
Z A C H D E V I T O , N I E L S J O U B E R T

T H E L I S Z T L A N G U A G E
S P E C I F I C AT I O N

1 7 M AY 2 0 1 0

the liszt language specification 3

This document describes the expected behavior of the currently imple-
mented features of the Liszt language.

Contents

1 Lexical Syntax 4

2 Identifiers, Names and Scopes 4

3 Types 4

3.1 Value Types 5

3.2 Reference Types 5

3.3 Mesh Types 6

4 Basic Declarations and Definitions 6

5 Classes and Objects 6

6 Expressions 7

6.1 Literals 7

6.2 Unary Operators 7

6.3 Binary Operators 8

6.4 Function Calls and Identifier Access 9

6.5 Field Access 9

6.6 Dense Vectors and Matrices 9

6.7 Built-in Functions 10

6.8 Mesh Topology Functions 11

6.9 Control Flow 12

6.10 Assignments and Reductions 13

7 Implicit Parameters and Views 13

8 Pattern Matching 13

9 Top-Level Definitions 13

10 XML Expressions and Patterns 14

11 User-Defined Annotations 14

12 Scala Standard Library 14

the liszt language specification 4

Liszt is a language for writing mesh-based programs for solving
partial differential equations. Liszt code is a proper subset of the syn-
tax and typing rules of the Scala programming language. Currently
Liszt programs are written in Scala; a compiler-plugin to the Scala
compiler translates the Scala code into an intermediate representation
used by the Liszt compiler. This document defines the exact sub-
set of Scala supported by Liszt and details the usage and semantics
of Liszt-specific language features. The structure of this document
mirrors that of the Scala language specification and defers to that
document when Liszt’s semantics are equivalent to Scala’s.

Since Liszt is embedded in Scala we distinguish between Liszt
code and normal Scala code using the annotation @lisztcode. This
annotation must appear before an object definition in Scala. Code
within the definition is then treated as Liszt code subject to the rules
defined in this document rather than the default Scala semantics.

@lisztcode
object MyLisztCode {

<liszt code>
}

1 Lexical Syntax

Liszt syntax is identical to Scala syntax. Liszt supports the same
identifiers, newline characters, and literals as Scala. Literal expres-
sions in Liszt are the same as those in Scala for all the types that Liszt
supports.

2 Identifiers, Names and Scopes

Liszt identifiers and names have the same scoping and precedences
rules as Scala’s. Liszt’s scoping rules are also borrowed from Scala.
One minor difference is the treatment of functions: Liszt does not
allow for first-class functions. Functions may only be declared at
object scope. They cannot be assigned to another identifier or passed
into/returned from functions. 1 Furthermore, Liszt functions cannot 1 This makes it easier to compile to ar-

chitectures that do not support closures,
or would require more sophisticated
memory management to support it.

be recursive, unlike Scala’s functions.

3 Types

Liszt extends a subset of Scala’s type system with Liszt-specific fea-
tures. Explicitly stating types is unnecessary for most values, since
Liszt uses Scala’s type inference algorithms. Liszt has three categories
of types: value types, reference types, and mesh types. There are no
user-defined types, thus no classes are supported.2 2 Eventually we would like to add

a simple class system to aid code
organization

the liszt language specification 5

3.1 Value Types

Value types are passed and return by value through functions, and
have no Liszt-specific restrictions. They include:

Int — Fixed-point numeric type, equivalent to Scala’s Int.

Float — Floating-point numeric type, equivalent to Scala’s Float.
The precision (single or double) is configurable in the liszt.cfg file
using the -floating-point-type flag.

Double — Floating-point numeric type, equivalent to Scala’s Dou-
ble. The precision (single or double) is configurable in the liszt.cfg

file using the -double-type flag.

String — Equivalent to Scala’s String type. Liszt does not support
any string manipulation expressions, but strings can still be used
for output and debugging purposes.

Boolean — Boolean type, equivalent to Scala’s Boolean and used in
conditional expressions.

