NOVEL METHODS FOR MANIPULA TING AND COMBINING
LIGHT FIELDS

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

Billy Chen
Septenber 2006

c Copyright by Billy Chen 2006
All Rights Resened

| certify that |1 have read this dissertation and that, in my opinion, it
is fully adequatein scope and quality as a dissertation for the degree
of Doctor of Philosoply.

(Marc Levoy) Principal Adviser

| certify that |1 have read this dissertation and that, in my opinion, it
is fully adequatein scope and quality as a dissertation for the degree
of Doctor of Philosoply.

(Hendrik Lensd)

| certify that | have read this dissertation and that, in my opinion, it
is fully adequatein scope and quality as a dissertation for the degree
of Doctor of Philosoply.

(Pat Hanrahan)

Approved for the University Committee on Graduate Studies.

Abstract

Image-basedmodeling is a family of techniquesthat usesimages, rather than 3D
geometricmodels,to represem a scene.A light eld is a commonimage-basednodel
usedfor rendering the appearanceof objects with a high-degreeof realism. Light
elds are usedin a variety of applications. For example,they are usedto capture the
appearanceof real-world objects with complex geometry like human bodies, furry
teddy bears,or bonsaitrees. They are also usedto represehn intricate distributions
of light, like the illumination from a ash light. Howewer, despitethe increasingpop-
ularity of usinglight elds, su cient tools do not exist for editing and manipulating
them. A secondimitation is that thosetoolsthat have beendeweloped have not been
integrated into toolkits, making it di cult to conbine light elds.

This dissertation presens two cortributions towardslight eld manipulation. The
rst is an interactive tool for deformation of a light eld. Animators could usethis
tool to deform the shape of captured objects. The secondcortribution is a system,
called LightShop for manipulating and combining light elds. Operations sud as
deforming, compositing, and focusingwithin light elds can be conbined togetherin
a single system. Sud operations are speci ed independen of how that light eld is
capturedor parameterized,allowing a userto simultaneously manipulate and conbine
multiple light elds of varying parameterizations. This dissertation rst demonstrates
light eld deformation for animating captured objects. Then, LightShop is demon-
strated in three applications: 1) animating captured objects in a composite scene
containing multiple light elds, 2) focusingon multiple depthsin an image, for em-
phasizingdi erent layersin sports photography and 3) integrating captured objects
into interactive games.

Vi

Ac knowledgmen ts

My succesdn graduate sdhool would not have been possibleif not for the support
and guidanceof many people. First | would like to thank my advisor, Marc Lewvoy,
for his enduring patience and advice throughout my graduate career. There have
beenmultiple times whenMarc went above and beyond the call of duty to edit paper
drafts, nalize submissions,and review talks. His guidance played a critical role
in my success.| would also like to thank Hendrik Lenst for his practical advice
and support. Hendrik hasan excellen intuition for building acquisition systems;his
adviceon sud matters wasinvaluable. In the courseof conductingreseart together,
Hendrik becamenot only my mertor but also my good friend. | would also like to
thank the other menbers of my committee, Pat Hanrahan, Leo Guibas, and Bernd
Girod for their discussionson this dissertation. Their insights greatly improved this
thesis.

| would alsolike to thank my friends and family for their recreationaland emo-
tional support. In particular, my colleaguesn room 360 have becomemy life-long
friends: Vaibhav Vaish, Gaurav Garg, Doantam Phan, and Leslie Ikemoto. When |
look badk at our graduateyears,| will remenber our experienceshe most. | am also
honoredto have the opportunity to sharemy Ph.D. adverture with other friendsin
the department. Most notably, thosenotorious gslackerswith which | have had many
mind-altering conversationsand experiences greatly enhancedmy time at Stanford.
| am also deeply indebted to my family for believing in me and for giving me the
inspiration to apply and completea doctoral degree.

Last but not least, | would like to thank my girl friend, Elizabeth, who was my
pillar of support throughout my graduate career. During times of stress,shelistened.

Vii

After paper deadlines,she celebrated. When researt hit a dead-end,she inspired.
When researt felt like it wasspiraling out of cortrol, shebrought sereniy. It should
be no surprisethat this dissertationwould be impossiblewithout her. | dedicatethis
thesisto her.

viii

Contents

Abstract v
Acknowledgmen ts Vil
1 Intro duction 1
2 Background 5
2.1 Image-basedVodelsand Light Fields 5
2.1.1 The Plenoptic Function 6

212 Thelight Field 6

2.1.3 Parameterizations. 7

2.1.4 A Discrete Approximation to the ContinuousLight Field . . . 8

2.1.5 Renderingan Imagefrom a Light Field 9

2.2 Acquisition Systems 10

3 Light Field Deformation 13
3.1 PreviousWork: 3D Reconstructionfor Deformation 15
3.2 Solvingthe lllumination Problem 16
3.2.1 The Coaxial Light Field 17

3.2.2 Using Coaxial Light Fields to Solwe Illlumination Inconsistency 18

3.2.3 Trading-o Ray-transformation and Lighting Complexity . . . 22

3.3 Specifyinga Ray Transformation 23
3.3.1 Free-formDeformation 24

3.3.2 Trilinear Interpolation 24

3.3.3 Dening aRay Transformation

3.3.4 Properties of the Ray Transformation.
3.4 Implemening the Ray Transformation
35 Results.
3.6 Specifying Multiple Ray Transformations.
3.7 RenderingMultiple DeformedLayers
3.8 Resultswith Multiple Deformations.
3.9 Summary e e

Ligh tShop: A System for Manipulating Light Fields
4.1 Introduction e
4.2 LightShop'sConceptualModel
4.3 Example: Focusingwithin a Light Field
4.4 LightShop'sDesign e
4.5 The LightShop Implementation
4.5.1 Light Field Represemation
4.5.2 LightShop's Modeling Implemertation
4.5.3 LightShop's Ray-shadingImplemertation
4.6 ResultsUsinglLightShop
4.6.1 Digital Photography
4.6.2 Integrating Light Fieldsinto Games.
47 SUMMANY . . . o o e e e e e e e e e e

Conclusions and Future Work
Table of Light Fields and their Sizes
Pro jector-based Light Field Segmentation

The LightShop API

C.1 Overviewofthe APl

C.2 LightShop'sModelinginterface
C.2.1 GraphicsEnvironmert (Scene).

X

69

71

73

C.2.2 Modeling Functions Available to the Programmer
C.3 LightShop's Ray-shadingLanguage
C.3.1 DataTypesandScope,
C.3.2 Flow Cortrol
C.3.3 Light Field Manipulation Functions

C.4 ASimpleExample

D Focus-based Light Field Segmentation

E Other Light Field Manipulations
E.1 RefractionandFocusing

E.2 Shadavs

Bibliograph y

Xi

103

107
107
108

113

Xii

List of Tables

4.1 Light eld operations. a7
A.1 Light elds, their sizesand their acquisitionmethods 71
C.1 LightShop primitivesand attributes 97
C.2 LightShop compositing operators 97

Xiii

Xiv

List of Figures

2.1 Ray parameterizationforaSLF

3.1 Imagesof a twisted toy Terra Cotta Warrior
3.2 A lambertian scenewith distant lighting
3.3 The lambertian scenedeformed
3.4 Two imagesfrom a coaxiallight eld
3.5 Goniometric Diagramsof Two Di erential Patches.
3.6 Goniometric Diagramsof After Ray Transformation
3.7 Comparing deformation of a coaxialand xed lighting light eld

3.8 Bilinear deformation
3.9 Algorithm for free-formdeformationofrays
3.10 An illustration of ray transformation
3.11 A hierardhy of line transformations
3.12 A projective transformonlines
3.13 Bilinear ray-transformsonlines
3.14 Approximating an inversewarp by interpolation
3.15 An inversewarp is approximated by forwarding warping samples. . .
3.16 Deformation box for the toy Terra Cotta Warrior
3.17 lllustration of free-formdeformationonalight eld
3.18 An imagefrom the teddy bearlight eld
3.19 RenderingaVview ray o i e e e
3.20 Imagesfrom a deformed sh light eld
3.21 Imagesfrom a deformedteddy bearlight eld

XV

4.1 Warping view-rays to simulate deformation. 48

4.2 Figure of focusingthrough asinglelens. 50
4.3 Exampleray-shadingprogramfor focusing 51
4.4 OverviewofLightShop 52
4.5 Comparing S3TCto uncompressedmagery 54
4.6 An imagefrom aweddinglight eld 56
4.7 Imagesfrom three light elds of individuals in front of a greenscreen 57
4.8 Samplecodeforrelighting 57
4.9 Imagesvirtually relit by linearly combining light elds 58
4.10 Imagescomposited from the wedding and mugshotLFs 58
411 Codefor compositing Lo 59
4.12 An imagefrom the swimmerslight eld 59
4.13 lllustration of light integration for a singlepixel 61
4.14 Ray-shadingcode for multi-plane focusing 62
4.15 Imagesillustrating focusingand multi-focal planes. 63
4.16 Imagesfrom VegaStrike L oo oo 64
4.17 Imagesfrom a light eld of atoy spaceship 65
4.18 Screencapturesof toy shipsin VegaStrike 66
B.1 Acquisition setup for capturing light elds 74
B.2 A hand-drawn projector colormask 76
B.3 Imagesillustrating projected-basedight eld segmetation 77
C.1 Modeling a scenewith LightShop 81
C.2 A LightShopray-shadingprogram 82
C.3 The lensmodel usedin LightShop 83
C.4 Renderingfrom a sphere-plandight eld 90
C.5 Imagesillustrating ray-warping for turning heads 93
C.6 Multiple viewsof the twisted light eld 93
C.7 An imagerenderedfrom a sceneof light elds 94
C.8 Novel views of a composite sceneof light elds 95
C.9 LightShop function callsthat model the toy scene. 98

XVi

C.10An exampleray-shadingprogramfor Figure C.7 99
C.11lImageafter samplingfrom the Buddhalight eld 100
C.12Image after compositing the o wer over the Buddha light eld 100
C.13Image after compositing the refracted Buddha over the o wer light eld 101

D.1 lllustration of the alpha matte extraction pipeline 104
E.1 Combining focusingwith refraction 108
E.2 Imagesillustrating shadav-castingwith light elds 110
E.3 Focusingwith softshadavs. 111

XVii

XVviii

Chapter 1
In tro duction

A long-term goal in computer graphics has beenrendering photo-realistic imagery.
One approad for increasingrealism is image-basednodeling, which usesimagesto
represen appearance.In recer years,the light eld [], a particular image-based
model, has beenusedto increaserealism in a variety of applications. For example,
light elds capture the appearanceof real-world objects with complexgeometry like
furry teddy bears|], or bonsaitrees|]. Incidert light elds capture
the local illumination impinging on an object, whetherit isa ash light with intricate
light patterns [], or general4D illumination [, ,]. In
the Im industry, light elds have found their usein creating \bullet-time" e ects in
production Ims like The Matrix or national sports broadcastslike the Superbow! of
2001.Light elds areusefulin represeting objectsthat are challengingfor traditional
model-basedgraphics.

Howeer, light elds have their limitations, comparedto traditional modeling.
Light elds are typically represeted using images,soit is not obvious how to ma-
nipulate them aswe do with traditional models. This di cult y explainswhy only a
handful of editing tools exist for light elds. Howewer, if one could deform, composite
or segmehn light elds, this would enablea userto interact with the object, rather
than just to view it from di erent viewpoints.

Ntraditional model" refersto the use of modelsto represen the geometry, lighting and surface
appearancein a scene.

2 CHAPTER 1. INTRODUCTION

Another challengeis that the existing tools found in the literature, like view-
interpolation [], focusing[], or morphing [], were not designed
for generallight eld editing. Consequetly, the ability to conbine tools, similar to
how imagesare edited in Adobe Photoshop, is simply not o ered by thesereseart
systems..

To addressthe two problemsof interacting with a light eld and conbining sud
interactions, this dissertation presens two cortributions toward manipulating and
combining light elds:

1. a novel way to manipulate a light eld by approximating the appearanceof
object deformation

2. a systemthat enablesa userto apply and combine operations on light elds,
regardlessof how ead datasetis parameterizedor captured

In the rst cortribution, a technique is preseited that enablesan animator to
deform an object represeted by a light eld. Object deformation is a common
operation for traditional, mesh-basedbjects. Deformation is performed by moving
the verticesof the underlying mesh. The goalis to apply this operation to light elds.
Howe\er, light elds do not have an explicit geometry soit is not immediately clear
how to simulate a deformation of the represeted object. Furthermore, we require
the deformation to be intuitiv e sothat it is accessibldoy animators.

The key insight that enableslight eld deformation is the use of free-form de-
formation [] to specify a transformation on the rays in a light eld. Free-form
deformationis a commonanimation tool for specifying a deformation for mesh-based
objects. We modify this deformation technique to induce a transformation on rays.
The ray transformation approximates a deformation of the underlying geometryrep-
reserted by the light eld. This operation enablesa userto deform real, captured
objects for usein animation or interactive games.

In the secondcortribution, we introduce a systemthat incorporatesdeformation,
alongwith a host of other tools, into a uni ed framework for light eld manipulation.
We call this systemLightShop Previouswork for manipulating light elds are sys-
tems designedfor a single task, like view interpolation. A systemthat incorporates

multiple operationsfacesadditional challenges.First, operationscanmanipulate light
elds in a variety of ways, sothe systemmust exposedi erent functionality for eah
operation. Someexamplesinclude summing over multiple pixelsin ead image (like
focusing), or shifting pixels acrossimages(lik e deformation). SecondJight elds may
be captured and parameterizeddi erently, sothe systemmust abstract the light eld
represemation from the user. Thesechallengesindicate that carefulthought must be
given to how to specify operations.

There are two key insights that drive the designof LightShop. The rst insight is
to leveragethe conceptualmodel of existing 3D modeling padkagesfor manipulating
traditional 3D objects. In systemslike RenderMan|] or OpenGL [i
a user rst de nes a scenemade up of polygons, lights, and cameras. Then, the
user manipulatesthe sceneby transforming vertices, and adjusting light and camera
properties. Finally, the user rendersa 2D image using the de ned camerasand
the scene. We call this conceptualmodel, madel, manipulate, render. LightShop is
designedn the sameway, exceptthat the scenecortains only light elds and cameras.
LightShop exports functions in an APl to model (e.g. de ne) a scene.The light elds
are then manipulated and an image is renderedfrom the scene. The problem of
manipulating and renderinga light eld is solved using the secondkey insight.

The secondkey insight is to specify light eld operations as operations on rays.
Ray operations can be de ned independen of the light eld parameterization. Fur-
thermore, we de ne these operations using a ray-shadinglanguagethat enablesa
programmerto freely combine operations. In a ray-shading program, by composing
multiple function calls, a user can combine multiple operations on light elds. To
render an imagefrom this manipulated scene we map the ray-shadingprogramto a
pixel shading languagethat runs on the graphics hardware. The sameray-shading
program is executedfor ewery pixel location of the image. When the program has
nished execution for all pixels, the nal imageis returned. Rendering an image
using the programmablegraphics hardware allows LightShop to produce imagesat
interactive rates and makesit more amenablefor integration into video games.

A systemlike LightShop can be usedin a variety of applications. In this disser-
tation, three applications are prototyped: 1) a light eld compositing program that

4 CHAPTER 1. INTRODUCTION

allows a userto rapidly composeand deforma scene2) a novel post-focusingprogram
that allows for simultaneously focusingat multiple depths, and 3) an integration of
a captured light eld into a popular OpenGL space- ight simulator.

The dissertation is organizedin the following way. Chapter 2 describes badk-
ground material related to light elds. This chapter also motivatesthe needto ma-
nipulate light elds by describingthe increasingnumber of acquisition systemsand
their decreasingcost and complexity in acquiring a dataset. Chapter 3 descrikes
the rst cortribution of this thesis: a novel way to manipulate light elds through
deformation. Chapter 4 descrikesthe secondcortribution: LightShop, a systemfor
manipulating and combining light elds. In this chapter, results are shavn for ap-
plications in digital photograply, and interactive games. Many of theseresults are
time-varying, sothe readeris invited to perusethe webpage,
http://graphics.stanford. edu/papers/ bchen_thesi s. Chapter 5 concludeswith
a summary of the cortributions and future improvemerts.

http://graphics.stanford.edu/papers/bchen_thesis

Chapter 2
Background

In this chapter, image-basedmodels are reviewed. In particular, the physics-based
notion of a light eld is discussed,and its approximation, by a set of images,is
reviened. Next, the needto manipulate and combine light elds is motivated by
a discussionof the progressionof light eld acquisition systems. In this discussion,
it is shavn that these systemsare becoming easierto use, cheaper to build, and
more commonplace. Thesefactors lead to the result that light elds are becoming
akin to imagesand traditional 3D models. Consequetly, there is an increasingneed
to manipulate and interact with sud datasets, beyond just rendering from novel
viewpoints.

2.1 Image-based Mo dels and Light Fields

An image-basednodel (IBM) usesimagesto represeh an object's appearance with-
out explicitty modeling geometry surface properties or illumination. The key idea
is that an object's appearanceis fully captured by the cortinuous distribution of
radiance eminating from that object. This distribution of radiance is called the
plenoptic function []. In practice, one can not fully capture an object's con-
tinuous plenoptic function and must therefore capture restrictions of it. The light
eld [,] is onesud restriction that allows for conveniert acquisition of
real-world objectsand e cien t rendering. In the following, the notion of the plenoptic

5

6 CHAPTER 2. BACKGROUND

function is brie y reviewed, followed by a discussionof the light eld.

2.1.1 The Plenoptic Function

The plenoptic function [,] is a seven dimensionalfunction that descrikes
the radiancealong a ray at time t, wavelength

P=P(y:z ;; ;1) (2.1)

X;y;z; ; describethe ray incidert to the point (x;y; z) with direction (;) in spher-
ical coordinates. The interesting point about Equation 2.1 is that it fully describes
the appearanceof an object under xed lighting. An object's appearancedependson
the incident illumination, surfaceproperties, and geometry []. The plenoptic
function capturesthis appearanceparameterizedas radiance along ead point and
direction pair in the scene.When an image needsto be renderedfrom the plenoptic
function, the radiancealong a ray is computedby ewaluating the plenoptic function.

In practice, measuringan object's ertire cortinuous plenoptic function is impos-
sible, soit is approximated by discretization and restricted by dimensionreduction.
The 4D light eld is one sud approximation/restriction.

2.1.2 The Light Field

First, assumethat the plenoptic function is static and doesnot vary over time. Next,
basedon the tristim ulus theory of color perception|], the locus of spectral
colors is appraximated by a basis of three primaries: red, greenand blue. This
converts Equation 2.1 to the following vector-valued equation:

Prgo = Prgp(X Y525 5) (2.2)

where P, 4, is a 3-vector correspnding to the weights for ead red, green, and blue
primary.

One more reduction can be performed, which assumeghat the radiancealong a
ray is constart. This assumptionis true whenthe plenoptic function is de ned in free

2.1. IMAGE-BASED MODELS AND LIGHT FIELDS 7

space. The redundancyin Equation 2.2 is removed by parameterizingthe light eld
in terms of rays insteadof a (x; y; z) point and (;) direction [,]. Hence,
alight eld is a four dimensionalfunction mapping rays in free spaceto radiance:

L = L(u;v;s;t) (2.3)

The input, aray in free space,takes4 coordinatesu;v;s;t to represen []. The
output, radiance, is approximated by a three-commnert RGB vector. The input
coordinatescan represem spatial positions or directions depending on the parameter-
ization. For example,in the two-plane parameterization [], u;v and s;t are the
ray-intersectionswith the UV and ST-planes. The next sectiondescrilesthe two
light eld parameterizationsusedin this thesis. However, the light eld operations,
asdescriked in Chapter 4, are independen of the parameterization.

