field changes from a write phase to a read phase.

A second stage of the cross-compiler then generates C++ or CUDA code for our specific runtimes,
which is handed off to a general-purpose compiler to create the final executable.

4.1. Stencil
Regardless of the runtime, each application relies on the ability of Liszt to determine the data-
dependencies inside a for-comprehension given a particular mesh. In particular we define a stencil:

S(el, E) = (R,W )

Where el is a Liszt expression, E is an environment mapping variables to values, and R and W
are the of reads and writes that el may perform. Our approach to implement this stencil works in two
stages. We first transform a given Liszt expression el into a new expression e′l such that e′l is guaranteed
to conservatively approximate the data dependencies of el—that is e′l reads and writes a superset of the
values of el. Additionally, we enforce that e′l must terminate. This first stage can be done in the cross-
compiler since it does not rely on the topology of a particular mesh. The second stage runs at program
initialization. To evaluate S(el, E) for an expression el, we execute e′l in environment E, and record
the reads and writes it makes as the set of pairs (f, v) where f is the field being accessed and v is the
element used to access it.

To transform from el to e′l is conceptually simple. if -statements are transformed such that both
paths are executed, ensuring the new expression e′l can only read or write more entries than el. while-
loops are transformed such that they execute their body exactly once. The design of Liszt ensures that
variables referring to mesh elements cannot be reassigned, so executing the body of the loop a single
time captures all the accesses that the loop can perform. Finally, the resulting expression must terminate
since mesh sets are of constant size and Liszt does not contain any looping constructs besides while-
loops (in particular, recursion is not supported).

4.2. Implementing the execution strategies
Given the stencil in the form of the transformed expression e′l, we can parallelize code using different
strategies depending on architecture. Each of our three runtimes parallelizes Liszt code using either
a partitioning strategy (MPI) or coloring-based strategy (pthreads, CUDA). Here we briefly describe
each strategy to illustrate how the stencil is used. Figure 5 summarizes the stages performed in each
approach.

4.2.1. Partitioning Our partitioning strategy is based on a common design-pattern for implementing
PDE solvers using MPI. However, unlike most frameworks that require users to explicitly insert
communication statements, Liszt handles all the details of inter-node communication automatically.
Figure 5 gives an overview of this strategy. First, for a particular mesh and program (a), the mesh
is loaded and partitioned across N nodes using an external partitioner (b). We have found that using
ParMETIS on a graph of cell-cell connectivity works well for most three dimensional problems [18].
When an un-nested for-comprehension executes, each node will perform computation for elements of
the set that are in its partition.

Since computation for element v will access data in a neighborhood around v, elements near the
border of a partition may need to access data on a remote partition. To make this access efficient, data
is duplicated locally and stored in ghost elements. The partitioning approach discovers these ghost
elements at initialization using the stencil on its local partition to calculate the sets of reads and writes
that a partition will perform. Accesses found by the stencil that are not local determine the presence of
ghosts. For example, in Figure 5 (c) vertex E is discovered to be a ghost on node 0.



Coloring

Partitioning

H
F

E

C

B

D G
1

5
8

10

11 7
3 

0

2
469

A

1 5 8 10 11730 2 4 6 9

A C E F HGDB

edges

field write entries

for(e<-edges(mesh)){
 field(head(e))+= _
 field(tail(e))+= _
}

H

F

C

B

D G
1

5
8

10

11 7
3 

0
2

4
69

A

E

1 5 8 10

11730

2 4 6 9

threads

n0 n1

H

F

D G

8
10

11
7

69

E

B
1

5

3 
0
2

4

A

C H

F

D G

8
10

11
7

69

E

B
1

5

3 
0
2

4

A

C

E

D (n0 �→ n1) = {(field, E)}
(n1 �→ n0) = {(field, D)}

(a)

(b) (c) (d)

(e) (f) (g)

Figure 5: For a particular input (a), Liszt can parallelize the code using either a partitioning or coloring
strategy. When using partitioning, Liszt first partitions the mesh to different nodes (b); it then uses the
stencil to discover ghost elements (c), and establish communication patterns to update ghost elements
(d). When using a coloring approach, Liszt builds a map from elements in a for-comprehension to the the
field locations that the element will read (e). This graph is used to build an interference graph between
elements (f). Coloring the interference graph results in a schedule (g) where elements of a single color
can run in parallel.