In this document, we use the term Numeric to refer to Integer, Float
and Double. In addition to these simple value types, Liszt includes
two higher-kinded value types representing small dense vectors or
matrices. These types take meta-integer type parameters to stat-
ically determine their size. Meta-integers are static integer liter-
als, represented with underscores preceding their integer value:
_1, _2, _3, ..., _9. Meta-integers may only be used as type pa-
rameters to Liszt types requiring meta-integers, or as arguments to
extract a specific entry from a vector or matrix.

Vec[N <: IntM,T] — A dense vector type of length N, where N is a
meta-integer. T is any Liszt value type.

Mat[R <: IntM,C <: IntM,T] – A dense matrix of dimension R rows
by C columns, where R and C are meta-integers. T is any Liszt value
type.

3.2 Reference Types

Reference types are passed to functions by reference. However, in
constrast to Scala’s reference types, Liszt reference types cannot be
returned from functions. 3 3 This prevents objects from escaping

their defining scope, allowing archi-
tectures without dynamic memory
management like CUDA to avoid
having to deal with heap-allocated
memory.

Field[A <: MeshObj,T] — A type representing a field defined over
the mesh with support at elements of type A, where A is one of
Vertex,Edge,Face, or Cell. T is the value stored in the field, and can
be any value type. Fields must be declared at object scope and
cannot be declared inside functions.

Though not fully implemented,
SparseVector and SparseMatrix
types will eventually be included as
reference types

the liszt language specification 6

3.3 Mesh Types

The final Liszt types are those representing mesh elements and sets
of mesh elements. All values of these types are constant, and are
passed to functions by value. Variables assigned to mesh types must
be val declarations, not var declarations. Hence it is illegal to reassign
a mesh type. 4 4 This requirement makes it possible

to always come up with a limited
set of reachable topology given a
particular piece of Liszt code, allowing
for automatic domain decomposition

Vertex — A 0-dimension element, representing a single point on
the mesh.

Edge — A 1-dimensional element, connecting two vertices.

Face — A 2-dimensional element (triangle, quadrilateral, etc.),
composed of several edges.

Cell — A 3-dimensional element (tetrahedron, hexahedron, etc.),
composed of several faces.

Mesh — An entire mesh. Currently the only build-in expression
with type Mesh is mesh.

Set[T <: MeshObj] — A set of vertices, edges, faces, or cells.

In addition to these types, Liszt supports basic function types (eg.
(A, ... , B) => C) and the Unit type. However, Liszt functions and
Unit are not first class entities. Functions cannot be passed to or re-
turned from functions, assigned to new identifiers, or declared inside
other functions. Unit can only be used as the return type of a function
that does not return a value.

4 Basic Declarations and Definitions

Liszt supports a subset of Scala’s declarations:

val foo = <value type exp, reference type exp, mesh type exp>
var bar = <value type exp, reference type exp>
def baz(x : T1, ..., xn :TN) = <exp>

The user may also choose to annotate any of these declarations with
result types. Functions must have exactly 1 argument list (unlike
Scala where functions can have 0, or more than 1 argument lists).
Liszt will ignore any modifiers on declarations. Type declarations
type T = Y are not supported. 5 Arguments cannot be passed by 5 It would be nice to add sup-

port for these so we can as-
sign aliases to vector types. eg:
type Float3 = Vec[_3,Float]

name (:=> syntax).

5 Classes and Objects

Liszt does not yet support Scala’s class system, though eventually a
subset of it will be allowed. Currently code can be placed in multiple

the liszt language specification 7

Scala objects, where each object is annotated with the @lisztcode

annotation.6 Liszt code can call functions in other modules using 6 Until we implement some real class
system, these objects allow the user to
create modular code

standard Scala syntax:

@lisztcode
object Foo {

def foo() {
Baz.baz()

}
}
@lisztcode
object Baz {

def baz() {
Print("This is baz.")

}
}

Liszt objects containing a method called main taking zero argu-
ments can be designated as the main class for a liszt program in
the liszt.cfg file. This method will be invoked when the Liszt pro-
gram is run. Variables and code written at object scope are run at
Liszt startup. A module A relies on a module B iff A refers directly to
an identifier in B or if A relies on a module C that relies on B. If A relies
on B but B does not rely on A, then B will be initialized before A. In the
case of a circular reliance between A and B the initialization order is
undefined.