2.1.3 Parameterizations

Throughout this thesis, light elds useone of two parameterizations,two-plane and
sphere-plane A third, the circular parameterization,is a special caseof the latter for
3D light elds. Theseparameterizationsare not de ned on any surfacein the scene.
This property allows the represetation of objects with complexgeometry like hair,
or fur (sincethe parameterizationneednot lie on the hair or fur geometry). Howeer,
the disadwantage is that more samplesneedto be capturedin order to avoid ghosting

whenrendering []. For light eld parameterizationsthat make useof surface
geometry the readeris referredto surfacelight elds [], and view-dependen
texture maps|]
Tw o-plane

L = L(u;v;s;t) (2.4)

In a two-planeparameterization,two planes,a UV- and ST-plane,are de ned. A ray
is descriked by four coordinates, (u; v; s;t) which descrike the two intersectionswith

8 CHAPTER 2. BACKGROUND

the UV- and ST-plane. This is a natural parameterizationfor datasetsacquiredfrom
an array of cameras. The UV-plane is de ned as the plane on which the cameras
lie. The ST-plane is the plane on which all cameraimagesare rectied. Images
are recti ed by capturing a light eld of a planar calibration target and computing
homographiesto a user-selectedcameraimage|].

Sphere-plane

L=L(; ;sit) (2.5)

The sphere-plandight eld parameterization(SLF) usesa di erent set of four coor-
dinates. A spherewith radius R surroundsthe object represeied by the light eld.
A ray is parameterizedby two intersections,(;) and (s;t). The rst is the closest
intersectionwith the sphere. This is parameterizedusing sphericalcoordinates; is
the anglefrom the vertical axis of the sphereand is the rotation anglearound the
vertical axis. The secondintersection, parameterizedby (s, t), is on a plane that
is incidert to the certer of the sphere,with normal N. Figure 2.1 illustrates this
parameterization.

A special caseof the SLF for 3D light elds isthe circular parameterization which
xes to 90. The sh, teddy bear and toy warrior light elds listed in Table A.1
usethis parameterization.

2.1.4 A Discrete Appro ximation to the Continuous Light
Field

Giventhe two parameterizationsdescrilked above, acquisition systemsdiscretely sam-
ple the cortinuous light eld with ray samples. In practice, these discrete samples
are acquiredfrom captured photographs. Assumingthat camerasare pinhole devices,
eat photographmeasureghe radiancealong a bundle of rays corvergingto the cen-
ter of projection of the camera. If multiple photographsare captured from di erent
viewpoints, theseimagesappraximate the cortinuouslight eld.

2.1. IMAGE-BASED MODELS AND LIGHT FIELDS 9

Figure 2.1: Ray parameterizationfor a sphere-plandight eld. (; ;s;t) arethe four
coordinatesde ning aray. The ray is shavn in red.

Usingdiscreteray samplesequirescalculating a samplingpattern and the number
of samplesto acquire. Assumingno knowledgeabout the geometryof the underlying
object, a good sampling strategy for the two-plane and sphere-planeparameteriza-
tions is to pick uniformly-spacedsamples| ,]. For the two-plane param-
eterization, this meanspicking sampleson a grid in the UV- and ST-planes. For the
sphere-planeparameterization, this meanspicking and sothat the samplesare
equally spacedon the surfaceof the sphere.ldeally, s andt on the planeare chosenso
that their projection to the rear-surfaceof the sphereform equally spacedsamples.

2.1.5 Rendering an Image from a Light Field

Once a discrete approximation of a light eld hasbeencaptured, a commontask is
to rendera virtual view of the light eld. Naturally, if the virtual view coincideswith
a captured viewpoint, then the relevant imagecan be returned. More interestingly, if
the virtual view is a novel view, an image can be renderedby sampling nearestrays
from the capturedlight eld. Renderinga novel view from alight eld is discussedn

YIn practice, the sampling distribution on this ST-plane is determined by the pixel grid pattern
on the camerasensor,which createsa non-uniform pattern when projected onto the rear surface of
the sphere. However, in our datasetsthe samplesare denseenoughthat few artifacts are visible.

10 CHAPTER 2. BACKGROUND

more detail in [:)]. This processof rendering an image from
alight eld hasnumerousnames,including \light eld sampling," \rendering from a
light eld,” \novel view syrthesis," and \extracting a 2D slice".

2.2 Acquisition Systems

Historically, a major hurdle in the useof light elds is acquiring densesamplesto
approximate the cortinuous function shavn in Equation 2.3. Fortunately, recen ad-
vancesin cameratechnology conmbined with novel usesof optics have madeacquisition
not only a practical task, but also a cheap and potentially commonone aswell. As
light elds becomemore common,userswill want to interact with them asthey do
with imagesand traditional 3D models.

Early acquisition systemsmade useof medanical gartries to acquirelight elds.
A camerais attachedto the end of the gartry arm and the arm is moved to multiple
positions. Two useful gartry con gurations are the planar and spherical ones. In
a planar con guration, the end e ector of the gartry arm moves within a plane,
enabling acquisition of two-plane parameterizedlight elds. One exampleis the
gartry |] usedto acquire 3D scansof Michelangelo'sDavid [] and a
light eld of the statue of Night. This gartry is usedto acquire seweral two-plane
light elds listed in Table A.1. In a sphericalcon guration, the end-e ector travels
on the surfaceof a sphere,enabling acquisition of circular and sphericallight elds.
The Stanford SphericalGantry [] is one example. This gartry is alsousedto
acquire the sphere-planeand circular light elds in Table A.1. While thesegartries
can capture a densesampling of a light eld, they assumea static scene,are bulky,
and are costly. The Stanford SphericalGantry costs$130,000.

To capture dynamic scenesyresearbers have built arrays of cameras.The ability
to acquire dynamic scenesenablesthe acquisition of complex objects like human
actors. Manex Entertainment rst popularized this technique in the movie, The
Matrix. During one scene,the actressappearsto freezewhile the camera moves
around her. This e ect, now coinedthe \Matrix e ect" or \bullet-time,” wascreated
by simultaneously triggering an array of cameras,and rendering imagesfrom the

2.2. ACQUISITION SYSTEMS 11

captured photographs.

Other cameraarrays include the video cameraarray in the Virtualized Reality
Project at CMU |], the 8x8 webcam array at MIT [], the 48 pan-
translation cameraarray |], and the Stanford Multi-camera Array ['

]. This thesisusesse\eral datasetscapturedusingthe Stanford Multi-camera
Array. With the exceptionof the webcam array, eat systemis costly and makesuse
of specializedhardware. Furthermore, arrays like the Stanford Multi-camera Array
generallyspana largearea(3 x 2 meters), which makesit challengingto move. These
acquisition devicesare usefulin a laboratory setting, but have limited usein everyday
settings.

To build mobile and cheap acquisition devices,researbers have exploited optics
to trade o the spatial resolution of a singlecamerafor multiple viewpoints of a scene.
One of the rst techniquesis integral photograply, in which a y's-eye lens sheetis
placedin front of a sensorarray, thereby allowing the array to capture the scenefrom
many viewpoints []. The total imageis composedof tiny images,eat with a
di erent viewpoint. Today, sud imagesare created by embedding lenseswithin a
camerabody [] or a lens encasemen|]. This thesis cortains light
elds captured from the hand-heldlight eld camerabuilt by Ng et al. In [1,
they construct a lensencasemencortaining 20 lenses.Eadc lensprovidesa di erent
viewpoint of the scene.The lensencasemenis attachable to any convertional SLR
camera. A light eld is captured simply by pressingthe shutter button. Acquisition
devicessud as this are mobile, cheap, and easyto use. As sud devicesbecome
common, light elds will becomeabundart and userswill want to manipulate this
data type asthey do with imagesand 3D objects. The rst cortribution of this thesis
is a novel way to manipulate theselight elds, descriked in Chapter 3.

12

CHAPTER 2. BACKGROUND

Chapter 3
Light Field Deformation

The rst cortribution of this thesisis a novel way to manipulate light elds, by
appraximating object deformation. An animator canthen \breathe life" into objects
represeted by light elds. Our goalis similar to cartoon animation; the nal resultis
a deformedobject, but the object neednot be physically plausible,volume-preserving,
or \w ater-tight". Figure 3.1illustrates a deformationthat twists a light eld of a toy
Terra Cotta Warrior.

Figure 3.1: Light eld deformationenablesan animator to interactively deformphoto-
realistic objects. The left gure is an imagefrom a light eld of a toy Terra Cotta
Warrior. The middle image shows a view of the light eld after applying a deforma-
tion, in this case,a twist to the left. Notice that his feet remain xed and his right
ear now becomesvisible. The right image shavs the warrior turning to his right.
Animating the light eld in this way makesit appear alive and dynamic, properties
not commonly assaiated with light elds.

13

14 CHAPTER 3. LIGHT FIELD DEFORMATION

In order to deform a light eld there are two core problems that needto be
solved. The rst is specifying a transformation on the rays of the light eld sothat
it approximates a changein shape. The secondis ensuring that the illumination
conditions after deformation remain consisten.

For the rst problem, recall from Chapter 2 that a light eld is a 4D function
mapping rays to RGB colors. In practice, this 4D function is appraximated by a
set of images. In other words, a light eld can be thought of as a set of rays, or a
set of pixels. An object represeted by a light eld is composedof theserays. The
goal is to specify a transformation that mapsrays in the original light eld to rays
in a deformedlight eld. Many ray-transformations exist, but we seeka mapping
that appraximates a changein the shape of the represeted object. For example,
a simple ray-transformation can be constructed by exploiting the linear mapping of
3D points. If we represen this mapping as a 4x4 matrix and represen 3D points in
homogeneousoordinates, then to deformthe light eld we simply take ead ray, pick
two points along that ray, apply the 4x4 matrix to both points, and form a new ray
from the two transformed points. This ray-transformation simulates a homogeneous
transformation on the object represetted by the light eld. In this chapter, we presen
a ray-transformation that can intuitiv ely expressEuclidean, similarity, and a ne
transformations. This transformation can also simulate the e ect of twisting the 3D
spacein which an object is enbedded, an e ect that is dicult with a projective
transformation.

The secondproblemto deformationis related to the property that the RGB color
along any ray in a light eld is a function of the illumination condition. When a
ray is transformed, the illumination condition is transformed along with the ray.
When multiple rays are transformed, this can producean overall illumination that is
di erent than the original. For example,considera light eld of a scenewith a point
light and a at surface. Considera ray r that is incidert to a point on the surface.
The incidert illumination makesan angle with respect to r. If we transform r, the
illumination angleremains xed, relativeto r. This causeghe apparen illumination
to dier from the original light direction. The goal is to provide a way to ensure
that after deformation, the illumination remains consistem to the original lighting

3.1. PREVIOUS WORK: 3D RECONSTRUCTION FOR DEFORMATION 15

conditions. To solwe this problem, a special kind of light eld, called a coaxial light
eld is captured.

Thesetwo problemsare not new. Previousapproadiesavoid the two problemsof
specifying a ray-transform and preservingillumination by attempting to reconstruct
a 3D model basedon the input images. Hence,an accurate 3D model is necessary
The solution presened in this thesis avoids building an explicit model and provides
a solution for maintaining a speci ¢ form of illumination during deformation.

3.1 Previous Work: 3D Reconstruction for Defor-
mation

Previous approadiesreconstruct geometry surfaceproperties and illumination using
the imagesfrom the light eld. Then the geometryis deformedby displacing mesh
vertices. The deformedobject can then be re-rendered. Howeer, reconstructing a
geometryfrom imagesis a di cult problemin computervision. Newertheless,se\eral
techniquesexist, including multi-baseline stereo|] and voxel coloring [1.

Assuming that a 3D model can be constructed, re ectance properties are then
estimated. In [], they assumethe object is diuse. Menewaux and Fournier
discussa systemthat can make useof more complexre ectance properties |].
The re ectance properties can alsobe represeted in a sampledform, asis shovn by
Weyrich et al., in which they capture and deform a surfacere ectance eld |].
Knowing the surface properties and geometry is su cient to keepthe apparen il-
lumination consistem after object deformation. Once the mesh vertices have been
deformed, the appearanceof that part of the meshcan be renderedusing the local
surfacenormal, incidert light direction and view direction.

This approad is successfulas long as geometry surface properties, and illumi-
nation can be accurately modeled. Unfortunately, this assumption fails for many
interesting objects for which light elds are commonly used, like furry objects. The

1One approad, usedin light eld morphing [], avoids 3D reconstruction and instead in-
ducesa ray-transformation betweentwo input light elds by specifying corresponding rays. However,
they do not addressthe problem of inconsistert illumination.

16 CHAPTER 3. LIGHT FIELD DEFORMATION

approad preseted in this thesis avoids explicit reconstruction and preseits a tech-
nique for keepingillumination consistem and for specifying a ray-transformation.

3.2 Solving the lllumination Problem

In introducing our technique for light eld deformation, we rst addressthe problem
of maintaining consisten illumination during a transformation of the rays of a light
eld. Then, we discusshow a transformation can be speci ed by an animator in an
intuitiv e, interactive manner.

To understand the illumination problem that ariseswhen transforming the rays
of a light eld, considerthe sceneshown in Figure 3.2 A point light is located at
in nit y, emitting parallel light rays onto a lambertian, chederboard surface. A light
eld of this chederboard is captured. Two rays of this light eld are shavn asblack,
vertical arrows. The correspnding light direction for these two rays is showvn in
yellow. Notice that sinceboth rays of the light eld are vertical and the illumination
is distant, the anglebetweenthe illumination ray andthe light eld ray is . The key
idea is that no matter how a ray is transformed, the color along that ray direction
will be asif the illumination direction had madean angle to the ray.

Figure 3.3shaws the illumination directionsfor the two rays of the light eld after
transforming the upper-right ray. Notice that the illumination direction maintains an
angle with the ray direction. Howeer, the two illumination directionsare no longer
parallel. The illumination after transforming the rays is di erent than the original.

Becausethe color along a ray is a function of the relative angle between the
illumination and the ray, after transforming this ray the illumination direction points
in adi erent direction. In most casesthis meansthat whena light eld is deformed
(e.g. all its rays are transformed), the apparert illumination will also change. To
solwe this problem, we capture a new kind of light eld, called a coaxial light eld,
which maintains lighting consistencyduring deformation but still capturesinteresting
shadinge ects.

3.2. SOLVING THE ILLUMINA TION PROBLEM 17

_point light
Q

/4

Figure 3.2: A lambertian scenewith distant lighting. The chederboard surfaceis lit
by a point light located at in nit y. Two rays of the light eld are shown in blad.
They make an angle with respect to the illumination direction.

3.2.1 The Coaxial Light Field

Chapter 2 de nesthe 4D light eld asradiancealongrays asa function of position and
direction in a sceneunder xed lighting. Their de nitions permit construction of new
views of an object, but its illumination cannot be changed. By cortrast, |]
de nes the 4D re ectance eld asradiancealong a particular 2D set of rays, i.e. a
xed view of the world, as a function of (2D) direction to the light source. Their
de nition permits the relighting of an object, but the obsener viewpoint cannot be
changed. If onecould capture an object under both changingviewpoint and changing
illumination, one would have an 8D function (recertly captured by []). The
light elds of [] and [] are 4D slicesof this function.

In this section,for the purposesof deformation, we introducea di erent 4D slice,
which we call the coaxial light eld. With a coaxial light eld, we capture di erent
views of an object, but with the light source xed to the cameraas it moves. In

18 CHAPTER 3. LIGHT FIELD DEFORMATION

Figure 3.3: The rays represeting the chedkerboard are now transformed. Notice that
the illumination angle remains xed, relative to the ray directions. This causeghe
illumination to di er from the original conditions.

fact, the camerarays and illumination rays coincide. Sinceperfectly coaxial viewing
and illumination is dicult to adieve in practice, we merely place our light source
ascloseto our cameraaswe can. As an alternative, a ring light sourcecould alsobe
used. Figure 3.4 shavs two imagesfrom a coaxiallight eld captured of a lambertian,
chederboard surface. This kind of illumination is analogousto examining an object
with a ashlight attached to the obsener's head. Given this de nition of a coaxial
light eld, we now shonv how to useit to solwe the illumination consistencyproblem.

3.2.2 Using Coaxial Light Fields to Solve lllumination Incon-
sistency
What we shaw is that after deforming a coaxial light eld the illumination remains

consisten to the original. That is, the lighting remains coincident to the certer of
the virtual view. One way to study lighting in a sceneis to examinethe goniometric

3.2. SOLVING THE ILLUMINA TION PROBLEM 19

Figure 3.4: Two imagesfrom a coaxiallight eld. The lighting is a point light source
placedat the certer of projection of the camera. As the cameramovesto an oblique
position (right), the chederboard is dimmed dueto the irradiancefalling o with the
angle betweenthe lighting direction and the surfacenormal.

diagram at a di erential patch on a lambertian surface.A goniometric diagram plots
the distribution of re ected radiance over the local bundle of rays incident to that

patch?. In a goniometric diagram, the length of the plotted vectorsis proportional to

the re ected radiancequartity in that direction. Sincethe patch is on a lambertian

surface, it re ects light equally in all directions (e.g. the diagram is not biasedin

any direction by the re ectance properties). Thus the shape and sizeof the diagram
gives us insight into the illumination condition. For example, under xed lighting

a goniometric diagram of a patch on a lambertian surfacehas the shape of a semi-
circle. This is becausehe lambertian surfacere ects radianceequallyin all directions.
Furthermore, the radius of the semi-circleis a function of the anglebetweenthe surface
normal and the illumination direction.

Now let us examinethe goniometric diagram correspnding to coaxial lighting.
Let usreturn to Figure 3.4 which shows a chederboard captured by a coaxial light
eld. Considertwo di erential patchesA; and A, on the chedkerboard. Figure 3.5
showvsthe assaiated goniometricdiagrams. Comparedto xed lighting, the diagrams
indicate that re ected radianceis now a function of the re ection angle.

Described mathematically, becausethe surfaceis lambertian the radianceR can

2Somegoniometric diagrams are drawn as a function of radiant intensity. However, we felt that
plotting radiance provides a more intuitiv e notion of the re ected \ligh t energy".

20 CHAPTER 3. LIGHT FIELD DEFORMATION

be descriked asa function of the light direction L and the surfacenormal N []:

N L

R=E=1—3 (3.1)

where is the BRDF for a di use surface,E is irradiance, | the radiant intensity of
the point light and r the distancefrom the light to the patch.

Sincethe illumination is coaxial, any ray V from the patch has coaxial illumina-
tion, e.g. V = L. If we substitute this equality into Equation 3.1,

N V
R= | — (3.2)

we obsenethat the distribution of radiancefrom the patch is a function of the viewing

direction V. This explains why there is a cosine-fallo shown in the goniometric
diagrams.

dA, dA,
lambertian surface

Figure 3.5: Goniometric diagramsof two di erential patches,A; and A,. The radi-
ancein the local light eld incidert to ead patch is plotted. The length of the ray
is proportional to the radiancein that direction. Notice that the length of ray V has

a cosinefall-o with respect to the angle betweenthe ray direction and the surface
normal, N

Now let us considerwhat happenswhenwe deformthe locallight eld about patch
A; and rendera novel view. Figure 3.6 illustrates a rigid-body transformation of the
local light eld about A;. When renderinga novel view, we selectoneray emanating

3.2. SOLVING THE ILLUMINA TION PROBLEM 21

from A; and oneray from A,. In both rays, the radiancealongthosedirections have
coaxialillumination. Only oneillumination condition satis es this constrairt: a point
light sourcelocated at the virtual viewpoint. This illumination is consistem with the
initial conditions beforedeformingthe rays.