If during a write- or reduce-only phase a node n0 writes data to an element that is a ghost on
some node n1, then n0 must send n1 the updated value (or delta, in the case of reductions). Since
the field cannot be read until the field enters a read-only phase, this communication only needs to be
performed inside the enterPhase statements added by the compiler when the field enters a read-only
phase. This allows the runtime to batch communication and delay synchronization until the values
are needed remotely. For additional efficiency we can use the stencil to precompute this pattern of
communication, as illustrated in Figure 5 (d).

4.2.2. Coloring In a shared-memory system, we can avoid duplicating data and creating ghosts by
using a scheduling approach based on graph coloring rather than partitioning [1, 16]. This alternative can
be beneficial on runtimes where there are many parallel threads of execution. In this case, the partitions
would be small resulting a large amount of duplication and communication along the boundaries. Liszt
targets this approach automatically.

Figure 5 illustrates the process. To parallelize a for-comprehension we group mesh elements in the
set into batches such that no two elements in the same batches write to the same field entry. Each batch
is run in parallel separated by global barriers. We can use the stencil to determine the writes for each
element, and create a bipartite graph connecting elements to the field entries they will write (Figure 5
(e)). We use this graph to create a new graph between mesh elements where an edge exists if they write
the same field entry (Figure 5 (f)). Coloring this graph using the algorithm of Chaitin et al. groups the
elements into batches of independent work [7].

In our GPU runtime, each un-nested for-comprehension is transformed into a CUDA kernel, and
invoked once per batch. Our pthreads runtime operates similarly, with multiple-threads dividing the
batches using work-stealing, and each batch separated by a global barrier.



Relative Efficiency of the MPI Runtime

0x

0.5x

1.0x

1.5x

32 256 512 1024 2048

F
ra

c
ti
o
n
 o

f 
L
in

e
a
r 

S
c
a
lin

g

Cores

Euler

23M cell mesh

Linear Scaling
Liszt
C++

0x

0.5x

1.0x

1.5x

32 256 512 1024 2048

F
ra

c
ti
o
n
 o

f 
L
in

e
a
r 

S
c
a
lin

g

Cores

Navier-Stokes

21M cell mesh

Linear Scaling
Liszt
C++

0x

0.5x

1.0x

1.5x

32 256 512 1024 2048

F
ra

c
ti
o
n
 o

f 
L

in
e
a
r 

S
c
a
lin

g

Cores

Shallow Water

20M face mesh

Linear Scaling
Liszt

0x

0.5x

1.0x

1.5x

32 256 512 1024 2048

F
ra

c
ti
o
n
 o

f 
L

in
e
a
r 

S
c
a
lin

g
Cores

FEM

16M cell mesh

Linear Scaling
Liszt

Figure 6: The relative efficiency Liszt applications on a 2048-core cluster as compared to ideal linear
scaling of the 32-core run. The Euler and Navier-Stokes applications are compared against their hand-
written MPI implementations. The Shallow Water and FEM applications are compared against their
own 32-core performance, since they were ported from non-parallel code. Each node of the cluster
contains two Intel Nehalem X5650 processors running OpenMPI 1.4.2. We measured performance
using 4 through 256 nodes, using 4 cores per processor. The FEM code shows super-linear scaling from
256 to 512 cores as the partitions become small enough to fit into L3 cache.

5. Performance
We evaluate the performance of our compiler and runtimes using four example applications to
demonstrate that our design is capable of taking a single program and running it efficiently across
different architectures and applications. When available we compare this performance to hand-written
implementations, or the published performance of similar implementations. A more detailed analysis of
the performance of our implementation is available in DeVito et al [10].