6 Expressions

The subset of Scala expressions that Liszt supports is listed here.
When <T> is used below it means that an expression having type T is
valid in that position.

6.1 Literals

All scala literal expressions for Liszt types are valid Liszt expressions
for that type. Examples:

val a : Int = 1
val b : Int = 0x1F
val c : Float = 1.f
val d : Double = 1.0

6.2 Unary Operators

-<Numeric>,-<Vec[N,T]>,-<Mat[R,C,T]> — Numeric negation.

~<Int> — Binary not.

!<Boolean> — Logical not.

<Vec[N,T]>.x – extract the first element of a vector if N >= _1.

the liszt language specification 8

<Vec[N,T]>.y – extract the second element of a vector if N >= _2.

<Vec[N,T]>.z – extract the third element of a vector if N >= _3.

<Vec[N,T]>.w – extract the forth element of a vector if N >= _4. 7 7 For general matrix and vector element
access, see Vector and Matrix Extraction

6.3 Binary Operators

If a binary operation takes two Numeric types and one is a Int while
the other is a Float or Double the Int is promoted to the given floating
point type, following Scala’s type rules.

<Numeric> + <Numeric> — addition, if one argument is Double,
promotes to type Double.

<Vec[N,T]> + <Vec[N,T]> — vector addition, defined if T is Numeric.

<Mat[R,C,T]> + <Mat[R,C,T]> — matrix addition, defined if T is
Numeric.

<Numeric> - <Numeric> — subtraction, if one argument is Double,
promotes to type Double.

<Vec[N,T]> - <Vec[N,T]> — vector subtraction, defined if T is
Numeric.

<Mat[R,C,T]> - <Mat[R,C,T]> — matrix subtraction, defined if T is
Numeric.

<Numeric> * <Numeric> — multiplication.

<Numeric> / <Numeric> — division.

<Numeric> * <Vec[N,T]> , <Vec[N,T]> * <Numeric> – scalar multipli-
cation, defined if T is Numeric

<Numeric> / <Vec[N,T]> , <Vec[N,T]> / <Numeric> – scalar division,
defined if T is Numeric

<Numeric> * <Mat[R,C,T]> , <Mat[R,C,T]> * <Numeric> – scalar mul-
tiplication, defined if T is Numeric

<Numeric> / <Mat[R,C,T]> , <Mat[R,C,T]> / <Numeric> – scalar divi-
sion, defined if T is Numeric

<Mat[R,C,T]> * <Vec[R,T]> – matrix vector multiply, returns type
Vec[C,T] if T is Numeric

<Int> | <Int> — binary or.

<Int> & <Int> — binary and.

<Int> ^ <Int> — binary xor.

the liszt language specification 9

<Boolean> || <Boolean> — logical or (not short circuiting8) 8 The principle of least suprise says we
should make these short circuit when
we get a chance.<Boolean> && <Boolean> — logical and (not short circuiting)

<value-type> == <value-type> , <mesh-type> == <mesh-type> —
Equality test returning Boolean

<value-type> != <value-type> , <mesh-type> != <mesh-type> —
Inequality test, returns Boolean

<Numeric> < <Numeric> — less than.

<Numeric> > <Numeric> — greater than.

<Numeric> <= <Numeric> — less than or equal to.

<Numeric> >= <Numeric> — greater than or equal to.

<Numeric> min <Numeric> — Returns the less of the two operands.

<Numeric> max <Numeric> — Returns the greater of the two operands.

<Vec[N,T]> min <Vec[N,T]> — Maps the min operator across the
vector, returns type Vec[N,T]

<Vec[N,T]> max <Vec[N,T]> — Maps the max operator across the
vector, returns type Vec[N,T]

6.4 Function Calls and Identifier Access

object_ident.ident — access identifier ident from Liszt object
object_ident. Identifier may be a variable or a function.

<function-expression>(a1,...,an) — function call of user-defined
function.

6.5 Field Access

field_identifier(<MeshObj>) — Read the value of field_identifier
at <MeshObj>.

field_identifier(<MeshObj>) = <T> — Write the value <T> to field_identifier

at <MeshObj>.