(o=] novel view

lambertian surface

Figure 3.6: Goniometric diagramsof two di erential patches,A; and A,, after trans-
forming the rays from A;. When a novel view is renderedby sampling rays from
the two diagrams, notice that the radiancealongL ; hascoaxial illumination (shown
in red). Similarly, the radiancealong L, has coaxial illumination. The only plausi-
ble illumination condition for theseconstrairts is a point light located at the virtual
viewpoint.

For comparison,Figure 3.7 showvs novel views after deforminga coaxialand xed-
illumination light eld. Only the coaxial light eld generatesa correct rendering of
the deformedchederboard.

Thus, the advantage of using coaxial light elds is that it ensuresthe correct
appearanceof objects under deformation, even though no geometry has been cap-
tured. Howewer, coaxial light elds have seral limitations. First, the object must
be di use; specular highlights will look reasonablewvhen deformed,but they will not

22 CHAPTER 3. LIGHT FIELD DEFORMATION

Figure 3.7: Comparing deformation of a coaxial and xed lighting light eld. The
left imageis a view from the deformedcoaxial light eld. Notice that the illumina-
tion remains consistem; it simulates a point light located at the virtual viewpoint.
This is evidert becausehe chedkerboard dims at the top asits apparert surfacenor-
mal deviatesaway from the lighting direction. The right imageis a view from the
xed lighting light eld. There is no appearancedue to point light illumination; the
radiancealong eat ray hasa di erent illumination direction.

be correct. Second,perfectly coaxial lighting cortains no shadavs. This makes ob-
jects look somewhat at. In practice, our light sourceis placedslightly to the side
of our camera, thereby introducing someshadaving, at the expenseof slightly less
consistencyin the rendering.

The coaxial light eld is one of seweral solutions for maintaining illumination
consistency In fact, a solution dependson the both the complexity of the lighting
and the complexity of the ray-transformation. The next sectiondiscusseshis trade-
0.

3.2.3 Trading-o Ray-transformation and Lighting Complex-
ity

In general,no solution exists for keepingarbitrary illumination consistem under ar-

bitrary ray-transformation. The reasonis that under any lighting condition, a ray

transformation could causethe illumination direction to di er from the original light-
ing conditions. The key to maintaining lighting consistencyis that the transformed

3.3. SPECIFYING A RAY TRANSFORMATION 23

ray must have an assaiated lighting direction that is consistet with the original
illumination ®. Therefore,the simpler the ray-transform, the more complexthe light-

ing can be, and vice-versa. A trivial exampleis the idertity transform. Under this
ray-mapping, the illumination can be arbitrarily complex. The equivalert trivial ex-
amplefor lighting is ambient lighting*. In this casethe ray-transform canbe arbitrary

complex. Both these casesmaintain lighting consistency Something between triv-

ial lighting and trivial ray-transformation is if the illumination is distant (and hence
has parallel illumination directions). In this caseany pure translation will presene
lighting.

Given this trade-o for preservinglighting during ray-transformation, we chose
coaxiallighting becauset hasreasonablellumination propertiesand presenescoaxial
illumination during transformation. The next section discusseghe details of the
actual ray-transformation.

3.3 Specifying a Ray Transformation

The secondproblemto light eld deformationis specifyinga ray transformation. Our
goal is to enablean animator to artistically expressmotion and feeling using light
elds.

There are many ways to specify a transformation on rays. For example,in the
beginning of this chapter, a 4x4 matrix was usedto specify a rigid-body transfor-
mation. Howeer, specifying a matrix is not intuitiv e for an animator. Instead, we
borrow a technique from the animation community for specifying transformationson
traditional 3D models (e.g. with mesh geometry). We adapt it to transform light
elds. The technique is called free-form deformation []. We rst introducethe
original technique, then adapt it to deformlight elds.

3Here, we ignore global illumination e ects like self-shadaving, and inter-re ection.

4In computer graphics, ambient lighting is a constart term addedto all lighting calculations for
an object. In reality, the ambient lighting is a composition of all indirect illumination. The trivial
casebeing consideredis if the object is only lit by ambient lighting, and hencehas uniform lighting
from all directions.

24 CHAPTER 3. LIGHT FIELD DEFORMATION

3.3.1 Free-form Deformation

In atraditional free-formdeformation (FFD) [], a deformation box C is de ned
around a meshgeometry The animator deformsC to form C,,, a setof eight displaced
points de ning a deformedbox®. The free-form deformation D is a 3D function
mapping C, the original box, to C,,, the deformedone:

D:<31 <3 (3.3)

More importantly, D is usedto warp all points inside the box C.

How is D parameterized? In the original paper by Sederterg and Parry, D is
represeted by a triv ariate tensor product Bernstein polynomial. The details of their
formulation of D are unimportant for deforming light elds. The key idea is that
we usetheir method for specifying a deformation. That is, an animator manipulates
a deformation box to specify a warp. The di erence is that while the original FFD
warps 3D points, our formulation warps rays.

To make useof the FFD paradigm, we rst de ne a function that makes use of
the deformation box to warp 3D points. We will prove that this function does not
presene straight lines, sowe modify it to warp ray parametersinstead of 3D points.
This modi ed form will be the nal ray warp. Let us begin by introducing the 3D
warping function, parameterizedby trilinear interpolation.

3.3.2 Trilinear Interp olation

To introduce trilinear interpolation, assumethat a deformation box (e.g. a rectan-
gular parallelepiped) is de ned with 8 vertices, ¢, i = 1:::8. These8 verticesalso
de ne three orthogonal basisvectors,U, V, and W. The origin of thesebasisvectors
is X, one of the vertices of the box. Then for any 3D point p, Equation 3.4 de nes
coordinates, u, v, and w:

U W (X Xo)

_ U V(X Xop)
WV w= —— 0 (3.4)

—_ V. W (X Xop) _
u= Vv V= Uu vVw

W u

50One assumption s that the animator doesnot move points to form self-intersecting polytopes.

3.3. SPECIFYING A RAY TRANSFORMATION 25

By trilinearly interpolating acrossthe volume, p can be described in terms of the
interpolation coordinates and the 8 verticesof the cube:

p=1 uw@ vI wec + UL v we +

1 uyl wpecs + (VL w)c + (3.5)
1 uw@ wv)(w)cs + (U1 v)(w)cs + '
(1 uwW)(w)c + (u)(v)(w)cs

Given the trilinear coordinates u;v;w for a point p, the transformed point is
computed using Equation 3.5 and the points in C,, substituted for ¢;. Any 3D point
can be warped using this technique.

Unfortunately, this technique does not presene straight lines. To obsene this
property, without lossof generality let us examinethe bilinear interpolation caseand
considerthe deformation shavn in Figure 3.8. Three collinear points a;b and c are
transformed. We test for collinearity by forming a line betweentwo points (in this
case,a and ¢) and showing that the third point lies on the line:

ax+ by+ c= 0 (line in standard form) (3.6)
x+y=0 (line through aand c) (3.7)
1 1=0 (substituting b) (3.8)

We shaw that after transformation, a% i and c® are no longer collinear. After
bilinear interpolation,
2 3 2 3 2 3

a°:405 P=4 35 O=4"75 (3.9)

o|5 win
~

The line formed from a® and P is:

gx y=0 (3.10)

26 CHAPTER 3. LIGHT FIELD DEFORMATION

c (3,4

c(3,3)

b (1,1)

a(0,0) a'(00)

Figure 3.8: A transformation usingbilinear interpolation doesnot presene collinear-
ity. On left, four cortrol points are initially arrangedin a square. On right, the
cortrol points are displaced. Three collinear points, a, b, and c are selected.On the
right, the line formed by a® and c®is no longer coincidert to displacedpoint k.

and substituting P into Equation 3.10vyields the following statemert:

4 2

= = =—60 3.11
3 9 (3.11)
This shaws that P does not lie on the line formed by a® and . Therefore straight

lines are not presened.

To presenethe straight raysrepreseting alight eld, wede ne the transformation
on its ray parametersinstead of the 3D spacein which the rays are embedded. In this
way, rays in the light eld are always mapped to straight rays. Note howewer, that
preservingstraight rays in the light eld during transformation does not guarartee
that straight lines represeted by the light eld remain straight. We comebad to
this property after de ning the light eld ray transformation.

3.3. SPECIFYING A RAY TRANSFORMATION 27

3.3.3 Dening a Ray Transformation

The key ideain de ning a ray transformation that presenesthe straight rays of the
light eld isto de ne the transformation in terms of the ray parameters.In this way,
rays are always mapped to straight rays. We usethe two-plane parameterizationof a
ray and factor the trilinear warp into two bilinear warps that displacethe (u;v) and
(s;t) coordinatesin the UV - and ST -plane, respectively.

First, to compute the location of the UV- and ST-planesand the (u;v;s;t) co-
ordinates for a ray, we intersect the ray of the light eld ® with the deformation box
C. The two intersection planesde ne the UV- and ST-planes. The correspnding
intersection points de ne the (u;v;s;t) coordinates. In other words, the two planes
de ne the erntrance and exiting planefor the ray asit travelsthrough the deformation
box.

Next, a separatebilinear warp is applied to the (u;v) and (s;t) coordinates. Fac-
torizing the trilinear warp into two bilinear warps is advantageousfor two reasons.
First, bilinearly warping in this way presenes straight rays represeting the light
eld. That is, the newlight eld is represeted by a set of straight rays. Second two
bilinear warps take 18 scalarmultiplications of the coe cien ts. A singletrilinear warp
takes42 scalarmultiplications. Thereforebilinear warps can be computed quicker.

The bilinear warp is a simplied version of Equation 3.5 The four interpolat-
ing points are those de ning the UV - or ST-plane. This warp producesa new ray
(u%vCs%t9 which is then re-parameterizedto the original parameterization of the
light eld. Figure 3.9 summarizesthe algorithm for transforming a ray of the light
eld. Figure 3.10illustrates how a ray is transformed, pictorially.

3.3.4 Prop erties of the Ray Transformation

Giventhe above de nition of a ray transformation, it is usefulto compareit to other
transformationsto understandits advantagesand disadvantages. A commonsetof 3D
transformations is the specializationsof a projective transformation. The projective

5The captured light eld already has a ray parameterization, but needsto be re-parameterized
for ray transformation.

28 CHAPTER 3. LIGHT FIELD DEFORMATION

transf orm _ray (ray)
rwst rep arameterize (ray)
Puv biwarp (ryy)
Pst biwarp (rst)

Cuvst [Puv; Pst]
return rep arameterize _original (Quvst)

ga b~ WDNPE

Figure 3.9: Algorithm for using bilinear interpolation to transform rays.

transformation is a group of invertible n x n matrices, related by a scalarmultiplier.
In the caseof transformations on 3D points, n = 4.

The projective transformation mapsstraight linesto straight lines|]. There-
fore, it is useful to compareour ray-transformation to it. We shawv that our ray-
transformation cande ne Euclidean,similarity, anda ne transforms. Unfortunately,
aswe will shaw, not all generalprojective transforms can be produced. Howeer, we
show that our ray-transform can perform mappingsbeyond projective mappings,like
twisting.

Euclidean, Similarit y, and Ane Transforms

A Euclidean transform models the motion of a rigid object; anglesbetween lines,
length and area are presened. If the object is also allowed to scaleuniformly, then
this modelsa similarity transform; anglesare still presened, aswell as parallel lines.
If an object can undergonon-isotropic scalingand rotation followed by a translation,
this transformation modelsan ane on€. Ane transforms presene parallel lines,
ratios of lengths of parallel line segmets, and ratios of areas.
Mathematically, thesethree transforms can be written in matrix form:
2 3

A t
x%= Tx =14 5x (3.12)
01

wherex and x° are 4x1 vectors, T a 4x4 matrix, A a 3x3 matrix, t a 3x1 vector and
0 a 1x3 vector. If A = G, for orthogonal matrix G, then T is a Euclideantransform.

It can be shown that an ane matrix can be factored into a rotation, a non-isotropic scaling,
and another two rotations, followed by a translation [I8

3.3. SPECIFYING A RAY TRANSFORMATION 29

ST

ST

Figure 3.10: An illustration of ray transformation. On the left is a top-down view
of the original light eld. The parameterization of the light eld is shovn as two
horizontal lines. The deformation box is drawn as a bladk square; it hasits own
two-plane parameterization, labeled UV and ST. One ray, shavn in bold red, is re-
parameterizedusing the UV and ST two planesof the box. The ray in the original
parameterizationis showvn in light red. The intersection points are shovn as black
points. Thesetwo points are transformed using bilinear interpolation to map to the
two bladk points on the right image. The two new points de ning the warpedray are
re-parameterizedo the original light eld. The warped ray is shovn in bold red, the
repararameterizedone, in light red.

If A = sG, for scalars, then T is a similarity transform. If A can be factored as
A=R()R()DR() (3.13)

whereR is a rotation matrix and D a diagonalmatrix, then T is an a ne transform.
Notice that the Euclideanand similarity transformsare special caseof the a ne one.

Given thesetransforms, we now shov how to place8 cortrol points, which de ne
the two planesfor ray-transformation, to produce the equivalent ray-mapping. The
two key ideasare 1) the cortrol points are transformed by the ane (or a special
case,like Euclidean) mappingsand 2) the a ne mappings presene collinearity. A
mapping that presenescollinearity ensureshat points that lie on a line still lie on a
line after the transformation. We will prove by construction, the following theorem:

Theorem 1 A line transformation de ned by an ane map, A, can be produced by

30 CHAPTER 3. LIGHT FIELD DEFORMATION

Bilinear Ray Warp

Projective
Affine

Smilarity

BEuclidean

Figure 3.11: A hierardvy of line/ray transformations. The bilinear ray-transformation
introducedin Section 3.3.3 can simulate up to a ne transformsand a subsetof the
projective ones. It canalsoperform line transformationsthat are impossiblewith the
projective transform, sud astwisting.

the ray-transformation descriled in Section 3.3.3 by applyingA to all 8 control points.

The proof is by construction. The ray-transform in Section 3.3.3is speci ed by 8
cortrol points, 4 de ning the UV -plane and 4 for the ST -plane. We call the cortrol
points, which arein homogeneougoordinates,a, b, ¢, ..., h. The new cortrol points
are de ned as follows: a®= Aa, = Ab, ®= Ac, ..., h®= Ah. In other words,
the new cortrol points are simply the a ne mappingsof the original cortrol points.
Thesecortrol points will be usedfor the bilinear warp in the UV - and ST -planes
Given the displacedcortrol points & ...h°% we now shav that any warped ray is
transformedin exactly the sameway asthe a ne mapping. This is done by taking
2 points in the UV - and ST -planes,bilinearly warping them, and shaving that these

3.3. SPECIFYING A RAY TRANSFORMATION 31

two new points are the samepoints using an ane warp. Furthermore, sincethe
ane warp presenes collinearity, the line formed by the two a nely warped points
is the sameasthe line made by connectingthe bilinearly warped points on the UV -
and ST -planes.

Supposewe have a point Py, onthe UV -plane:

Pow= (1 u(l wv)a+ (u)@ v)bt

(1 u)(v)c+ (u)(v)d (3.14)

whereu and v are the interpolation coordinates on the UV -plane. Then using the
displacedcortrol points, we can bilinearly interpolate the warped point for Py, :

PL= (1 w@ va’+ (uld v+

1 u)(v)+ (u)(v)d° (3.15)

But recallthat a°= Aa, I’= Ab, c®= Agc, ..., h®= Ah. Substituting this in:

P = (1 u@ v)Aa+ (u)(1 V)Ab+ (3.16)
(1 u)(v)Ac+ (u)(v)Ad '

and factoring out A rewveals:
P2 =A[(1 uw@ wv)a+ (ul v)b+ (1 u)(v)c+ (u)(v)d= AP, (3.17)

Equation 3.17 statesthat the bilinearly warped point P2, can be computed by ap-
plying the ane warp A to Py,. A similar argumert can be made for P3 = APg.
Sincea ne warps presene collinearity of points, the ane warp has mapped any
line through Py, and Pg to a line through P?, and PJ. This provesthat any a ne
mapping of lines can be producedby our ray-transform. |

Tackling the General Pro jectiv e Transform

Unfortunately, the proof-by-construction presened above doesnot apply to general
projective transforms. In Equation 3.17, supposeA is a projective transform of the

32 CHAPTER 3. LIGHT FIELD DEFORMATION

form: 2 3

x°= Ax = 4 5x (3.18)
vi s

with 3x3 matrix P, 3x1 vector t, 3x1 vector v and scalars. In this case,A can
not be factored out of the equation becausethere may be a di erent homogeneous
division for ead term in the equation. This meansthat directly applying a projective
transform to the cortrol points will not yield the sameray-transform as a projective
transform. Note that this wasthe casewith the a ne map. Figure 3.12is a graphical
explanation of the projective transform. In this case,the transform is in atland,
e.g. a 2D projective transform. What we've shovn sofar is that a bilinear ray-warp
constructed by projectively mapping the original cortrol points does not produce
the sameray-warp. But can a di erent construction of the cortrol points yield an
equivalent ray-warp? Unfortunately, the answer is no. The reasonis simple. If
the cortrol points are not projectively mapped, then warped rays between cortrol
points will never match projectively warped rays. Therefore, for generalprojective
transforms, it is impossibleto produce an equivalert bilinear ray warp.

Fundamernally, the 8 cortrol points of the bilinear ray transform needto map
to the 8 projectively transformed points. If this is not the case,then rays formed
from opposing cornersin the undeformedcasewill map to di erent rays when using
the bilinear and the projective warp. Howewer, as shaovn in Figure 3.12 for the 2D
case,if the 4 cortrol points coincide with the projectively warped points then rays
still do not match between bilinear and projective mappings. Therefore, for general
projective transforms, it is impossibleto produce an equivalert bilinear ray warp.

Beyond Pro jectiv e Transforms

Although the bilinear ray-transform cannot reproduce all projective transforms, it
has two nice properties that make it more useful for an animator. First, bilinear
ray-transforms can simulate the e ect of twisting (like in Figure 3.1); projective
transforms can not. Twisting is a rotation of one of the facesof the deformation
box. Bilinear ray-warping handlesthis caseasit normally handlesany ray warp. 3D
projective transforms, howewer, cannot map a cube to a twisted one becausesome

3.3. SPECIFYING A RAY TRANSFORMATION 33

Figure 3.12: A 2D projective transform applied to lines on a chederboard. On the
left, are the chederboard lines before transformation. The chedkerboard is a unit
square,with the lower-left cornerat the origin. Notice, the linesintersectthe borders
of the chederboard in a uniform fashion. On the right, are the chedkerboard lines
after a projective transform. The projective transformation has translated the top-
left cornerto (0; 0:5) and the top right cornerto (0:5; 1) Notice, that the intersections
are no longer uniform along the borders. In our ray-transformation, the uniformly-
spacedntersectionson the left imagemap to uniform intersectionson the right image
(this is alsotrue in the a ne casebecauseparallel lines are presened). However, the
projective transform does not presene this property for the borders, shovn on the
right.

of the sidesof the box are no longer planar. Projective transforms presene planes:
any four points that lie on a plane must lie on the sameplane after the transforma-
tion®. Becauseof this invariant, projective transforms cannot represen ray warps
that involve bending the sidesof the deformation box, like twisting. Howewer, this
ray transformation is useful for an animator to produce twisting e ects on toys or
models.