Our main test applications are ports of applications used in Stanford University’s DOE PSAAP
Project. This project is simulating the unstart phenomenon in hypersonic vehicles [24]. We ported
the core Euler and Navier-Stokes (NS) fluid dynamics solvers. Both applications are cell-centered,
using face-based flux calculations and a forward Euler time-step. The Euler solver calculates inviscid
flow, while the NS solver additionally calculates viscous flow, allowing us to test different sized working
sets. Additionally, we implemented a shallow water simulator (SW) based on an algorithm by Drake et
al. [12] and a simple finite-element method (FEM) that computes the Laplace equation on a cubic grid.
All applications use double precision numbers. These applications provide us with a variety of working
set sizes and arithmetic intensities.

To measure the overhead of using Liszt, we compared each application to a hand-written C++
counter-part. The Euler and Navier-Stokes solvers have reference implementations written in MPI;
for these applications, we also compared Liszt’s MPI runtime to the reference implementations on
both single SMPs and a large cluster. In all cases where a reference implementation exists, Liszt code



1x

5x

10x

15x

20x

25x

30x

35x

40x

Euler NS FEM SW

S
p

e
e

d
u

p
 o

v
e

r 
S

c
a

la
r

Applications

Liszt Peformance across Different Machines

8-core SMP
32-core SMP

cuda on tesla c2050

Figure 7: Performance of Liszt applications running on 3 different machines: an 8-core Intel Nehalem
E5520, a 32-core Nehalem-EX X7560, and a NVIDIA Tesla C2050. Speedup is measured relative to
the scalar reference implementation of each example run on the E5520. Each mesh contained between
200k and 700k elements.

performs within 16% of the reference code and often outperforms the reference slightly, despite handling
all the of the details of parallelization automatically.

Figure 6 shows the ability of Liszt applications to scale on a large cluster. Compared to our reference
implementations of the Euler and Navier-Stokes solvers, the Liszt versions scale similarly.

In addition to the SMPs that traditionally compose large clusters, GPUs are an attractive target
for computational science both due their increased efficiency in terms of FLOPS/Watt and their price.
However, the need to rewrite applications specifically for the GPU has limited adoption. Furthermore
SMPs are still desirable since they contain large caches and shared memories, and are viewed as easier
to program than GPUs. Since Liszt applications are portable, it is easy to use either architecture
without modifying application code. We compare the performance of two Intel SMPs to our CUDA
implementation on an NVIDIA graphics card in Figure 7. Since SMPs can run both the pthreads and
MPI runtime, we report whichever one runs better for simplicity.

GPU performance shows order-of-magnitude speedups for all applications compared to the scalar
reference implementation. In particular we see a 19.5x speedup for the Navier-Stokes solver. Similar
fluid-flow solvers in the literature report speed-ups between 7 and 20x [8, 17]. Asouti et al. report a 46x
speedup but only after mixing single and double precision arithmetic by hand [3]. Furthermore, Giles et
al. report a 3.5x speedup over an 8-core SMP implementation [14]; Liszt shows a similar 3.1x speedup
over our own 8-core SMP run. Since each of these experiments were performed on slightly different
hardware, direct comparison is difficult, but our results are within the range of performance reported in
the literature.

In cases where the working set is large, such as the Euler and Navier-Stokes solvers, the 32-core
SMP is able to outperform our GPU runtime. In general different properties of the applications will
make them more suited to a particular architecture. Allowing the programmer to write the programs
in an architecture-independent way makes it easier to make these performance comparisons, and adapt
hardware choices to suit the needs of the application.

These performance results demonstrate that Liszt applications written at high level of abstraction
perform comparably to hand-written C++ code, scale on large clusters, and are portable to new parallel
architectures like GPUs.



6. Discussion
We have presented a design for Liszt that balances the ability to express a wide range of problems,
the ability to produce efficient implementations on different architectures, and the ability to provide a
productive programming environment. We achieve this balance using an element-wise formulation. This
formulation provides a natural level of abstraction to the programmer but is still agnostic of the particular
parallel implementation. Furthermore, restricting data-access to high-level language constructs like
mesh adjacencies and fields makes it possible to automatically discover data-dependencies. This design
enables the generation of efficient parallel implementations while still providing a productive high-level
language.