6.6 Dense Vectors and Matrices

The following functions are used to construct dense matrices or vec-
tors:

def Vec(a1: T, ..., aN: T) : Vec[_N,T] — Constructs a dense
vector with entries corresponding to the given list of Numerics.

def Mat(a1: Vec[_M,T], ..., aN: Vec[_M,T]) — Constructs a
dense matrix of NxM with rows corresponding to the given Vec-
tors. Only defined if M is constant over all the parameters. eg:
Mat(Vec(1,1,1),Vec(1,1,1)) constructs a 2x3 matrix.

the liszt language specification 10

The following operations are used to extract specific elements from
a matrix or vector. They require meta-integer literals _0, _1, ..., _9.

vec_identifier(<meta-integer>) — extracts a value from a vector.

mat_identifier(<meta-integer>,<meta-integer>) — extracts a value
from a matrix.

The following operations are used to assign specific elements in a
matrix or vector. They require meta-integer literals.

vec_identifier(<meta-integer>) = <T> — assigns value T to the
vector.

mat_identifier(<meta-integer>,<meta-integer>) = <T> — assigned
value T to the matrix.

6.7 Built-in Functions

The following functions are built-in to the language.

Print(as : Any*) : Unit — Output all arguments, newline termi-
nated.

def FieldWithConst[MO <: MeshObj, VT](s : VT) : Field[MO,VT] —
Create a new field over MO with value type VT and initial value s.
This can only be called at object scope, not within any function
(including main).

def FieldWithLabel[MO <: MeshObj, VT](url : String) : Field[MO,VT]

— Create a new field over MO with value type VT. Load the initial
values using a locator string url. The only currently supported
locator is “position”, which loads the positions of the vertices in
the mesh (the field must have type Field[Vertex,Vec[_3,Double]]).
This can only be called at object scope.

def BoundarySet[MO <: MeshObj](name : String) : Set[MO] — Load
the set of mesh topology of the given identifier from the mesh
filename. Currently all fluent-file boundary sets are immediately
avaliable through this inteface. This can only be called at object
scope.

mesh — A handle to the global mesh object.

def size[MO <: MeshObj](s : Set[MO]) : Int — Retrieve the size of
a set.

def cross[VT](a : Vec[_3,VT],b : Vec[_3,VT]) : Vec[_3,VT] — Cross
product

the liszt language specification 11

def dot[N <: IntM, VT](a : Vec[N,VT],b : Vec[N,VT]) : VT — Dot
product

def normalize[N <: IntM, VT](a : Vec[N,VT]) : Vec[N,VT] — Return
the normalized vector.

ID[MO <: MeshObj](m : MO) : Int — Return the unique ID of the
mesh object as it was named in the input file.

wall_time() — Return the time is seconds since the program
started. Low resolution accurate to 2ms.

processor_time() — Return a time in seconds according to the
processor’s tick count. High resolution accurate to 1ns, but will
produce inconsistent results if the thread switches processors and
is thus intended for accurate timing of short (<1s) events.

6.8 Mesh Topology Functions

The following functions manipulate the mesh topology.

def vertices(e : Mesh) : Set[Vertex] — all the vertices in the mesh.

def vertices(e : Vertex) : Set[Vertex] — all vertices sharing an
edge with this vertex.

def vertices(e : Edge) : Set[Vertex] — the two vertices on either
end of this edge.

def vertices(e : Face) : Set[Vertex] — all vertices on the edges of
this face.

def vertices(e : Cell) : Set[Vertex] — all vertices on the edges of
the faces of this cell.

def cells(e : Mesh) : Set[Cell] — all the cells in the mesh.

def cells(e : Vertex) : Set[Cell] — all cells containgtex vertex e.

def cells(e : Edge) : Set[Cell] — all cells containing edge e.

def cells(e : Face) : Set[Cell] — both cells containing face e.

def cells(e : Cell) : Set[Cell] — all cells that share a face with
cell e.

def edges(e : Mesh) : Set[Edge] — all edges in the mesh.

def edges(e : Vertex) : Set[Edge] — all edges containing vertex e.

def edges(e : Face) : Set[Edge] — all edges in face e.

def edges(e : Cell) : Set[Edge] — all edges in cell e.