The trade-o is that the bilinear ray-transform no longer presenes straight lines
within the scenerepreseted by the light eld. Although this transform keepsthe
rays of the light eld straight after warping, lines in the scenerepreseted by the

8The proof is a simple extension of the 2D version (that preseneslines), described in Theorem
2.100f [].

34 CHAPTER 3. LIGHT FIELD DEFORMATION

light eld may curve. Figure 3.13Iillustrates this idea. The light eld is represeting

a scenecortaining a single, straight line. This line is shavn in bold. Three points

are selectedon this line, I, p, and g. The light eld rays that are incident to these
three points are shavn in light blue. Now, supposewe induce a deformation of the
light eld by displacingthe points ¢ and d, de ning the UV-plane. Sincea and b
are not displaced, the plane cortaining points a, b, | and g remainsthe sameafter
deformation. However, the bilinear transformation of the uv coordinates causesthe
ray through p to be transformedinto the ray goingthrough p®in the deformedcase.
p? does not lie on the plane cortaining the original line. This shows that the line
through I, p, qis no longer a line after applying this bilinear-transformation on the

UV -plane.
q
d
o
q q
c
P p>
b b
I I
a a
U\plane STplane U\tplane STFplane
(a) (b)

Figure 3.13: A light eld of a singlestraight line is deformed. (a) shaws the original
light eld con guration. The line is shavn in bold. Three points on the line are
selected. The light eld rays through these points are shavn in light blue. In (b),
the light eld is deformedby vertically displacingc and d to c®and d® The new light
eld represets a non-straight line, even though the bilinear ray transform presened
straight rays.

The seconduseful property of the bilinear-transform is that it guarartees that
the deformedbox always adheresto the animator's speci cation. In other words,
the boundary edgesand facesof the resulting deformedbox will always be what the

3.4. IMPLEMENTING THE RAY TRANSFORMATION 35

animator speci es. In cortrast, when using a projective transform the deformedbox
may not be exactly the sameaswhat the animator speci ed. This is a usefulproperty
when specifying multiple adjacert deformation boxes.

In summary, our analysisof the bilinear ray-transform shavsthat it canreproduce
up to ane mappingsof rays. It cannot reproduce all projective mappings, but can
produce other e ects, like twisting, which are impossiblefor projective transforms.
Furthermore, a bilinear ray-transform is guararteedto adhereto the eight newcortrol
points speci ed by the animator. This enablesan intuitiv e method for specifying a
ray-transformation of the light eld. Next we discusshow the bilinear ray transform
is implemerted to enableinteractive light eld deformation.

3.4 Implemen ting the Ray Transformation

The ray transformation discussedsofar warps all rays of the light eld. The problem
is that light elds are dense,sotransforming every ray is a time consumingprocess.
A typical light eld hasover 60 million rays (seeAppendix A). Applying a transfor-
mation to all 60 million rays preverts interactive deformation. Instead, we exploit the
fact that at any giventime, an animator only needsto seea 2D view of the deformed
light eld, e.g. newer the ertire dataset. This meansthat we only needto warp the
view rays of the virtual camera. In other words, we deform rays \on demand" to
produce an imagefrom the desiredview point.

How arethe warps on the light eld and the warps on the view rays related? The
two warps are in fact inversesof ead other, as shavn in |]. For example,to
translate an object to the left, one can either apply a translation to the object, or
apply the inversetranslation (i.e. translate to the right) to the viewing camera.

Therefore, to render an image from a deformedlight eld, we apply the inverse
ray warp to the view rays of the virtual camera. Given a view ray in the deformed
space,we needto nd the pre-image(e.g. ray) in the undeformedspacesud that
warping the pre-imageyields the given view ray. To nd the pre-imageof a ray, we
forward warp mary rays, and interpolate amongstnearby rays. Figure 3.14illustrates
this interpolation in ray space.

36 CHAPTER 3. LIGHT FIELD DEFORMATION

In the actual implemertation, we use texture-mapping to help us forward-warp
many ray samplesand interpolate amongstthem. Recall from Section 3.3.3 that a
ray transformation is de ned by 8 cortrol points de ning a deformation box (e.g.
two planesin the UV ST parameterization). To forward warp many ray samples,we
simply createmany sampleson the UV - and ST -planesand bilinearly warp them. To
interpolate betweenUYV - and ST -sampleswe triangulate the points and usebarycen-
tric coordinatesto shadeead triangle. In this way, the texture color codesthe original
coordinates of eadn UV and ST point. We used64 x 64 x 2 textured triangles per
plane for our datasets. Figure 3.15shows the UV -planes(left) and ST -planes(right)
for a deformation box.

S S
A A
[[e 6 o o
ray warp
L NZ] > L X o
o 7N o ° °
L L e 6 o o
» U » U
undeformed space deformed space

Figure 3.14: A pre-imageof a ray is found by computing the forward warp for many
samplerays, and interpolating amongstnearestrays. The above two diagramsare 2D
ray-spacediagramsillustrating the undeformedspace(left) and the deformedspace
(right). Rays in ray-spaceare represeted as points. The pre-imageof the ray in
the deformedspace(showvn in red) is found by computing the nearestrays (shown
in green), nding their courterparts in the undeformedspace,and interpolating the
original ray positions. The interpolation is represeted by the black lines. The pre-
imageis shown in blue in the undeformedspace.

3.5. RESULTS 37

Figure 3.15: An inversewarp is appraximated by forward warping many ray samples
and then interpolating the results. We use a hardware-acceleratedexture-mapping
approad to quickly interpolate amongthe ray samples.

3.5 Results

We now presen results illustrating how the bilinear ray-transform is usedto intu-
itiv ely specify a ray-transformation on the light eld. This ray-transformation simu-
latesthe e ect of deformingthe object represeted by the light eld. The animations
can be found at the following webpage:

http://graphics.stanford.e du/papers/b chen _thesis .

Figure 3.1 at the beginning of this chapter illustrates a twisting e ect on the
light eld. Figure 3.16 shaws the assaiated deformation box for the twisted soldier.
The twisting of the deformation box is impossiblefor a projective transform. Figure
3.17illustrates a bilinear ray-transform that simulates an a ne ray warp. The user
suppliesa deformation by moving vertices of the box (shown in gray) to a deformed
position (shown in red).

In theseresultssofar, the deformationis globalandlackslocal cortrol. In cortrast,
an animator typically applies multiple deformationsto a single object. In the next
section, we introduce a technique for applying multiple, independen ray transforms

http://graphics.stanford.edu/papers/bchen_thesis

38 CHAPTER 3. LIGHT FIELD DEFORMATION

Figure 3.16: Deformation box usedto twist the toy Terra Cotta Watrrior.

to asinglelight eld, to further increasethe expressie power of animating light elds.

3.6 Specifying Multiple Ray Transformations

The deformationsshown in the previoussectionillustrate global e ects like twisting.
Howeer, sud e ects are broad; they apply over the ertire light eld. In cortrast,
with traditional meshmodelsthe animator may have local cortrol over parts of the
mesh, enabling subtle deformations and e ects. Local cortrol over a light eld is
accomplishedby segmeting the light eld into layers and by supplying a di erent
ray transformation to ead layer.

A layer is simply a light eld, whoseinput rays are a subsetof the original input
rays. Recallthat light elds are approximated by a set of images.In this represeta-
tion, alayer is simply a subsetof pixels (over all images)correspndingto a particular
region of the object. For example,considerFigure 3.18 which shows an image from

3.7. RENDERING MULTIPLE DEFORMED LAYERS 39

Figure 3.17: lllustration of free-form deformation on a light eld. The left imageis
from a light eld of a statue bust. The deformation box has beenoverlaid in red.
Moving verticesof the box inducesa ray-transformation on the light eld. The visual
e ect is a deformation on the object represeted by the light eld, asshown in the
image on the right. The red lines shav the deformedbox, the gray lines show the
original box. The usersuppliesthe deformation by dragging verticeswith the mouse
in a graphical userinterface.

alight eld captured of a toy teddy bear. The \head" layer of the light eld are all
pixels (in all images)that \see" the teddy bear's head. Therefore,in segmeting the
teddy bear light eld, we split the light eld into multiple light elds, which we call
layers. To computetheselayers, we useprojector illumination. Appendix B descrikes
this technique in moredetail. The important thing is that the output is a set of coax-
ial layers (e.g. light elds). The animator then suppliesdeformationsto eat coaxial
layer. Finally, the deformedlayers are renderedtogether with correct visibility. This
rendering algorithm is descrited next.

3.7 Rendering Multiple Deformed Layers

The goal of the rendering algorithm is to produce an image from a given viewpoint,
while maintaining correct visibility betweendeformedlayers of the light eld. Unlike

40 CHAPTER 3. LIGHT FIELD DEFORMATION

Figure 3.18: lllustrating a \layer" of a light eld. An imagefrom a light eld of a
teddy bearis shovn. The headlayer of this light eld correspndsto ewery pixel in
all imagesthat seethe teddy bear's head.

the global deformation case,deforming a layer can causea visibility change. In other
words, deforming a layer may reveal or occlude layers behind it.

In order to render with correct visibility, the algorithm makestwo assumptions
about the deformedlayers: 1) the cortrol points de ning the deformation box com-
pletely enclosethe regionrepreseted by that layer and 2) the alpha maskscomputed
from projector-basedsegmetation accurately descrike that object's opacity. We use
the rst assumptionto sort the layersin a front-to-back depth order with respect to
eat view ray. The secondassumptionallows us to usealphato test whether a view
ray is incident upon an object represeted by a particular layer.

To render an image, a view ray is shot out from ead pixel. The ideais that this

ray travelsthrough di erent deformedlayers. As it travelsthrough ead layer the ray
is transformed; we then test if it is incidert to an object represeted by that layer. If

3.8. RESULTS WITH MULTIPLE DEFORMATIONS 41

it is not, then the ray cortinuesto the next layer, and the processis repeated. If the
ray is incidert to an object within the layer, then the color sampledfrom this layer
is returned asthe color along the original view ray.

More concretely for ead output pixel of the image form a view ray. Sort the
layersin a front-to-back order with respect to the view-ray. The layer locations are
de ned by their deformation box. The boxes are assumedto be non-intersecting.
Traversingead layer, warp the view-ray usingthe assaiated ray-transformation (see
Section 3.4 for how this is implemerted). Usethe transformed ray to samplefrom
this layer. If the alpha along this ray is non-zero,this meansthe ray has\hit" an
object in this layer and we return its color®. If the alpha is zero, then we proceed
to the next layer along the view-ray. Figure 3.19 gives a pictorial example of this
rendering algorithm for a single view-ray.

Doesthis rendering algorithm solve our problem with changesin visibility? For
occlusions,yes. For disocclusions,only partially. For occlusions,if a layer is deformed
to occlude another layer, when traversingthe ray in a front-to-back order, the front
layer will be renderedcorrectly. Disocclusionsare more challenging. A layer may
deformin away that revealsparts of badkground layersthat werenot captured during
acquisition. This problem can be solved by usinghole- lling techniques,although our
work has not implemented sud techniques. Heuristics basedon texture structure
[:] or a priori knowledge]] could be usedto reconstructthe holes
in theselayers. Thesealgorithms could be applied on the layersof the segmeted light
eld beforedeformation. Now we shaw results using the ertire deformation process.

3.8 Results with Multiple Deformations

In Figure 3.20a sh light eld is animated by cortrolling three deformation boxes.
The middle box is beingwarped, while the front box (the head)and the bad box (the
tail) are rotated accordingto the bending of the middle box. Notice that visibility is
renderedcorrectly: the head pixels are drawn in front of the body and tail pixels.

9Recall that the alpha valuesin ead layer are determined using the projector-basesegmetation
technique described in Appendix B.

42 CHAPTER 3. LIGHT FIELD DEFORMATION

Figure 3.19: Rendering a view ray. The left pair of imagesshav the deformation
boxesin the deformedand undeformedspace. A view ray, shovn in bladk, crosses
the layers. As the ray traversesthe front layer (containing the pink object), it is
deformedand tested for visibility (showvn in the middle). In this case,the alphais O
and we proceedto the next layer. In the next layer (shonn in greenon the right),
the view ray is deformedand tested for visibility. In this casethe alpha is non-zero
and its assaiated color is returned for this view-ray.

Figure 3.21 shows a few framesfrom an animation of a furry teddy bear. Using
projectors, the bear is split into seweral deformation boxesto allow for independert
arm, leg and head motion.

3.9 Summary

The rst cortribution of this thesisis light eld deformation, a novel way to interact
with light elds. The technique is an intuitiv e tool that lets animators deform light
elds. We descrilke two key challengesin accomplishingdeformation: maintaining
consisten illumination and specifyingaray transformation. We shov how to maintain
consisten illumination through capturing a coaxial light eld. We then introducea
novel ray transformation and analyzeits properties, shoving that it canperforma ne
and other non-projective transforms. Our implemerntation exploits texture-mapping
on graphicshardware to facilitate interactive deformation.

Then, we shov how to extend global deformation to local light eld deformation
by segmeting the light eld into layers. Segmetation is accomplishedusing active

3.9. SUMMARY 43

Figure 3.20: Deforming a sh with three independert deformations. The top-left
image shaws the original sh with deformation boxes shown in the top-right image.
The middle-left image shavs the deformed sh with correspnding cortrol boxesin
the middle-right image. The bottom-left image shows a di erent view. Notice that
visibility changesare handled correctly by our algorithm, the sh head pixels are
renderedin front of the tail pixels. This light eld wascreatedwith 3D Studio Max.

illumination, asdescrited in Appendix B. After deformingead layer, our novel ren-
dering algorithm rendersan imagewhile preservingcorrect visibility betweenlayers.

The technique hasits limitations. Coaxial illumination is a limiting type of illumi-
nation. For example,shadavs are not possible.Onetopic of future work is investigat-
ing the relationship betweenthe types of ray-transformations and the illumination
conditions that remain consistem under those transforms. A secondlimitation in-
volves specifying the ray-transformation. The warp is speci ed by moving 8 cortrol
points in 3D. This meansthat there are 24 degreesof freedom. Howe\er, there are
multiple con gurations of cortrol points that yield the sameray transform, sothere
is a redundancyin the speci cation. It would be useful to investigate other, more
e cient ways to specify ray transformations, perhapsin ray-space.

Despite theselimitations, the technique is shavn to be useful for animators and
can be extendedto other deformation techniques (like skeleton-baseddeformation).
In the secondhalf of this thesis, we incorporate deformation as a tool in a host of
tools for generalmanipulation of light elds.

44 CHAPTER 3. LIGHT FIELD DEFORMATION

(a) (b) (©)
Figure 3.21: A deformation on a teddy bear. Image (a) shows a view of the original
capturedlight eld. In this casethe cameraswerearrangedin aring, thus capturing
a circular light eld. Image (b) shavs a deformation in which the head, arms and
legsare all bendedor twisted independerily. Image (c) shavs the deformation boxes
usedto specify the motion of the teddy bear.

Chapter 4

Ligh tShop: A System for
Manipulating Light Fields

4.1 Intro duction

The rst half of this dissertation introduced light eld deformation. This tool, like
those found in the literature, operatesin a stand-aloneapplication. In comparison,
image manipulation applications, like Adobe Photoshop, allow a user to use and
conbine multiple tools. The ability to combine tools enablescreative manipulation
of images.

The secondcortribution of this dissertationis a systemthat providesa userwith
a medanism to use and conbine multiple tools for manipulating light elds. We
call this systemLightShop A systemthat operateson multiple light elds facestwo
key challenges. First, operations can manipulate light elds in a variety of ways, so
specifying an operation must be designedcarefully. For example,someoperationsare
sum over multiple pixels in ead image (like focusing), or shift pixels acrossimages
(like deformation). Second,light elds are captured and parameterizeddi erently,
so one must designthe systemso that operations are independen of the light eld
represemation.

45

46CHAPTER 4. LIGHTSHOP: A SYSTEM FOR MANIPULA TING LIGHT FIELDS

Keepingthesechallengesn mind, we designed.ightShop with the following goals:
1. Light eld operations must be speci ed independen of the represetation.

2. The systemmust be extendableto incorporate new operations.

3. The systemmust be amenableto graphicshardware.

The rst designgoal addresseshe problem of multiple light eld parameterizations.
The secondgoal addresseshe problem of specifying operationsand combining them.
The third goal enablesinteractive manipulation and editing. This also enableslight
elds to be easilyintegrated into video games.

Giventhesedesigngoals,what are commonoperationsthat shouldbeincorporated
into LightShop? Table 4.1 lists v e common operations on light elds and their
applications. Ray transforms were demonstratedin the rst half of this thesis for
light eld deformation. Compositing light elds is demonstratedin an application,
called\p op-uplight elds," to createghost-freerenderingsfrom light elds. The idea
is to segmen a light eld into multiple two-plane parameterizations(e.g. layers),
whereead ST-planesenesasa local geometricproxy to that part of the scene.The
nal imageis renderedby compositing the samplesfrom ead layer of the light eld.
The third classof operations are the arithmetic operations on colors sampledfrom
light elds. This hasa usein relighting applications where se\eral light elds of an
object are captured under varying illumination. By taking linear conmbinations of
samplesfrom theselight elds, relighting can be simulated. The fourth operation is
focusingwithin alight eld. Instead of creatinga virtual view from a pinhole camera,
onecansimulate a camerawith a nite-depth-of- eld by summingover sampledcolors
in the light eld. Researbershave demonstrateits usein seeingoehind occludersand
noisereduction. The nal operation is perhapsthe most fundamertal: syrthesizing
a novel view. This involves sampling and interpolating from data in a light eld to
createan image from a novel viewpoint.

Givenour designgoalsand a list of commonoperationson light elds, we cannow
introduce the system. To begin, we descrike our conceptualmodel for manipulating
and combining light elds. This conceptualmodel will drive LightShop'sertire design.

4.2. LIGHTSHOP'S CONCEPTUAL MODEL 47

Op eration Application

ray transformation light eld deformation |)]

compositing pop-up light elds []

arithmetic facerelighting []

focusing syrthetic aperture photograpty | : :]
sampling novel view interpolation [:)]

Table4.1: Commonlight eld operationsfound in the literature.

4.2 Ligh tShop's Conceptual Mo del

What doesit meanto manipulate and combine light elds? To answer this question,
we borrow from current modeling padkagesfor mesh-basedyeometry In particular,
we study Pixar's RenderMan|] and OpenGL []. Both software padk-
agesare designedfor modeling and manipulating 3D objects. We characterizetheir
conceptualmodel asonethat modelsa scenecortaining multiple objects, manipulates
these objects, and rendersan output image basedon the modi ed scene. We then
adapt this conceptualmodel for manipulating light elds.

In RenderMan,functions are exported to the userthrough the RenderManInter-
face. Thesefunctions modify internal state that represeis the sceneand rendering
corntexts. Somefunctions enablethe de nition of polygons,surfacesJights and shad-
ing properties: RiPolygon, RiSurface, RiLightSource, Thesefunctionsare
part of the modeling process. Other functions modify previously de ned objects:
RiDeformation, RiSolidBegin, Thesefunctionsare part of the manipulation
process.Finally, after a sceneis modeledand modi ed it is renderedby the system.
In RenderManthis rendering processis hidden from the user.

OpenGL also maintains similar internal state and exports a set of functions to
model and manipulate the scene.Howe\er, instead of hiding the rendering process,
OpenGL exposestwo steps of the rendering pipeline to enable more cortrol. The
vertex shaderenablesa userto manipulate vertex information. The fragmen shader
allows for pixel-processingbefore frame-bu er operations. In other words, the frag-
mert shaderis a medanism for the userto specify how an imageis renderedfrom
the scene.