Though Liszt infers the data-dependencies through the use built-in topological functions, our
particular implementation can easily be adapted to work with other methods. Since user-defined
relations provide a more natural way to express the degrees of freedom of higher-order elements,
allowing the programmer to define additional relations can make the platform more flexible.

For DSLs to be used large applications, it must be easy to interact with non-DSL code. We plan
to address investigate solutions to this issue by creating an interface between Liszt and external sparse
matrix solvers.

Reaching exascale computing will require more efficient architectures. Extreme specialization,
like that of D. E. Shaw’s Anton [27], allows for orders-of-magnitude more efficiency, but is not
backwards compatible with low-level implementations. DSLs like Liszt address this issue by separating
the specification of the problem from a specific implementation. In addition to providing forward
portability, this separation can free hardware designers to make more aggressive changes to hardware,
while still supporting old applications. Ideally, the DSL approach for high-performance computing can
enable aggressive hardware and software design that will make exascale achievable without needing to
rewrite high-level programs for each new architecture.

References
[1] J. R. Allwright, R. Bordawekar, P. D. Coddington, K. Dincer, and C. L. Martin. A comparison of parallel graph coloring

algorithms, 1995.
[2] Corinne Ancourt, Fabien Coelho, and Ronan Keryell. How to add a new phase in PIPS: the case of dead code elimination.

In In Sixth International Workshop on Compilers for Parallel Computers, 1996.
[3] V. G. Asouti, X. S. Trompoukis, I. C. Kampolis, and K. C. Giannakoglou. Unsteady CFD computations using vertex-

centered finite volumes for unstructured grids on graphics processing units. International Journal for Numerical
Methods in Fluids, pages n/a–n/a, 2010.

[4] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. Efficient management of parallelism
in object oriented numerical software libraries. In E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, Modern
Software Tools in Scientific Computing, pages 163–202. Birkhäuser Press, 1997.

[5] T. Brandvik and G. Pullan. SBLOCK: A framework for efficient stencil-based PDE solvers on multi-core platforms. In
Computer and Information Technology (CIT), 2010 IEEE 10th International Conference on, pages 1181 –1188, july
2010.

[6] Hassan Chafi, Zach DeVito, Adriaan Moors, Tiark Rompf, Arvind K. Sujeeth, Pat Hanrahan, Martin Odersky, and Kunle
Olukotun. Language virtualization for heterogeneous parallel computing. In Proceedings of the ACM international
conference on Object oriented programming systems languages and applications, OOPSLA ’10, pages 835–847, New
York, NY, USA, 2010. ACM.

[7] Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin E. Hopkins, and Peter W. Markstein.
Register allocation via coloring. Comput. Lang., pages 47–57, 1981.

[8] Andrew Corrigan, Fernando Camelli, Rainald Löhner, and John Wallin. Running unstructured grid cfd solvers on modern
graphics hardware. In 19th AIAA Computational Fluid Dynamics Conference, number AIAA 2009-4001, June 2009.

[9] Cray Inc. Cray unveils the Cray XK6 supercomputer, May 2011.
[10] Zachary DeVito, Niels Joubert, Francisco Palacios, Stephen Oakley, Monserrat Medina, Mike Barrientos, Erich Elsen,

Frank Ham, Alex Aiken, Karthik Duraisamy, Eric Darve, Juan Alonso, and Pat Hanrahan. Liszt: A domain specific
language for building portable mesh-based PDE solvers. In 2011 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis (to appear), SC ’11, Washington, DC, USA, 2011. IEEE
Computer Society.



[11] D. P. Dobkin and M. J. Laszlo. Primitives for the manipulation of three-dimensional subdivisions. In Proceedings of the
third annual symposium on Computational geometry, SCG ’87, pages 86–99, New York, NY, USA, 1987. ACM.

[12] John B. Drake, William Putman, Paul N. Swarztrauber, and David L. Williamson. High order cartesian method for the
shallow water equations on a sphere, 1999.

[13] T. Dupont, J. Hoffman, C. Johnson, R. Kirby, M. Larson, A. Logg, and R. Scott. The FEniCS project. Technical report,
2003.