the liszt language specification 12

def edgesCCW(e : Face) : Set[Edge] — all edges in face e oriented
counter-clockwise around e when observed from cell outside(e).

def edgesCW(e : Face) : Set[Edge] — all edges in face e oriented
clockwise around e when observed from cell outside(e).

def faces(e : Mesh) : Set[Face] — all faces in the mesh.

def faces(e : Vertex) : Set[Face] — all faces containing vertex e.

def faces(e : Edge) : Set[Face] — all faces containing edge e.

def faces(e : Cell) : Set[Face] — all faces in cell e.

def facesCCW(e : Edge) : Set[Face] — all faces f containing edge e

oriented such that when viewed from vertex head(e) cell outside(f)
is counter-clockwise from face f.

def facesCW(e : Edge) : Set[Face] — all faces f containing edge e

oriented such that when viewed from vertex head(e) cell outside(f)
is clockwise from face f.

def head(e : Edge) : Vertex — vertex that edge e points towards.

def tail(e : Edge) : Vertex — vertex from which edge e points
away from.

def outside(e : Face) : Cell — cell on face e, dual of head.

def inside(e : Face) : Cell — cell on face e, dual of tail.

def flip(e : Edge) : Edge — Flip the direction of e. head(e) == tail(flip(e)).

def flip(e : Face) : Face — Flip the direction of e. outside(e) == inside(flip(e))

def towards(e : Edge,v : Vertex) : Edge — edge such that head(e) == v

def towards(e : Face,c : Cell) : Face — face such that outside(e) == c

6.9 Control Flow

Liszt supports the follow subset of Scala control-flow statements:

if(<Boolean>) <T> [else <T>] — if statement (can be used as an
expression).

while(<Boolean>) <T> — while statement, execute until <T> is false.

return <T> — return from the current function. T must be the re-
turn type of the current function.

{ <expressions> } — Block, has the value of its last expression.

the liszt language specification 13

for(x <- <Set[T]>) <stmt> — for-comprehensions are only al-
lowed for Liszt’s set type. No guards or pattern matching are
allowed. In Liszt, for-comprehensions do not impose an order-
ing on how two <stmt> blocks will be run in comparison to each
other. <stmt> blocks may be run in parallel. For a particular set of
mesh topology, <stmt> will be executed once for each member of
the set. for-comprehensions impose additional constraints on the
assignment and reduction statements allowed inside them.

6.10 Assignments and Reductions

Variables are allowed to be reassigned using the = operator, similar
to how field values can be reassigned. We consider the following
patterns to be reductions where <op> is a binary operator that takes
two operands of type T and returns a type T:

v = v <op> <T>
v <op>= <T>
field_ident(x) = field_ident(x) op <T>
field_ident(x) op= <T>

Reductions always occur atomically, even when in for-comprehensions.
However, additional constraints are placed on the objects. If a vari-
able or a field is read inside the dynamic scope of a for-comprehension,
it cannot also be written in that for-comprehension. If a variable or
field is being written to using reduction operation <op> (<op> may be
an assignment) in the dynamic scope of a for-comprehension, then it
cannot be read in the dynamic scope of the for-comprehension, nor
may another reduction of <op2> != <op> be used in the dynamic scope
of the for-comprehension.

7 Implicit Parameters and Views

Liszt does not currently support user-defined implicit conversion and
views.

8 Pattern Matching

Liszt does not currently support pattern matching expressions.

9 Top-Level Definitions

At the top-level you can use any standard scala imports and will
need to import Liszt.Language._ and Liszt.MetaInteger._ for Liszt
to see all of its types. Inside Liszt code, no import statements are
allowed.

the liszt language specification 14

10 XML Expressions and Patterns

Liszt does not support XML expressions and patterns.

11 User-Defined Annotations

Liszt does not support user-defined annotations.

12 Scala Standard Library

Unless specifically mentioned as a valid expression, Liszt does not
support arbitrary calls into the Scala Standard Library.

	Lexical Syntax
	Identifiers, Names and Scopes
	Types
	Basic Declarations and Definitions
	Classes and Objects
	Expressions
	Implicit Parameters and Views
	Pattern Matching
	Top-Level Definitions
	XML Expressions and Patterns
	User-Defined Annotations
	Scala Standard Library