48CHAPTER 4. LIGHTSHOP: A SYSTEM FOR MANIPULA TING LIGHT FIELDS

Sinceboth RenderManand OpenGL arewell-known modeling padkages,we design
LightShop with a similar 3-part conceptualmodel: model, manipulate, and render.
For modeling a scene LightShop exports functions for inserting two primitiv e typesin
a scene:light elds and viewing cameras.Appendix C lists the assaiated functions.
Once a sceneis composed,to manipulate it a user must specify operations on light
elds. Recalling our designgoals, these operation must be speci ed in a way that
is independert of the light eld represetation, easily extendable,and amenableto
graphicshardware.

The key insight to our designis that an operation on a light eld can be realized
by manipulating the viewing rays from the renderingcamera. This is best explained
by an example. Recall from Chapter 3 on deformation that rendering an image of
a deformedlight eld can be performedin two ways: 1) transform all rays of the
light eld and interpolate a novel view or 2) apply the inverse ray-transform on
all view-rays, and samplefrom the original light eld. In the secondapproad, by
manipulating the view-rays we canrenderdeformedlight elds. Figure 4.1illustrates
warping view-rays to simulate deformation. It turns out that all operationslisted in
Table 4.1 can be realizedby manipulating view-rays in a straight-forward manner.

<
<
<
<

camera light field

warp

Y

W/

Figure 4.1: Warping view rays to simulate deformation. The rays emanating from
the cameraare transformed before sampling from the light eld. This can simulate
the e ect of deformingthe original light eld.

This approat has three advantages over directly manipulating the light eld.
First, specifying an operation is in terms of the view-rays, which is independen of
the parameterizationsof the light eld and optimized for changing only those rays

4.3. EXAMPLE: FOCUSING WITHIN A LIGHT FIELD 49

neededor renderinga 2D image. Secondtheseview-ray operationscanbe conbined,
one after another. For example,one can rst warp a view-ray, then samplefrom a
light eld, then composite it with the color from another light eld. In fact, these
operations are represeted as functions in a language. We call a set of operations
a ray-shadingprogram. This is similar to Ken Perlin's Pixel Stream Editor [].
The third advantage is that this languagecan be directly mapped to the fragmert
shader,so manipulating view-rays is amenableto graphicshardware. In fact, we the
implemert the ray-shading program as a fragmert-shading program. The graphics
rendering pipeline executesthis program for ewery pixel, renderingan output image.

In summary LightShop usesa conceptualmodel of 1) modeling a scene,2) ma-
nipulating that sceneand 3) renderingit to an output image. Modeling is performed
by calling on LightShop's modeling APIl. The sceneis both manipulated and ren-
deredthrough the ray-shading program. The ray-shading program is a user-written
program that speci es exactly how a view-ray shouldinteract with light elds in the
scene.The programis executedper output pixel and returns an RGBA color for that
pixel. To demonstratehow a light eld is manipulated, we presen an examplewhere
renderan imagewith shallov depth-of- eld from a light eld.

4.3 Example: Focusing within a Light Field

We now shav an examplethat illustrates how a light eld may be manipulated. Our
exampleis creating an image focusedat particular depth in the light eld. Objects
(represered by the light eld) at the focuseddepth will be sharp, objects o this
depth will be blurred. Figure 4.2 briey summarizeshow focusingoccurs. Focusing
is discussedin more detail in the graphics| , : ,] and
vision [] literature.

Assumeduring the modeling phasea sceneis created cortaining a single light
eld and a singlecamerd. To manipulate the light eld, a userwrites a ray-shading
program that describes how view-rays are manipulated as they travel through the
light eld. Figure 4.3 illustrates the ray-shadingprogram for creating an imagewith

1Recall that a sceneis modeled by LightShop's modeling API, described in Appendix C.

S0CHAPTER 4. LIGHTSHOP: A SYSTEM FOR MANIPULA TING LIGHT FIELDS

image plane lens focal plane

Figure 4.2: Focusingthrough a single lens. The radiance cortributing to a single
image pixel is a summation of light emitted from a point on the focal plane through
the lens aperture. More speci cally, the radiant exitance/emittance from a point on
the focal planeis integrated asthe irradianceon aimagepixel. The radiant exitanceof
points o the focal planeis spreadacrossmultiple pixels (e.qg. this point is \blurred").

a shallov depth-of- eld. The ray-shading program takes as input a 2D xy pixel
location. It returns an RGBA color for this pixel location. The key componert is
the use of two for-loops and the summation operator to simulate light aggregation
at the pixel location. To samplefrom the light eld, the function, LiSampleLF is
called. It takesa light eld index and a ray, and returns a color sampledalong that
ray direction. Appendix C contains more details about this function, LiSampleLF

The other operations listed in Table 4.1 are implemerted as easily as focusing.
They are discussedin Appendix C. Now that we have discussedthe conceptual
model behind LightShop and shavn how to implemert operations, we presen the
LightShop designin the following section.

4.4 Ligh tShop's Design

Figure 4.4illustrates the overall designof LightShop. The systemis designedo follow
the model, manipulate, render conceptualmodel. It takestwo inputs. The rst is a
seriesof function calls to model a scene.The secondinput is a ray-shading program
that descriteshow a pixel should be colored, given the scene(e.g. the manipulating

4.4. LIGHTSHOP'S DESIGN 51

LtColor main(LtVec2 pixelLocation) {
LtColor sum= LtVec4(0,0,0,0);
for(i=0; i < 1.0; i +=0.1) {
for =0;] <1.0; j +=0.1) {
LtRay ray = LiGetRay(0, pixelLocation, LtVec2(i,)));
LtColor col = LiSampleLF(0,ray);
sum += col;

}
}

return sum;

Figure 4.3: Example ray-shading program for focusing. The core functionality that
enablesfocusing is that two for-loops and a summation are usedto simulate the
aggregationat a pixel location, over the lensaperture. The two LightShopray-shading
functions, LiGetRay and LiSampleLF are discussedn more detail in Appendix C.

and renderingcomponert). The output is a 2D image.

Following the arrows in Figure 4.4, the input modeling calls are evaluated by the
modeler, which createsan internal represetation of the scene. This scenerepre-
sentation is passedto the renderer, which takesthe input ray-shading program and
executesit over ewvery output pixel location to produce a 2D image. To manipulate
and combine light elds, a usermodi es the ray-shadingprogram. As the ray-shading
programexecutesjt accessethe scenego retrieve data from the light elds. Recalling
our three designgoals, rst note that the ray-shadingprogram de nes operations on
rays, which is independert of the light eld represetation. Secondsincethe program
utilizes a ray-shadinglanguage,new operations can be easily de ned simply by writ-
ing new expressions.Third, the job of the renderer,which executesthe ray-shading
program at ead ouput pixel location, can be directly mapped to a fragmert shader.
This makesLightShop amenableto graphicshardware.

Note that this designis independert of any implemenation. LightShop can be
thought of as a speci cation for manipulating and rendering light elds. In the fol-
lowing sectionwe discussone particular implemenation of LightShop using OpenGL.
Other implemertations (using DirectX, for example)are also possible.

52CHAPTER 4. LIGHTSHOP: A SYSTEM FOR MANIPULA TING LIGHT FIELDS

LightShop

Ltint camera0 = LiGamera();|

Ltint lightfield0 = _)

liLightField(flower°);

modeler

- Tu>»

function calls i

E=

Y

scene

'

renderer

LtColor main(ltVec2 pos) {
1tVec? lens =Lt\ec2(00); LtColor main(1tVec2 pos) {
tRay ray = ItVec2 lens =Ltwec2(0,0);
LiGetRay(0, pos, kns); ———p> 1tRay ray =
ItColor sanp = LiGetRay(0, pos, kens);
LisampleLF(0ray); tColor samp =
} LisampleL F(0say);
}

output image

Y

ray-shading program A

Figure 4.4: Overview of LightShop. The user passegwo inputs to the system. The
rst is a seriesof function calls that de ne a scene. The secondis a ray-shading
program denoting how a pixel should be colored, given the scene.The function calls
are passedto the modeler which createsan internal represetation of the scene.The
sceneis outputted to LightShop's renderer,which takesthe user-de nedray-shading
program and executesit per pixel of the output image. During computation, the
ray-shading program accesseshe scene. When the renderer has executedfor every
output pixel location, the output imageis constructed and outputted.

4.5 The Ligh tShop Implemen tation

Recall that LightShop is composedof three parts: the modeling interface, the ray-
shadinglanguage,and the renderer. The modeling interfaceis implemerted in C++;

the ray-shadinglanguageand the rendererleveragethe OpenGL programmableren-
dering pipeline. The goal of the systemis to manipulate and renderlight elds. First,

4.5. THE LIGHTSHOP IMPLEMENT ATION 53

we descrike our light eld represetation.

45.1 Light Field Representation

All light elds arerepreseted by a set of images,regardlessof parameterizationand
acquisition method. Theseimageshave a RGBA color per pixel?. The imagesare
concatenatedtogether into a single le 3. The le is then compressedising S3 tex-
ture compressiorn], yielding a 4:1 compressiorratio. This compressediata le
represets the light eld. The compressionrate is modest, and few artifacts are
visible. Howewer, Figure 4.5illustrates a casewherethe compressiorartifacts are evi-

dert. Other compressiortechniquesexist for light elds: vector-quarization [1,
predictive imagecoding [], wavelet-basedcompressior|], aswell as model-
basedcompression]. Howewer, S3texture compressions supported natively

on the graphicshardware; decompressions quick and invisible to LightShop.

All acquireddata is corverted to this internal represemation. During the modeling
phase,whenalight eld isinsertedinto the scenethe appropriate le isloadedfrom
disk and stored into memory The modeling implemenation is descriked next.

45.2 LightShop's Mo deling Implemen tation

LightShop's modeling interface is implemerted in C++ and utilizes the OpenGL
graphicsstate to passinformation to the ray-shadingcomponert. The programmer
usesthe interfaceto load light elds and de ne cameras.When a procedureis called
to insert a light eld, LightShop loads the compressedle from disk to graphics
memoryin the form of a 3D texture. Similarly, whena usercalls a function to insert
a camera, data structures are allocated in graphics memory as uniform variables.
Uniform variables are variablesthat are accessibleby the fragmert shaderand are
xed when rendering a primitiv e in OpenGL?. In this way, when the ray-shading

2Alpha is obtained using active illumination (Appendix B) or focusing (App endix D).

3For the two-plane parameterization, the imagesare rst recti ed to acommonplane beforebeing
concatenatedtogether. The recti cation is performed by taking a light eld of a planar calibration
target []-

4For more information on programmable graphics hardware, the reader is referred to [].

S54CHAPTER 4. LIGHTSHOP: A SYSTEM FOR MANIPULA TING LIGHT FIELDS

Figure 4.5: ComparingS3TCto uncompressedmagery The top left isanimagefrom
anuncompressedersionof the Burgherslight eld (seeAppendix A). The top right is
from alight eld usingS3TC compression.The bottom row of zoomed-inimagesshov
a comparisonbetweenthe two images. Notice the triangular compressionartifacts
along the shoulder. The specular highlights are also corrupted by compressiomoise.

program executes(in the fragmert shader), it has accesdo light eld and camera
data.

4.6. RESULTS USING LIGHTSHOP 55

4.5.3 LightShop's Ray-shading Implemen tation

LightShop's ray-shading languageis implemerted using the OpenGL Shading Lan-
guage(GLSL) [1. In other words, the ray-shadingprogramis run through a pre-
processorwhich performs variable name mangling, macro substitution and for-loop
expansionsto facilitate auxiliary state that LightShop needsin order to maintain a
consisten graphicservironment. The preprocesseday-shadingprogramis now valid
GLSL code and is compiled by the graphicsdriver and linked into the renderingpro-
gram for execution. The details are of the implementation are discussedn Appendix
C.

Using GLSL is advantageousbecauseit is designedfor real-time rendering. This
enablesLightShop to be usedas an interactive editing tool or asa library for games.
Sampling from light elds is fast becauseGLSL takesadvantage of texture memory
coherence.Additionally, bilinear interpolation from onesliceis computationally free
so quadrilinear interpolation takes 4 computations as opposedto 16. A secondad-
vantage is that renderingan output imageis taken care of by OpenGL. That is, the
cornverted ray-shading program (e.g. fragmert shader)is automatically executedfor
ewvery output pixel and storedin the frame bu er. In fact, the LightShop's renderer
implemertation is exactly OpenGL's rendering pipeline.

Given this implemertation, we now show results of using LightShop in digital
photography and interactive games.

4.6 Results Using Ligh tShop

The following results show applications of LightShop to digital photography and in-
teractive games.All light elds and their properties are erumeratedin Appendix A.
Animation results are found on the website at

http://graphics.stanford.e du/papers/b chen _thesis .

S56CHAPTER 4. LIGHTSHOP: A SYSTEM FOR MANIPULA TING LIGHT FIELDS

4.6.1 Digital Photograph y

In this rst demonstration, LightShopis usedin two digital photography applications:
1) composingmultiple light elds, similar to Photoshopfor images,and 2) performing
novel post-focusingfor sports photography.

Comp osing Scenes

LightShop can be used as a compositing tool for light elds, the 4D analogy to
image compositing with Adobe Photoshop. As a demonstration, LightShop is used
to composite light elds of seweral actorsinto alight eld of aweddingcouple. Figure
4.6 shovs oneimagefrom this weddinglight eld. This light eld wascaptured using
a hand-heldlight eld camera|].

Figure 4.6: An imagefrom alight eld of a wedding couple.

Figure 4.7 shavs imagesfrom three light elds of three actors. We will composite
theseactorsinto the wedding light eld. The actors are captured using the camera
array. Each actor is standing in front of a greenscreento facilitate matte extraction
[]. Additionally, we acquirea light eld of eat actor under two lighting condi-
tions: left light on and right light on. In order to acquirethesemultiple light elds,
the actor must stand still for about 10 seconds.The purposeof acquiring light elds
under di erent illumination is to enable coarserelighting. LightShop can simulate

4.6. RESULTS USING LIGHTSHOP 57

coarserelighting by taking linear conbinations of the di erently lit light elds. A
sampleray-shading program that relights using two light elds is shovn in Figure
4.8. Figure 4.9 shaws the result of virtually relighting an actor by varying the linear
combination weights. Theselight elds are listed as\mug shots" in Table A.1.

Figure 4.7: Imagesfrom three light elds of three individuals in front of a green
screen,with two lights on.

LtColor main(LtVec2 loc) {
LtRay ray = LiGetRay(0, loc, LtVec2(0,0))
LtColor left = LiSampleLF(0, ray)
LtColor right = LiSampleLF(1, ray)
LtColor out = 0.25 * left + 0.75 * right;
outa = 1;
return out;

Figure 4.8: Sampleray-shadingcode for relighting. Two light elds, \left" and\righ t"
are sampled. The light elds correspnd to left and right illumination, respectively.

In Figure 4.10n, the actors are relit to appraximate the surrounding illumination
and composited into the wedding scene. In Figure 4.1, a deformation is inserted
after relighting and before compositing into the scene. The rightmost actor's pose
has changed. Figure 4.11 shows the assaiated ray-shading program. Imagessudt
as Figure 4.1 are nearly impossibleto create using corvertional 2D editing tools.
The pixelsthat form this imageare selectedfrom morethan 436images.In addition,
sincewe are manipulating light elds multiple viewscan be rendered,ead exhibiting
the proper parallax. The imagesare renderedat 40 FPS.

58CHAPTER 4. LIGHTSHOP: A SYSTEM FOR MANIPULA TING LIGHT FIELDS

Figure 4.9: Virtually relighting an individual by taking linear conbinations of colors
of rays sampledfrom two light elds. The left- and right-most imagesare from the
original light elds, lit from the left and right, respectively. The secondimage is
sampledfrom a light eld that takes0.66 of the left light eld and 0.33 of the right
one. The third image usesthe ratios 0.33and 0.66 for the left and right light elds,
respectively. Becausethe illumination is at only two positions, simulating a smaothly
moving light sourceby blending will causethe shadavs to incorrectly hop around.

() (b)

Figure 4.10: (a) An imagefrom the composite light eld. To approximate the illumi-
nation conditions in the wedding light eld, we take linear combinations of the light
elds of a givenindividual under di erent lighting conditions. The illumination does
not match well becausethe lighting conditions were too sparse. (b) An image from
the composite light eld wherewe have turned a coupleindividuals' heads.

Manipulating Focus

The next demonstration usesLightShop as a post-focusing tool. Howeer, unlike
convertional focusing(seeSection4.3), which hasa single plane of focus, LightShop

4.6. RESULTS USING LIGHTSHOP 59

LtColor main(LtVec2 loc) {
LtRay ray = LiGetRay(0, loc, LtVec2(0,0))
/[deform light fields

/I relight light fields

/[composite light fields together
LtColor out = LiOver(woman, wedding);
out = LiOver(right_man, out);

out = LiOver(left_man, out);

return out;

Figure 4.11: Ray-shading code for compositing the wedding scene.

allows a userto createan imagewith multiple planesof focus. This feature is useful
in sports photography, whereareasof interest may occur at multiple depths. A sports
photographerwould then want to focus only on these depths. For example, Figure
4.12 shownvs oneimagefrom a light eld captured of seweral Stanford swimmers. We
will shav how to useLightShop to createan imagewheredi erent swimmersare in
focus.

Figure 4.12: Oneimagefrom the swimmerslight eld. Notice that are multiple planes
of interest, correspnding to ead swimmer.

60CHAPTER 4. LIGHTSHOP: A SYSTEM FOR MANIPULA TING LIGHT FIELDS

The keyideais to combine the focusingand compositing operator using LightShop.
We focus on di erent depths of the light eld and composite these focusedimages
together. In orderto independerily blur di erent depthsof the light eld, we segmen
it into layers. Recall from Section 3.6 that a layer is a subsetof the original light
eld. In this case,instead of using projectors for light eld segmemation, we use
focus. Appendix D descrilesthis focus-basedsegmetation technique in more detail.
Treatedasa bladk box, the algorithm takesalight eld asinput, and outputs separate
layers (e.g. light elds).

Oncethe light eld hasbeensegmeted into layers, a separate\fo cusedimage”
can be computed from ead layer. Ead layer's sharpnessis specied by its own
cameraand focal depth. In other words, if the light eld is segmeted into 3 layers,
the user de nes 3 camerasin the scene,one for eat layer. The focal properties of
eath cameradetermine how light in the layer is integrated for a single pixel. Figure
4.13illustrates how the integration occursfor a single pixel, through multiple layers.

Oneimportant aspect of this focusingprocesss the orderingin which compositing
rays and focusing (e.g. integration) occurs. If one were to integrate rays from ead
layer of the light eld and composite afterwards, this would produce an incorrect
result. The physically correct result is to rst composite individual rays (i.e. the
black ray segmets in Figure 4.13, then integrate the composited rays together. In
addition, sinceead layeris alight eld (and not animage),the refraction of the rays
enablesdefocusingto seethrough occludersand around corners. This is impossibleto
perform correctly if the layersare only 2D images.Figure 4.14shaws the ray-shading
program that accomplisheghis compositing and focusingresult.

In summary in orderto createa multi-fo cal planeimageof the Stanford swimmers,
rst segmen the light eld into layers, onefor eady swimmer. Appendix D descrikes
how the layers can be extracted from the swimmerslight eld. Second,insert eat
layer into the scene. For ead layer, insert a lens camera. The camerashave the
sameattributes (i.e. image plane, lens aperture, lens position, etc.) exceptfor the
focal distance. The focal distance cortrols the amourt of blurring for that layer.