[14] M.B. Giles, G.R. Mudalige, Z. Sharif, G. Markall, and P.H.J Kelly. Performance analysis of the OP2 framework on
many-core architecture. In ACM SIGMETRICS Performance Evaluation Review (to appear), March 2011.

[15] Michael A. Heroux, Roscoe A. Bartlett, Vicki E. Howle, Robert J. Hoekstra, Jonathan J. Hu, Tamara G. Kolda, Richard B.
Lehoucq, Kevin R. Long, Roger P. Pawlowski, Eric T. Phipps, Andrew G. Salinger, Heidi K. Thornquist, Ray S.
Tuminaro, James M. Willenbring, Alan Williams, and Kendall S. Stanley. An overview of the Trilinos project. ACM
Trans. Math. Softw., 31:397–423, September 2005.

[16] Anthony Jameson, T.J. Baker, and N.P. Weatherill. Improvements to the aircraft Euler method. In AIAA 25th Aerospace
Sciences Meeting, number 86 - 0103, January 1986.

[17] I.C. Kampolis, X.S. Trompoukis, V.G. Asouti, and K.C. Giannakoglou. CFD-based analysis and two-level aerodynamic
optimization on graphics processing units. Computer Methods in Applied Mechanics and Engineering, 199(9-12):712
– 722, 2010.

[18] G. Karypis, V. Kumar, and Vipin Kumar. A parallel algorithm for multilevel graph partitioning and sparse matrix
ordering. Journal of Parallel and Distributed Computing, 48:71–95, 1998.

[19] Khronos OpenCL Working Group. The OpenCL Specification, version 1.0.29, 8 December 2008.
[20] Amy W. Lim and Monica S. Lam. Maximizing parallelism and minimizing synchronization with affine partitions. In

Parallel Computing, pages 201–214. ACM Press, 1998.
[21] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel programming with CUDA. Queue,

6:40–53, March 2008.
[22] NVIDIA Corporation. NVIDIA Tesla GPUs power world’s fastest supercomputer, 2010.
[23] OpenCFD Ltd. OpenFOAM: The Open Source CFD Toolbox User Guide, August 2010.
[24] R. Pecnik, V. E. Terrapon, F. Ham, and G. Iaccarino. Full system scramjet simulation. Annual Research Briefs of the

Center for Turbulence Research, Stanford University, Stanford, CA, 2009.
[25] Olivier Pironneau, Frdric Hecht, Antoine Le Hyaric, and Jacques Morice. FreeFEM, 2005. Universitè Pierre et Marie

Curie Laboratoire Jacques-Louis Lions, http://www.freefem.org/.
[26] Tiark Rompf and Martin Odersky. Lightweight modular staging: a pragmatic approach to runtime code generation and

compiled DSLs. In Proceedings of the ninth international conference on Generative programming and component
engineering, GPCE ’10, pages 127–136, New York, NY, USA, 2010. ACM.

[27] David E. Shaw, Ron O. Dror, John K. Salmon, J. P. Grossman, Kenneth M. Mackenzie, Joseph A. Bank, Cliff Young,
Martin M. Deneroff, Brannon Batson, Kevin J. Bowers, Edmond Chow, Michael P. Eastwood, Douglas J. Ierardi,
John L. Klepeis, Jeffrey S. Kuskin, Richard H. Larson, Kresten Lindorff-Larsen, Paul Maragakis, Mark A. Moraes,
Stefano Piana, Yibing Shan, and Brian Towles. Millisecond-scale molecular dynamics simulations on Anton. In
Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, SC ’09, pages
39:1–39:11, New York, NY, USA, 2009. ACM.

[28] James R. Stewart and H. Carter Edwards. A framework approach for developing parallel adaptive multiphysics
applications. Finite Elem. Anal. Des., 40:1599–1617, July 2004.

[29] H. G. Weller, G. Tabor, H. Jasak, and C. Fureby. A tensorial approach to computational continuum mechanics using
object-oriented techniques. Comput. Phys., 12:620–631, November 1998.