SIf the four camerashad di erent posesand had pinhole apertures, one could also use LightShop
to construct multi-p erspective imageslike cross-slitimages, panoramas, or general linear cameras

[I

4.6. RESULTS USING LIGHTSHOP 61

optics optics optics

s

image light field light field light field
plane

RN

AA@MA

|
AFAAA

Figure 4.13: lllustration of how light is integrated for a single image pixel, over
multiple layers. For a single pixel, light is integrated over di erent regionsin eadt
layer. The regionsare shown as light-blue frusta. Specifying di erent camerasacts
asoptics to manipulate thesefrusta. Notice that thesefrusta neednot be coincidert
at the optics interface, as the interface betweenthe red and greenlight eld shaws.
If we assumethat the objects represeted by theselayerslie on the ST-planein the
two-planeparameterization,then the objectsin the red and blue layer will bein focus,
while the object within greenlight eld will be blurred. This is becausethe radiant
emittance of one point in the red and blue light elds is integrated asthe irradiance
at a single pixel (e.g. focused). The bladck line shavs oneray asit travels through
the deformedfrusta.

Then executethe ray-shadingprogramillustrated in Figure 4.14 This code correctly
refracts, compositesand integratesthe rays to form the multi-fo cal plane image.

Figure 4.15% shaws a cornvertional image with a single plane of focus. In Figure
4.1% the photographer has focusedon the front and badk swimmers, but left the
middle oneblurred. Alternativ ely, the photographermay want to focuson the middle,
and badk swimmers, but create a sharp focus transition to the front swimmer, as
showvn in Figure 4.1%.

4.6.2 Integrating Light Fields into Games

In the nal application, LightShopis demonstratedasa tool for integrating light elds
into interactive games.We successfullyintegrate a light eld of a toy space-shignto
a modern OpenGL space- ight simulator. In addition, we shav how light elds can

62CHAPTER 4. LIGHTSHOP: A SYSTEM FOR MANIPULA TING LIGHT FIELDS

LtColor main(LtVec2 currentPixel) {
LtColor finalColor = LtVec4(0,0,0,0);
LtColor sum= LtVec4(0,0,0,0);

/I iterate over the lens aperture
for(float x=0.0;x<1.0;x+=1.0/16) {
for(float y=0.0;y<1.0;y+=1.0/16) {
LtColor composite_sample = LtVec4(0,0,0,0);

I/l iterate over the 3 layers in the scene
for(float 1 =0; i <3; i++) {
LiVec2 lensSample = LtVec2(x,y);

/[form a ray from camerai's optical properties
LtRay ray = LiGetRay(i, currentPixel, lensSample);

/I sample from light field i
LtVecd4 sample = LiSampleLF(i, ray);

/I composite the ray colors
composite_sample = LiOver(sample, composite_sample);

}

/I sumover the aperture
sum += composite_sample;
}
}

return finalColor;

Figure 4.14: Ray-shadingcode for multi-plane focusing. The rst 2 for-loopsiterate
over the lensaperture. The inner for-loop iterates over the light eld eld layers. For
ead layer, the ray is transformed accordingto the optics of the ass@iated camera.
Then the appropriate light eld is sampled,using this ray. The returned color value
is composited with colorsalong previousray segmets. The nal composited color is
then summedwith other rays in the aperture to producethe focusinge ect.

4.6. RESULTS USING LIGHTSHOP 63

(@) (b) (c)

Figure 4.15: (a) Convertional focusingin alight eld. The front swimmerlies on the
focal plane. (b) A multi-fo cal plane image where the front and badk swimmersare
brought into focusfor emphasis.The middle swimmerand the crowd are defocused.
(c) The front swimmeris defacused,but a large depth of eld exists over the depths
of the middle and badk swimmer. There is a sharp transition in focus betweenthe
front and mid swimmers,but the photograph still hasa pleasingresult.

be hadked, using LightShop, for producing refraction and shadaving e ects. These
e ects are descriked in Appendix E.

Light Fields in Vega Strik e

BecauseLightShop is implemerted in OpenGL and GLSL, this makes it easyto
integrateit into interactive games.Gameprogrammersthat utilize the programmable
vertex and fragmert shaderscan useLightShop's functions to accesdight elds like
any other texture. The vertex shader needsonly to de ne a quad spanning the
projected area of the light eld and the fragmert shaderexecutesthe LightShop's
ray-shading programto color the quad. From the gameprogrammer'spoint of view,
LightShop provides an interfacefor a \3D billboard" [,]1°8.

To demonstrate LightShop's usein interactive games,it is integrated into Vega
Strike, an open-sourceOpenGL-basedspace-shipgame []. Vega Strike is a
popular space ight simulator with 1.3million downloadssinceits inceptionin 2001. It
is a medium-sizedopen sourceproject with appraximately 100,000ines of code. The

5The billb oard appears 3D since a 3D object appearsto be inside it, but in fact the light eld
represenation is in general4D.

64CHAPTER 4. LIGHTSHOP: A SYSTEM FOR MANIPULA TING LIGHT FIELDS

gameis well supported by the comnunity, with multiple user-corributed modules
including Privateer, and Wing Commander. Figures 4.16 shavs somescreenshotof
the game.

The light eld that we wish to insert into VegaStrike represeis a toy ship. The
acquiredlight eld is uniformly sampled]] around the toy ship. Figure 4.17
shows a view from this light eld.

Figure 4.16: Imagesfrom VegaStrike.

In VegaStrike, eaty model hasmultiple meshegle ning its geometry Each meshin
turn hasoneassaiated 2D texture map. In the gameloop, whena meshis sdheduled
to be drawn at a particular location, the appropriate MODELWVIEWrix is loaded
into OpenGL and the assaiated texture is made active. The meshverticesare then
passedio OpenGL, alongwith the assaiated texture coordinates.

To integrate LightShop into VegaStrike, the game programmer de nes a Tex-
ture4D sub-clasghat referenceghe light eld data. The meshfor alight eld object
is simply a quadrilateral spanning][-1, 1] x [-1, 1] x [-1, -1]in X, y, and z in normalized
devicecoordinates. The vertex shadertakesthis quadrilateral and mapsit to the cor-
rect screencoordinates, depending on the location of the view cameraand the light
eld. The game programmer writes a simple ray-shading program (e.g. fragmen
program) that samplesfrom the light eld. This fragmen shaderis activated when
the light eld isreadyto bedrawn. Figure 4.18 shownsthe light elds of the toy ships
integrated into the game.

4.7. SUMMARY 65

Figure 4.17: Imagefrom a light eld of a toy spaceship.

The signi cance of this application is that through the use of LightShop, light
elds can be integrated into the standard graphics pipeline. This meansthat one
cantake real-world objects and placethem into gamesor other graphicsapplications.
Another possibility is to uselight elds from pre-renderedimagesof complexscenes.
This e ectiv ely cadesthe imagesof a traditional 3D object, and LightShop is usedto
interactively renderit. This level of facility in integrating light elds into interactive
applicationsis unprecedeted. Hopefully it will encouragdhe useof sud image-based
modelsin interactive games.

4.7 Summary

In summary the secondcortribution of this thesisis LightShop, a systemfor gen-
eral manipulation and rendering of light elds. It borrows from traditional modeling
padkagesby using the model, manipulate, render conceptualmodel. The modeling
componert is represeted by an APIl. Manipulating and renderinga light eld is rep-
resertied by manipulating view-rays as they emit from the virtual viewpoint. These

66CHAPTER 4. LIGHTSHOP: A SYSTEM FOR MANIPULA TING LIGHT FIELDS

Figure 4.18: In-gamescreencapturesof the light elds of the toy shipsin VegaStrike.
The gameruns in real-time (30+ fps). In the top-left, the protagonist approahes
an uniderti ed space-craft. Notice that the light eld is integrated seamlesslyinto
the surrounded3D graphics. The top-right shavs a closerview of the ship. Detailed
geometrycanbe seen.Bottom-left shovsan out-of-cockpit view wherethe protagonist
has attacked the ship. The ship's shieldslight up around the light eld. In the
bottom-right the ship light eld makesa passby the cockpit. A particle systemfor
the thrusters hasbeenrenderedwith the light eld.

manipulations are encapsulatedin a ray-shadinglanguagethat allows for novel de -
nitions of operations and conbining existing ones.

The system satis es our initial designgoalsfor building a light eld manipula-
tion system. The conceptualmodel of manipulating view-rays instead of light elds
allows the userto abstract away the actual light eld represemation. The use of
a ray-shading languageenablesfor easily extending the systemto new operations
and combinations of operations. Finally, by mapping the ray-shadinglanguageto a
fragmert shader,the systemis amenableto graphicshardware.

4.7. SUMMARY 67

We show seweral compelling examplesusing LightShop in digital photography and
interactive games.Thesedemonstrationsillustrate that LightShop cannot only oper-
ate on a variety of light elds, but allows a userto creatively conbine and manipulate
them. It is our hope that LightShop can sene asa corecomponert in any light eld
manipulation application. This thesisillustrates one step towards that direction.

68CHAPTER 4. LIGHTSHOP: A SYSTEM FOR MANIPULA TING LIGHT FIELDS

Chapter 5
Conclusions and Future Work

This thesis preserts two cortributions towards light eld manipulation. The rst is
an interactive technique for deforming a light eld. We discussthe two key chal-

lengesto deformation: specifying a ray-transformation and maintaining consistem

illumination. Our solutions are a modi ed free-form deformation and coaxial light

elds. The secondis a system, LightShop, that enablesfor generalmanipulation of
alight eld. We designthe systemto abstract away the light eld parameterization,
be easilyextendable,and be amenableto graphicshardware. The systemis designed
having three-stages: model, manipulate, and render. We have demonstrated that

deformations and LightShop have applications in photo-realistic animation, digital

photography, and interactive games.

Above are just a few domainsthat could benet from a systemlike LightShop.
Other potential domainsinclude opthalmology, surgical simulation, or rapid proto-
typing of scenes.In opthalmology, oneimportant problem is the syrthesis of scenes,
as seenthrough human optical systems,for the analysis of corneal aberrations or
disease$]. LightShop can useShadk-Hartmann wavefront data to refract view-
rays, and samplefrom light elds of real scenes.The imagesrenderedusing Light-
Shopwould cortain optical aberrations consistem with human eye characteristicsand
alsobe renderedfrom imagery represeting real scenes.BecauselightShop allows a
userto arbitrarily manipulate rays, there is a potertial for designingoptical systems
to correct for sud aberrations. In surgical simulation, LightShop can be usedto

69

70 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

simulate dynamic organ behavior by the useof light eld deformation. The visual
feedba& of a realistic deformingorgan may be usefulfor training purposes.In rapid-
prototyping of scenes,Im directorsor gamedesigneranay want to quickly composea
photo-realistic scenefor pre-visualizationpurposes.Fundamenally, LightShop o ers
a simple medanism for composing realistic scenes.

LightShop could be extendedin a number of ways. First, one can nd more
usesfor LightShop itself. For example,light eld segmemation (either using active
illumination or focus) could be better incorporated into the editing pipeline. Another
novel use of LightShop is in conmbining multi-p erspective imaging (i.e. panoramas)
with focusing. One could produce panoramasthat cortain spatially-varying focus
properties. This might be usefulin blurring unwanted objects in street panoramas.
A third useof LightShop is to modify a 3D modeling tool, like 3D Studio Max, to
output function callsto drive LightShop. In this senseLightShop actsasa light eld
rendererplugin for the modeling tool.

Other improvemeris extend LightShop's architecture. For example,in addition
to RGBA per ray, one could incorporate depth, normal, or time as additional data.
This would allow for more creative operations like painting, or new datasets like
time-varying light elds. Theseextensionsare incremeral stepstoward the ultimate
editing tool: manipulation of re ectance elds. Sincere ectance elds represen the
exitant light eld asfunction of incidernt lighting (it is 8 dimensional), it is a more
comprehensie represetation than alight eld. In time, asdata-acquisitionbecomes
easierand compressiortechniquesimprove, one can imagine extending LightShop to
Re ectShop, a generalediting tool for re ectance elds. Re ectShop would enable
not only changesin the shape of captured objects, but alsochangesn incidert illumi-
nation. A scenecomposited in Re ectShop would encapsulatecorrect global illumi-
nation, i.e. shadavs, inter-re ection, scattering, etc. This hasthe potential to allow
directors to completely syrthesize realistic actors, immersegamersin a completely
real environment, or enabledoctors to train on photo-realistic simulation imagery.
Hopefully, sud editing tools will increasethe useof image-basednodelsin computer
graphics.

App endix A

Table of Light Fields and their

Sizes
LF Resolution Width Height Size Acquisition Fig.
Buddha 128x 128x 32x 32 4RU 4 RU 16 ray-tracer C.7
Burghers 256x 256x 16x 16 37 37 10 LF camera 4.5
sh 320x 240x 180 360 0 13 ray-tracer 3.20
o wer 256x 256x 16x 16 550 80 16 ganry C.7
girae 256x 256x 16 x 16 550 80 16 ganry E.2
glassball (x2) 256x 256x 32x 32 2RU 2 RU 128 ray-tracer E.1l
highlight 256x 256x 32x 32 2RU 2RU 64 ray-tracer C.8
swimmers 292x292x 16x 16 37 37 10 LF camera 4.12
ship 256x 256x 31x 61 360 124 130 sph. gantry 4.17
teddy bear 240x 320x 180 360 0 13 sph. ganry 3.21
toy warrior 480x 640x 360 360 0 52 turntable 3.1
twisted heads 512x 512x 12x5 1770 600 15 cameraarray C.5
mug shots 512x 512x 12x 5 1770 600 15 cameraarray 4.7
wedding 292x 292x 16x 16 37 37 10 LF camera 4.6

Table A.1: Light elds, their sizes(in MB), and acquisition methods. The Width
and Heigh t denotemaximum distancebetweencamerashorizortally andvertically, in
mm. When the light eld usesa sphere-plangparameterization,\sph. gartry,” width

and height are speci ed in terms of degreesor

and

. \RU" standsfor rendering

units, which isin the coordinate systemof the renderer. The \turn table" acquisitionis

acquiredby placingthe toy on a medanical turntable and taking successi® snapshots

while rotating the table.

71

72

APPENDIX A. TABLE OF LIGHT FIELDS AND THEIR SIZES

App endix B

Pro jector-based Light Field
Segmentation

In this appendix, we descrile a technique to segmen a light eld into layers, using
projector illumination. The de nition of a layer is descrited in Section 3.6. To
motivate the useof projectorsto segmenh a light eld into layers, considerthe teddy
bear shovn in Figure 3.18 Suppose,before capturing a coaxial light eld, we paint
the bear. We paint his headred, his body blue, his left arm green,etc. Now, when
capturing alight eld of the painted teddy bear, the color of ead pixel in this dataset
denotesthe layer in which that pixel belongs. For example,all reddish pixels in the
light eld correspnd to rays which are incidernt to the teddy bear's head. This
is one solution for segmeting a light eld into layers: paint the individual regions
then acquiredthis colored light eld. Unfortunately, painting the object destroys the
geometry and the appearanceof the object. In other words, if we rst paint the
object and acquire a coloredlight eld, then we cannot capture the object with its
original appearance.If we rst acquire a coaxial light eld and then a coloredlight
eld, then the geometrywill changebetweenacquisitionsfrom applying the paint.
For this reason,we useprojectorsto e ectively \paint" the object. In other words,
the imagethat is loadedinto the projectors will color di erent regionsof the object.
This solution presenes the object's geometry Afterwards, the projectors can be
turned o, and a coaxial light eld can be captured for light eld deformation. The

73

74 APPENDIX B. PROJECTOR-BASED LIGHT FIELD SEGMENTATION

coaxial light eld is then segmeted into layers (e.g. light elds) by using the color
information from the coloredlight eld. For example,to segmenh the headlayer from
the coaxiallight eld, we examineall red-coloredpixelsin the coloredlight eld and
usetheir locationsto copy from the coaxial light eld to the headlayer.

Figure B.1 illustrates the acquisition setup using the Stanford Spherical Gantry
[]. Two projectorsthrow colorsonto the teddy bear. One projector illuminates
the teddy bear'sfront, and the other his badk. When capturing a light eld with this
projector illumination, which we call a coloredlight eld, the color of eat pixel in
the light eld denotesthe layer.

Figure B.1: The acquisition setup for capturing light elds. The camerais attached
to the end e ector of the Stanford spherical gartry and rotates in a circle around
the object. Two projectors (one shovn above) are placed above and outside of the
gartry. The two projectors display a xed pattern onto the front and badk parts of
the teddy bear. With the xed pattern illuminated, the camerathen proceedsto
capture a coloredlight eld of the object. After acquiring this coloredlight eld, the
projectors are turned o and the secondarylight attached to the camerais turned
on. With this newillumination, a separate,coaxiallight eld is captured. The colors
in the coloredlight eld are usedto segmeh out layersfrom the coaxial light eld.

75

Sowhat imagesare displayed on the projectors while the cameracapturesimages?
In the caseof the teddy bear, the imagesare color masksthat coarselysegmen the
bear into regions. Note the di erence betweena region and a layer. A regionis a
physical region on the teddy bear (i.e. the headregion). The correspnding layer
is a light eld in which all rays are in incidert to that region. Figure B.2 shows
an examplemask for the front of the teddy bear. A similar maskis createdfor the
projector aimed at the bad of the teddy bear. The imagesare created by hand in
an interactive process.A personsits at a computer that hastwo video outputs; the
video outputs are exact clonesof ead other. One output is shovn on a standard
CRT monitor. The other output is displayed through a projector, aimedat the teddy
bear. Usingadrawing programdisplayed on the CRT monitor, the userpaints colored
regionswhich are displayed live onto the teddy bear, through the projector. Drawing
the imagesthat the projector emits takeslessthan 10 minutes becausethe images
needonly to segmeh the bearinto layers, not to preciselyilluminate ne geometry
like its fur. After painting thesecoloredregions(which are projected onto the teddy
bear), a coloredlight eld is captured under this newillumination. The middle image
in Figure B.3 is an image from the coloredlight eld captured with this projector
illumination.

Notice in this imagethat within one color region there are still changesin color
dueto varying albedoor non-uniform illumination brightness. To solwe this problem,
we capture an additional light eld, wherethe projectorsare emitting a o odlit white
pattern. The imagesfrom this o odlit light eld areusedto normalizethe data from
the coloredlight eld, thusreducingnon-uniformity artifacts. Normalization of eah
image of the coloredlight eld is computedby the following equation:

B%= 256 B=W (B.1)

where W is a o odlit image (8 bits per channel), B is a coloredimage and B® is
the normalized color image. Figure B.3 shavs image B for one camera'sview of the
teddy bear light eld. Notice that the union of all coloredregionsin the normalized
imageis alsoa binary mask for an object's opacity. In other words, we may usethe

76 APPENDIX B. PROJECTOR-BASED LIGHT FIELD SEGMENTATION

coloredregionsas an alpha mask for ead image. In fact this maskis directly stored
in the alpha channelfor ead layer.

Figure B.2: A hand-dravn color mask is displayed on the front-facing projector to
physically segmen the teddy bearinto coloredregions. The userdraws a coarsecolor
mask. With this illumination pattern (and a correspnding badk-facing pattern)
turned on, a colored light eld is captured.This light eld is usedto segmeh out
layers from the coaxial light eld.

In summary to segmen the teddy bearlight eld, we useprojectorsto e ectively
paint the bear when we acquire the data. This coloredlight eld hasthe property
that the colors of eat pixel denotethe layer to which that pixel belongs. Then, a
separatecoaxial light eld is acquired. The colorsin the coloredlight eld are used
to segmen the coaxial light eld into layers. Each layer has alpha per pixel, which
descrikes an object's opacity. The output of this algorithm is a set of layers (e.g.
light elds), ead with alpha.

77

Figure B.3: Segmeting ateddy bearlight eld by using projector illumination. The
left imageis the bearunder o odlit illumination. The middle image shows the same
bearwhenprojectedwith color masks. The colorsdesignatelayersfor the head,torso,
arms, legsand joints. Ead color denotesthe layer to which that pixel belongs. On
the right is the sameview after normalization. Notice that the union of the colored
regionsform an alpha mask for this image. We store this information in the alpha
channel. Theseillumination conditions are captured for ead cameraposition in the

light eld.

78 APPENDIX B. PROJECTOR-BASED LIGHT FIELD SEGMENTATION

App endix C

The Ligh tShop API

This appendix descrikesthe LightShop API and implemertation details. The overall
designand motivation for the systemare descrited in Chapter 4.

C.1 Overview of the API

Recallthat LightShop consistsof a modeling interface, a ray-shadinglanguageand a
rendering system. The modeling interface exports a set of functions that are usedto
de ne a scenecontaining light elds. The ray-shadinglanguageis usedto descrike
how that sceneshould be renderedto a 2D image, i.e. how a view-ray is shaded,
given multiple light elds in the scene.LightShop's rendererthen executesthe user-
de ned ray-shadingprogram at ead pixel of the output image. Each executionof the
program shadesa singlepixel until the ertire imageis rendered. Figure 4.4 illustrates
an overview of LightShop.

To usethe interface, a programmer makes a seriesof procedurecalls to setup a
scenewith light elds. Theseinclude positioning light elds and de ning viewing
cameras. To descrile how an image is renderedfrom this scene,the programmer
writes a ray-shading program that describkeshow a view ray from a selectedcamera
is shadedasit interacts with the light elds. Figures C.1 and C.2 shov a program
cortaining procedurecallsto setup a sceneand a ray-shadingprogram that dictates
how an image should be rendered.

79

80 APPENDIX C. THE LIGHTSHOP API

First we descrike LightShop's modeling interface. Then, we descrite the ray-
shadinglanguagethat allows the programmerto specify how a 2D image should be
renderedfrom the light elds in the scene.

C.2 LightShop's Mo deling Interface

In LightShop, a scends modeledwith two primitiv e types: cameraswith asinglelenst
and light elds. The programmer calls speci ¢ functions that insert these primitiv es
into an internal represetation of the scene. Each primitiv e storesits own related
information: focal distance, sampling, etc. This information is called LightShop at-
tributes or attributes for short. Table C.1 shows the supported LightShop primitiv es,
and their assiated attributes.

In LightShop, a camerawith a lens (henceforth called a \lens camera” or \cam-
era") follows the simplelensmodel. Figure C.3 illustrates the model. It hasanimage
plane, a lens plane, and a focal plane. Intuitiv ely, light emitted from a point on the
focal plane passeghrough an aperture in the lens plane and is focusedonto a point
on the image plane. More speci cally, on the image plane is a rectangular region
de ning the digital sensoror Im area. The cameraattributes \lo wer left," \up,” and
\right" de ne both the image plane and the sensorarea. The lens plane is parallel
to the imageplane. The lensaperture is a rectangularregionlying on the lensplane.
The attributes \lens certer,” \lens width," and \lens heigh," de ne the location of
this lens aperture. The focal plane is parallel to the lensplane and image plane. Its
location is de ned by the \fo cal distance" attribute, which is the distance between
the focal and lens plane. Sincedi raction is not modeled, a pinhole cameracan be
createdby setting the \lens width" and\lens height" attributes to 0. As we will seein
SectionC.3.3 the LiGetRay ray-shadingfunction makesuseof the cameraattributes
to form a ray, given the 2D locations of the image pixel and a samplepoint on the
lens.

LAlthough LightShop could include a more complex optical system, in practice a single lens
model su ces for many applications. When more complexity is necessaryLightShop's ray-shading
languageallows for arbitrary ray refraction (seeSection C.3).

C.2. LIGHTSHOP'S MODELING INTERFACE 81

/I Initialize LightShop
LiBegin();

/Il insert the camera
Ltint camera0O = LiCamera();

/I set cameraO's attributes
LtDir lowerLeft= {-1, -1, -1}
LtDir up = {0, 2, O}

LtDir right = {2, 0, 0O}
LiDir lensCenter = {1,1,1};
LiFloat focalDistance = 10.0;
Lilnt xRes = 512;

Lilnt yRes = 512;

LiAttributeCam(c aneraO, “x res", &xRes);
LiAttributeCam(c anera0O, 'y res", &yRes);
LiAttributeCam(c aneraO, lower left", lowerLeft);
LiAttributeCam(c anera0O, “up”, up);

LiAttributeCam(c anera0, right", right);

LiAttributeCam(c anera0O, “lens center", lensCenter);
LiAttributeCam(c anera0O, “focal distance", focalDistance);

/I insert the light field
LtColor clear = {0, 0, 0, O}
LtMatrix translate = {1, 0, 0, O, 0o, 1, 0, 0, O, O, 1, O, O, O, -10, 1}

Ltint lightFieldl = LiLightField(li ghtfi eld .t If) ;
LiAttributeLF(li ghtFiel d1, “sampling”, ““quadralinear");
LiAttributeLF(li ghtFiel d1, “wrapping", clear);
LiAttributeLF(li ghtFiel d1, ““transform", translate);

/I tell LightShop to clean up
LIEnd();

Figure C.1: A simpleLightShop programthat modelsa scenecortaining alenscamera
and a light eld.

82 APPENDIX C. THE LIGHTSHOP API

LtColor main(LtVec2 currentPixel)

{
LtColor col = LtVec4(0,0,0,0);

/Il convert the current pixel location to a ray based on camera O
LtRay=LiGetRay(0, currentPixel, LtVec2(0, 0);\

/I use the ray to sample from light field O
col = LiSampleLF(0, ray);

/I return the color sampled from the light field
return col;

Figure C.2: A simple ray-shading program that takesthe scenemodeledin Figure
C.1 and returns the color of a single pixel of the display image. LightShop's renderer
executesthe program over all pixelsto computea nal image.

For light elds, we approximate the cortinuous4D function with discretesamples
that canbe thought of asa 4D texture. Hence,light elds in LightShop have similar,
texture-like attributes: samplingmethod (i.e. nearest-neigbor, or quadralinear,and
wrapping behavior (i.e. repeat or clamp to a value). Nearest-neighor sampling
simply extracts the color of the ray \nearest" to the input ray. Quadralinearsampling
[] is the 4D equivalent to bilinear interpolation in 2D.

The third light eld attribute, \transform”, is anoptional attribute that allowsthe
programmerto passimplemertation-speci ¢ parametersto LightShop. For example,
in the implemertation describedin Section4.5, LightShop supports the two-planepa-
rameterization of light elds. The \transform" attribute is usedto passa 4x4 matrix
that is appliedto the vectorsdescribingthe UV- and ST-planeof the light eld. This
allows a programmerto position a light slab by providing an appropriate transform
matrix. Other implemertations may usethis attribute for other applications.

Notice that LightShop doesnot specify a particular light eld parameterization;
the attributes are invariant to this and the implemertor may support various types
(i.,e. UVST 2-plane,sphere-planegircular, etc.) at her discretion.

C.2. LIGHTSHOP'S MODELING INTERFACE 83

N
>

focal distan@

width

wbiay

up lens center

Y

lower let right

z

Figure C.3: The lens model usedin LightShop. The pink, greenand blue rectan-
glesare the sensorarea, lens aperture and focal plane, respectively. Thesecamera
attributes are usedby the LiGetRay ray-shadingfunction, descritedin SectionC.3.3

C.2.1 Graphics Environmen t (Scene)

Given the previously de ned primitiv es, a programmer createsa sceneby calling
speci ¢ functions that modify an internal represetation of the world. This internal
represemation is called the graphics environment or seene which is invisible to the
programmerand completely contained within LightShop. The graphicsenvironment
is simply a set of camerasand a set of light elds; it is sharedbetweenthe modeling
interface and the ray-shadinglanguage.

84 APPENDIX C. THE LIGHTSHOP API

C.2.2 Mo deling Functions Available to the Programmer

The goalof the LightShopfunctionsisto provide an interfacebetweenthe programmer
and the graphics ervironment. The functions use speci ¢ data types de ned by
LightShop for argumeris and return values. We rst de ne thesedata types, then
descrike the proceduresthat usethem. The data types are presenied using a C-
like syrntax as an explanatory medium. Howewer, note that LightShop can also be
implemerted in other high-level languagedike Java or Python.

The name of ead data type is pre xed with Lt (LightShop type). Procedures
and variablesare pre xed with Li (LightShop interface).

Scalar Types

typedef long Ltint;
typedef float LtFloat;
typedef char* LtString;
typedef void LtVoid;
typedef void* LtPointer;

LightShop supports the usual data typesfound in C.

Vector Types

class LtVector3;
class LtVector4;
class LtMatrix3;
class LtMatrix4;

typedef LtVector3 LtPoint;
typedef LtVector3 LtDir;
typedef LtVector4 LtColor;

The Vector[34] typesare genericvectorsusedfor variablescortaining 3D points,

C.3. LIGHTSHOP'S RAY-SHADING LANGUA GE 85

normals, homogeneousoordinates, etc. For corvenience,LightShop alsode nes spe-
ci ¢ typesfor points, colors,and directions. The matrix typesstore transformations
that canbeappliedto LtVector[34] s. Matrix elemeits arespeci ed in column-major
order, similar to OpenGL [].

Functions

These functions allow the implementation to initialize any LightShop state and to
ensurethat this state is clearedwhen LightShop is done. They must be the rst and
last procedurecallsto LightShop.

LtVoid LiBegin();
LtVoid LiEnd();

The following proceduresinsert and modify attributes of ead of the primitiv es:
camerasor light elds. Note that the functions take in an integer idertifying the
particular instance. The iderti er is returned when the programmer calls the ap-
propriate function to insert the primitive. The attribute namesusedin the function
argumerts are speci ed in Table C.1.

Ltint LiCamera();
LiAttributeCam(Lilnt cameralD, LtString attributeName,
LtPointer value);

Ltint LiLightField(LtString filename);

LtVoid LiAttributeLF(Ltint lightFieldID,
LtString attributeName,
LtPointer value);

C.3 LightShop's Ray-shading Language

After using the modeling interfaceto de ne a scenecortaining light elds, the pro-
grammer writes a ray-shading program that preciselyde nes how this sceneshould

86 APPENDIX C. THE LIGHTSHOP API

be renderedto a 2D image. An imageis created by assaiating a ray to ead out-
put pixel, and deciding on how to shadethis \view-ray". As the view-ray travels
through the scenejts color (RGBA) or direction may changedue to interaction with
light elds. This is similar to ray-tracing exceptthat objects are represeted by light
elds. LightShop's ray-shading languageallows the programmerto preciselyde ne
how this view ray is a ected by the light elds.

The ray-shadinglanguageexecutesn a mannersimilar to the Pixel Stream Editor
[]. It takesasinput the xy location of a pixel of the 2D image, executesthe
ray-shading program at this pixel, and outputs a RGBA color. At any one pixel,
the program has accessto the graphics ervironment (i.e. the light elds and the
cameras). It usesthis environmert to rst form a ray from the given pixel position
and then to shadethe color of this ray. The pixel color is set to the computed ray
color. LightShop's renderer executesthe same ray-shading program at ead pixel
location to progressiely construct the nal image.

First we descrike the language'sdata types, then ow cortrol, then high-lewel
functions available to the programmer. We use GLSL |] as the explanatory
medium for data types and procedures. It has a C-like syntax and we build func-
tionality on top of it in our implemertation in Section4.5. Howewer, note that the
ray-shading languagecould be implemerted in other languagedike C++, HLSL, or
Cg.

C.3.1 Data Typesand Scope

typedef void LtVoid,;
typedef int Ltint;
typedef float LtFloat;

typedef vec2 LtVec2; // A general 2-vector
typedef vec3 LtVec3; // A general 3-vector
typedef vec4 LtVecd; // A general 4-vector
typedef mat4 LtMat4; Il A general 4x4 matrix of floats

C.3. LIGHTSHOP'S RAY-SHADING LANGUA GE 87

typedef vec4 LtColor; // A RGBAoolor value

typedef vec3 LtPoint; /[A XYZ3D point

typedef vec3 LtDir; /[A direction vector

typedef vec4 LtPlane; // A plane equation Ax+By+Cz+D=0

struct LtRay {
LtVec4 pos;
LtDir dir;

3

The ray-shading languagesupports the standard C data types. The LtRay type
descrikesa ray in 3-space.lt is usedfor samplingfrom a light eld to obtain a color
in that ray direction. A ray in LightShop is represeted by a point on the ray (in
homogeneougoordinates) and a direction. Although a ray can be descriked by four
parameters,the point-direction represetation facilitates ray intersectioncalculations.
The scope of variablesis the sameasin C++, i.e. local scope within the enclosing
block and global scope otherwise.

C.3.2 Flow Control

The program starts executionin the mainfunction. The samemainfunction executes
for every output pixel of the image. It takesasinput the current pixel location and
outputs a RGBA color. It canalsoaccesghe global graphicsenvironmert.

Aside from a few di erent token names,the LightShop ray-shadinglanguageuses
the samegrammaras GLSL []. Looping is accomplishedusing the samesyntax
and keywords asthosein C++: for , while, anddo ... while . Looping allows a
programmerto map the colorsof multiple raysin di erent light elds to a singlepixel
color. One useful application is for focusing, where a single pixel color is computed
by integrating over the colors of multiple rays (seeSection4.6.1). Branchesalsouse
the samesyntax asin C++: if andif ... else. This allowsthe programto have

88 APPENDIX C. THE LIGHTSHOP API

per-pixel variability. Functions are de ned and called in the sameway asin C++.
A return type is followed by the name of the function, followed by a parameter list.
The languageallows for function overloading.

C.3.3 Light Field Manipulation Functions

On top of this language,LightShop o ers the standard math functions (sin, asin,
pow etc.) and seeral high-lewvel functions speci cally for manipulating light elds.

The ray-utilit y function, LiGetRay, takesasinput a 2D pixel location, a 2D po-
sition on the lens aperture and a cameraprimitive. It usesthe cameraattributes,
de ned in SectionC.2, to producea ray. First, LiGetRay forms an intermediate ray
basedon the pixel location and sampleposition on the lens. This ray is then refracted
through the lens and returned as output. The amourt of refraction is basedon the
simplelensmodel; rays emitted from onepoint on the imageplane corvergeto a point
on the focal plane de ned by Gaussianoptics. Recall that the focal plane and other
cameraattributes are speci ed during the modeling processdescrited in SectionC.2.
The LightShop function is the following:

LtRay LiGetRay(Lilnt cameralD, LtVec2 currentPixel,
LtVec2 lensSample)

For example,in the simple ray-shading program shown in Figure C.2, LiGetRay
returns the refractedray that started from the currert pixel location, ertered the lens
certer and refractedout. Section4.3 demonstrateshow focusingcanbe accomplished
by summingthe colorsof rays that enter multiple positions on the lensaperture.

Oncea ray hasbeenformed, it can be passedasinput to seeral high-level func-
tions. These functions form a basis for a wide variety of light eld manipulation
operations. Additionally, thesefunctions can be calledin conmbination, which allows
arbitrarily complexlight eld manipulations.

The following arethe LightShop functions: 4D sampling , which samplesa RGBA
color from alight eld; comp ositing , which conbinestwo RGBA colorsinto a single
one;and warping , which mapsrays to rays.

C.3. LIGHTSHOP'S RAY-SHADING LANGUA GE 89

4D Sampling

The sampling proceduretakesasinput a ray and a light eld and returns the color
in that ray direction. Becausdight elds in LightShop are represeted in a sampled
form, any given ray direction may not have a color in the light eld. Hence,the
procedureutilizes the sampling light eld attribute to determinehow it shouldreturn
a color for any givenray. The sampling procedureis most commonly usedfor novel
view syrthesisfrom light elds:

LtColor LiSampleLF(Ltint lightfieldID, LtRay ray)

For the two-plane parameterization, sampling the color along a ray direction is
performedexactly in the samemanner as descriked in Levoy and Hanrahan [].
The color of aray is a function of rays who have the nearestintersections(u; v; s;t) on
the UV- and ST-plane. The sampling attribute determineswhether to use nearest-
neighbor or quadralinearinterpolation.

The algorithm for samplingfrom sphere-plandight elds generalizeghe technique
usedfor rendering from concenric mosaics|]. Assumethat a view-ray r from
a user-de ned camerais sampling from a sphere-plandight eld. The ray intersects
the sphereand the planede ning the SLF. The farther intersectionwith the sphereis
ignored. Recall,the planeisincidert to the certer of the sphere.Its normal is de ned
to be parallel to the vector from the cameracerter to the certer of the sphere. In
other words, the orientation of the planeis view-dependern. The sphereintersection
locatesnearestcameras.The planeintersectionlocatesnearestpixelsin thosenearest
cameras.Nearest-neigbor or quadralinear interpolation can be applied. Figure C.4
illustrates the samplingprocess.Ray r intersectsthe sphereat point m and the plane
p at point x. m is usedto selectnearestcamerasa and b. x is usedto selectnearest
pixels a® and &’

Comp ositing

Recallthat a colorsampledfrom alight eld cortains RGBA channels. RGB represen
an approximation to the radiancealongthe ray direction in the light eld. A, or alpha,

90 APPENDIX C. THE LIGHTSHOP API

Utilf

Figure C.4: Plan-view of renderingfrom a sphere-plandight eld.

represets both opacity and coverage. Once a color has beensampledfrom a light
eld, it can be composited with samplesfrom other light elds. Using the proper
compositing operators and ordering allows a programmer to render an image of a
sceneof light elds.

The compositing operator allows for all twelve of Porter and Du 's [] com-
positing operations. Similar to their formulation, LightShop assumeshat the colors
in the light eld are premultiplied by the alpha channel. This is usefulbecausecom-
positing equationsfor RGB are the sameasthosefor alpha.

The twelve compositing operations for two RGBA colors, A and B, can be ex-
pressedas a linear conbination. More speci cally, to compute the composited color,
the programmerspeci es weights, w;; w, to the linear combination of A and B:

C=wA+wB (C.)

For particular choicesof w; and ws, the resulting color have familiar forms, as
shovn in TableC.2. The LightShop proceduresn this table return aLtColor andtake
in two LtColor s asargumert. One exampleis shaovn below for the over compositing
operator:

LtColor LiOver(LtColor A, LtColor B)

C.3. LIGHTSHOP'S RAY-SHADING LANGUA GE 91

Also, for brevity the symmetric procedurefor eah operation has beenomitted from
the table (i.e. B over A, B in A, etc.).

Speci ¢ procedurenameshave beengivento the commoncompositing operations.
The LightShop procedurefor generalcompositing is:

LtColor LiComposite(LtFloat w1, LtColor A, LtFloat w2, LtColor B)

W arping

LightShop'swarping functions take a ray asinput and return a new (i.e. warped) ray.
Ray warping is commonly usedto simulate deformation of a light eld [], or
refractive e ects []].

LightShop providestwo typesof warps to the programmer: proceduralwarps and
4D table lookup. Procedural warps are commonly-usedutilit y functions for warping
rays. Theseare various functions that transform points. New rays can be formed
by taking two points on the original ray, applying a transformation on them, and
forming a vector from the two new points. Someof thesefunctions are shavn below:

LtPoint LiRotateX(LtPoint v, LtFloat theta)

LtPoint LiRotateY(LtPoint v, LtFloat theta)

LtPoint LiRotateZ(LtPoint v, LtFloat theta)

LtPoint LiRotateXAboutPt(LtPoin t v, LtPoint org,
LtFloat theta)

LtPoint LiRotateYAboutPt(LtPoin t v, LtPoint org,
LtFloat theta)

LtPoint LiRotateZAboutPt(LtPoin t v, LtPoint org,
LtFloat theta)

Figure C.5 llustrates atwisting e ect that canbe accomplishedusingLightShop's
warping functions. Figure C.6 shows se\eral other views of this \t wisted light eld".

92 APPENDIX C. THE LIGHTSHOP API

To accomplishthe twisting e ect for the left individual, two points on ead view
ray are selectedand rotated about a vertical axis certered over the left person. The
amourt of rotation is a function of the height of ead of the points. The higher
a point is, the more rotation is applied. LiRotateYAboutPt is usedto perform the
rotation. The warpedray is formedfrom the rotated points. A similar warp is de ned
for twisting the right individual. To keepthe left and right ray-warps from creating
discortinuities in the image,the nal ray warp is a linear combination of the left and
right twists. The weigh for ead twist is inverselyrelated to the ray's proximity to
the left or right twist axes.

The warping functions that usea 4D lookup table represen the ray warp with
discretesamples.The lookup table is treated in the sameway asa light eld, except
that the value perray is not an RGBA color, but anewray. Onecanthink of the light
eld asaray-valued oneasopposedto a color-valued one. The LightShop procedure
that samplesfrom the ray-valued light eld is shovn belov. Notice that it returns a
ray instead of a color.

LtRay LiWarpRayLookup(Ltint lightFieldID, LtRay ray)

The lookup table is treated in the sameway asa light eld, exceptthat the value
per ray is not an RGBA color, but information describinga warped ray. LightShop
represets this ray information astwo 3D points on the ray. Sinceead point takes
3 coordinates, xyz, the warped ray needs6 coordinates. These 6 coordinates are
stored separatelyin the 3 RGB channelsof 2 light elds. The alpha channel of
both light elds is usedto indicate if a warp exists (1) or not (0) for that particular
input ray. Using 6 coordinates to represeh a ray wastes space, since a ray can
be represeted by 4 coordinates. Howeer, the extra channel is usedasa ag for
when a ray warp is de ned. Additionally, no extra information about the coordinate
system of the parameterization needsto be known (i.e. the plane locations for a
2-planeparameterization). By convertion, it is assumedhat the two light elds have
sequetial identi ers, sothat aray warp lookup is performed by specifying the ray
and the light eld cortaining the rst point on the warped ray.

C.4. A SIMPLE EXAMPLE 93

Figure C.5: On the left is an imagefrom alight eld of two people. Notice that their
headsare not facing the samedirection. On the right we apply a ray-warp to turn
their heads.

Figure C.6: Multiple views of the twisted light eld. Notice that the actors appear
to be looking in the samedirection in all the images.

C.4 A Simple Example

Given our API, we concludethis appendix with a toy examplethat illustrates the
expressie power of the LightShop system. LightShop is usedto renderan imagefrom
a sceneof light elds, asshown in Figure C.7. Other views of this composited light
eld are showvn in Figure C.8.

First, we descrilke the input to LightShop. The sceneconsistsof 4 light elds.
Two of them represet the Buddha and the ower. The third light eld represets
the ray warp that simulatesthe refraction e ect of the glassball. The fourth light eld
represets the specularhighlight of the ball. The sizeof ead light eld is erumerated
in Table A.1. All light elds in this exampleusethe two-plane parameterization.

The light eld that represets the 4D lookup table for warping a view ray is
computedsyrthetically by ray-tracing through a spherewith glassmaterial properties.

94 APPENDIX C. THE LIGHTSHOP API

More speci cally, in a ray-tracing program called yafray [], we create a scene
consisting of a single sphere. We set the material properties of this sphereto mimic
refractive glasswith index of refraction 1.5. Then, for 32x32 camerapositions, we
ray-trace 256x256rays into the scenecortaining the glasssphere. For eat ray, the
ray-tracer outputs a description of the refracted ray. We store this descriptionin the
RGBA componerts of the light eld. This light eld yields a mapping from any ray
(from the 32x32x256x256ays) to a ray refracted through the glassball.

Figure C.7: A renderedimagefrom a composite light eld scene.

The procedurecalls that model the sceneare shovn in Figure C.9. Referring to
Figure C.9, the programmer rst inserts a camerainto the scene. It is a pinhole
camerapointed at a speci ¢ location (namely, wherewe will position the light elds).

The next set of procedure calls insert light elds into the scene. The integer
iderti ers of ead light eld begin at 0 and increasesequetially (i.e. the Buddha
light eld is mappedto identier 0). Light elds 0 and 1 are typical light elds that
have RGBA asvaluesper ray. Light eld 2is a 4D lookup table that warpsrays asif
the ray had gonethrough a glassball. Light eld 3isan RGBA light eld cortaining
the specular highlight of the glassball. Next, the programmer speci es various light
eld attributes that de ne their position.

C.4. A SIMPLE EXAMPLE 95

Figure C.8: Novel views of the sceneof composited light elds.

Oncethe scenehasbeenmodeled,the programmerwrites a ray-shadingprogram
that de nes preciselyhow a 2D imageis renderedfrom this scene. This is done by
writing a programthat executesper output pixel of the imageto determinethe color
of ead pixel, given the sceneof light elds.

Figure C.10 shaws the ray-shading program. We now proceedto descrite ead
step of the program and shaw its e ects on the currernt output image.

First, we corvert the currert pixel location into a ray and usethis ray to sample
from the Buddha light eld. We set the badkground color to be black. Lines 5{13
produce Figure C.11

Next, in line 17 we use the sameray to samplefrom the ower light eld and
composite that color over the Buddha sample,which producesFigure C.12

Now, to createthe sphericalrefraction e ect, we warp the view ray asif the ray
had gonethrough the glassball. Recall that light eld 2 mapsan input ray to a

96 APPENDIX C. THE LIGHTSHOP API

warpedray. We usethe LiWarpRayLookupprocedureto acquirethe warpedray. This
warped ray is then usedto sample from the Buddha and the ower light eld to
produce a refractive version. Figure C.13 shows the current image after lines 20{26.

Finally, in lines 44-46we add a specular highlight to the sceneby sampling from
the light eld cortaining the ball's specular highlight and adding this color to the
nal color. This producesthe nal image, as shovn in Figure C.7, other views are
shown in Figure C.8.

C.4. A SIMPLE EXAMPLE 97

Primitiv. e Attribute Default Description
lenscamera lower left [-1,-1,-1] lower left of the imageplane
up [0, 2, 0] vector from the lower left to the
upper left of the image plane
right [2,0,0] vector from the lower left to the
lower right of the image plane
lens certer [1,1,1] vector from the lower left to the
center of the lensaperture
lenswidth 2 width of the lensaperture
lens height 2 height of the lensaperture
focal distance 1 the perpendicular distance
betweenthe lens plane and the
focal plane
X res 512 horizortal resolution of the
output image
y res 512 vertical resolution of the
output image
light eld sampling qguadralinear sampling method:
nearest-neigbor or quadralinear
wrapping [0,0,0,0] wrapping behavior when sampling
outside the light eld: \clamp",
\rep eat"”, or a RGBA user-de ned
color
transform 4x4 identity a transformation applied to the
rays of the light eld

TableC.1: Primitivesand attributes that LightShop supports. Other imageoptions,
like bias, gain, pixel samplingrates, Iter sizes,color quartization, etc., could alsobe
supported by LightShop.

Operation w;y Wo Expression Function
A add B 1 1 A+ B +

A over B 1 1 A A+(1 A)B LiOver
AinB B 0 B A Liln

A out B 1 g O (1 8)A LiOut

A atop B B 1 Ao BA+(1 A)B LiAtop
A xor B 1 B 1 A (1 B)A + (l A)B LiXor

Table C.2: Commoncompositing operationsthat have special namesin LightShop.

98

APPENDIX C. THE LIGHTSHOP API

/I Initialize LightShop

LiBegin();

/Il insert the camera

LtDir lowerLeft = {4.14, 4.00, 7.92}

LtDir up = {0.00, -8.00, 0.00}

LtDir right = {-7.99, 0.00, 0.15};

LtFloat lensWidth = 0;

Ltint cameraO = LiCamera();

LiAttributeCam(® “lo we left", lowerLeft);

LiAttributeCam(® “up" , up);

LiAttributeCam(® ‘ri ght' ', right);

LiAttributeCam(® ‘le ns width", lensWidth);

LiAttributeCam(" le ns height", lensHeight);

/I insert the light fields

Ltint lightField0O = LiLightFieldC'b uddha");

Ltint lightFieldl = LiLightField("*f lowa");

Ltint lightField2 = LiLightField(""g la ss ball");

Ltint lightField3 = LiLightField(C"h ighlight' ");

/I set light field attributes

LtMatrix4 transformO0 = {4,0,0,0,0,4,0,0, 0,0,4,0,0,0,35,1};
LtMatrix4 transforml = {.6,0,0,0,0,.6,0, 00,0,6 ,0,-1.25,04.0,1};
LtMatrix4 transform2 = {1,0,0,0,0,1,0,0, 0,0,1,0, .5,0,0, 1};
LiAttributeLF(li ghtFiel dO, ““transform”, transformO0);
LiAttributeLF(li ghtFieldl, ““transform", transforml);
LiAttributeLF(li ghtFiel d2, ““transform", transform?2);
LiAttributeLF(li ghtFiel d3, ““transform", transform?2);

/I tell LightShop to clean up

LIEnd();

Figure C.9: LightShop function calls that model the toy sceneshownn in Figure C.7.

C.4. A SIMPLE EXAMPLE 99

00 LtColor main(LtVec2 currentPixel) {
/[the output color for this pixel
LtColor col;

/I form a ray from the current pixel
05 LtRay ray=LiGetRay(0,cu rr entPi xel,L tVec2(0,0));

/I set the background color to be black
LtColor background = LtVec4(0,0,0,1);
col = background;

10
/I sample from the Buddhalight field
/I and composite over a black background
col = LiOver(LiSampleLF (0, ray), col);

15 /I sample from the flower light field and
/I composite it over the buddha one
col = LiOver(SampleLF(1, ray), col);

/I warp view ray to simulate the refraction effect
20 LtRay warpedRay = LiwarpRayLookup(2, ray):

if(warpedRay.di r !'= 0) {
LtColor refractedBuddha = LiSampleLF(0, warpedRay);
LtColor refractedFlower LiSampleLF(1, warpedRay);
25 LtColor refraction = LiOver(refracted Flower,
LiOver(refractedB uddha, background));

/I tint the refracted ray color
LtColor tint = LtVec4(1, .5, .5, 1);
30 refraction = tint * refraction;

/I composite refracted color to output pixel color
col = LiOver(refractio n, col);
}
40 /I obtain the specular highlight of
/I the glass ball and add it to the scene
LtColor highlight = LiSampleLF(3, ray);
45 col = col + highlight;
return col;

Figure C.10: A toy exampleray-shading program. It rendersthe image shown in
Figure C.7.

100 APPENDIX C. THE LIGHTSHOP API

Figure C.11: The imageafter sampling from the Buddha light eld.

Figure C.12: The imageafter compositing the o wer RGBA sampleover the Buddha
one.

C.4. A SIMPLE EXAMPLE 101

Figure C.13: The image after compositing the refracted Buddha and o wer light
elds. There are jaggy artifacts in the refraction due to the limited samplingrate of
the ray warp. For simplegeometricobjects, this artifact canbe remediedby providing
a function characterizingthe ray warp. For more complexobjects, a higher sampling
rate is necessaryLightShop can handle either solutions.

102 APPENDIX C. THE LIGHTSHOP API

App endix D

Focus-based Light Field
Segmentation

In this appendix we descrile how to segmeh a light into layers using focus. The
datasetwe useis the swimmerslight eld (seeSection4.6.1and Appendix A). Seg-
merting this datasetfor a given layer is equivalert to computing an alpha matte for
eat imageof the light eld. Thusthe goalis to compute thesealpha mattes.

To compute the alpha mattes for ead layer, we processthe layersin a front-to-
bad order. For the front swimmer,an implemerntation of intelligent scissorg]
is usedto segmeh it out in one of the imagesof the light eld. Figure D.la illus-
trates this cortour and D.1b shaws the binary mask. This binary mask needsto be
propagatedto all images,but in this caseit turns out that the front swimmerlies on
the ST plane, sothe binary maskremains xed to her silhouette in all images.

Next, a tri-map is created basedon the binary mask to serne as an input to a
Bayesianmatte extraction algorithm []. The technique is similar to the one
usedby Zitnick et. al []. A tri-map consistsof a foreground, badkground,
and unknown region of the image. The foregroundmaskis computedby eroding the
initial binary mask (shown in Figure D.1c). The badkground is computedby dilating
the binary masktwice and taking the di erence of the dilated masks(shown in Figure
D.1d). The unknown regionlies betweenthe foregroundand badground masks. This
tri-map is passednto the Bayesianmatte extraction algorithm to producethe alpha

103

104 APPENDIX D. FOCUS-BASED LIGHT FIELD SEGMENTATION

matte in Figure D.le. Figure D.1f shaws the extracted front swimmer for this image.
Sincethis swimmerlies on the ST plane, we can usethe samealpha matte to extract
her from all images.

(@) (b) (€)

(d) (e) (f)

Figure D.1: lllustration of the alpha matte extraction pipeline. The userusesintelli-
gen scissorgo specify a binary maskin (a). The maskis shavn in (b). The maskis
then eroded by 3 pixels to form a foregroundmask shovn in (c). Dilating the mask
by 2 and 30 pixels and taking their di erence producesthe badkground maskin (d).
The output of the Bayesianmatte extraction is shavn in (e). A neighborhood sizeof
4 pixels was used. (f) shavs the extracted front swimmer.

For the layers belongingto the middle and badk swimmer, the binary maskin a
singleimage will shift in the other imagesdue to parallax. To handle this shift, we
choose a plane approximating the depth of that layer. This plane is then usedto
project a binary maskin oneimageto all other images. In other words, the plane
actsasa geometricproxy to propagatea binary maskin oneimageto all other images
in the light eld. How do we selectthe planar proxy depth? The solution is to use

105

focus.

We use LightShop to create imageswhere we focus on di erent depths in the
swimmerslight eld. When a layer comesinto focus, the correspnding depth is
recorded. Given the depth of this plane, a binary maskin oneimageis projected to
all other imagesby a homograply induced by the plane [].

Now we quickly review how to compute a 3x3 homograpty matrix that is induced
between two camerasand a plane. Using the notation presened in Hartley and
Zisserman'sbook, two camerasare de ned with projection parameters,K [1j0] and
K qRjt]. The homograply inducedby a plane,n™ + d = 0, is given by:

H=KY{R thT=dK *? (D.1)

Equation D.1 correctly computesthe homograpty for generalcamerapositions.
Howe\er, for camerasin a two-plane parameterization, we can simplify the equation
further. For cameraimagesfrom a two-plane parameterization, eatcy cameracan be
thought of as having an o -axis projection, with a commonprinciple direction. This
meansthat R mapsto the idertit y matrix and the intrinsics and extrinsics only have
a translation componert that is a function of the relative cameralocations in the
UV-plane. Mathematically, Equation D.1 reducesto

H=KY th"=gK ! (D.2)
whereK ° K have the form of 2 3
f 0 ¢
Bor ! 0.3
0 0 1

andt = [¢ ¢ G ¢, ¢, and c, are the relative coordinates for the position
of the secondcamera. In summary Equations D.2 and D.3 provide a closed-form
solution for computing homographiesbetweencamerasin a two-plane parameterized
light eld.

A similar technique is usedfor rendering ghost-freeimagesfrom under-sampled
light elds []. Instead of a plane, onecould useimagepriors on the distribution of

106 APPENDIX D. FOCUS-BASED LIGHT FIELD SEGMENTATION

the foregroundand alphamask, like optical ow [], imagegradierts [],
or cortinuity acrossimages|]. We found that using a plane was su cient on
the swimmersdataset.

The above technigue works well when computing alpha valuesfor an unoccluded
layer. Howewer, alpha mattes be occluded by foreground layers. For this reason,
alpha mattes for ead layer are computedin a front to badk order. Then, the alpha
valuesfrom the front layers are usedto mask valuesin the currert layer. This will
accourt for occlusions, but what about disocclusions? Disocclusionsin the alpha
mask are handled by selectingthe image in the light eld that exposesthe largest
areaof the swimmerin that layer. This imageis usedto computethe initial binary
maskvia intelligent scissors.This way, the maskin all other imagescan only undergo
an occlusiort.

In summary this appendix hasdescriked a technique for using focusto segmeh a
light eld into layers. The input is a singlelight eld and the output is a setof alpha
masks,one set for eadt layer.

1For regionsin a layer that undergo both occlusions and disocclusions, we manually segme
those regionsinto only occlusion or disocclusion.

App endix E

Other Light Field Manipulations

This appendix cortains ways to manipulate light elds. They are not essehal to
LightShop, but were discoreredin the processof usingit to edit light elds. Perhaps
thesemanipulations will inspire the readertowards other novel light eld operations.

E.1 Refraction and Focusing

The rst manipulation demonstratesconmbining refraction and focus. Appendix C.4
demonstratedrefraction through a sphere. An interesting property of refracting a
scenethrough a sphereis that the sphereacts as an optical lens, creating a real
image of the scenein front of it. Then in Section4.6.1a method for focusing was
presened. Focusingallowsthe userto focusat a depth, blurring out other parts of the
scene.Combining refraction and focusing, we can e ectively focus on the real image
in the refraction by the sphere. Figure E.la illustrates this concept. The camerais
focusedon this real image, so both the sphereand the badground are out of focus.
Changingthe focal plane of the camera,one can focus on the badground light eld,

and the sphereand the real imagego out of focus. This is shavn in Figure E.1b. The
function calls for modeling the sceneare similar to thoseshown in Figure C.9 for the
toy example. The ray-shadingprogram combinesthe double for-loop found in Figure
4.3 with the refraction and compositing code found in Figure C.10.

107

108 APPENDIX E. OTHER LIGHT FIELD MANIPULA TIONS

() (b)

Figure E.1: Combining focusingwith refraction. In (a), the lens camerais focused
on the real image createdby the refracting sphere.Both the badground and sphere
are out of focus. In (b), the lenscamerais focusedon the badground.

E.2 Shadows

The secondmanipulation enableslight elds to cast shadavs on one another. This
is possiblebecauselightShop's ray-shadinglanguageis generalenoughto act asa a
ray-tracer for light elds. The ideais simple. Assumethat an object represeted by a
light eld is at. In fact, the object liesonthe ST-planeof a two-planeparameterized
light eld. Next, we assumeead light eld has alpha valuesper ray, represeting
coverage.Now, to determineif a part of alight eld isin shadav, the ray isintersected
with the ST-plane. From this depth, a\shadow ray" is shotto all light sources. This
shadav-ray samplesfrom all other light elds to determineocclusion(basedon alpha).
This processof computing shadavs is easilyencaled asa ray-shadingprogram. In
the following ray-shading code fragmert, light eld O castsa shadav onto light eld
1. The user-de nedfunction Shadowakesa light eld and a 3D point. In this case,
the 3D point is formed by intersectingthe view ray with the ST planeof light eld 1.

Iwhile light primitiv es are currently not supported by LightShop, a user can still de ne light
positions and passthem into ray-shading program via GLSL.

E.2. SHADOWS 109

The Shadowfunction then forms a shadav ray from the 3D point to the point light
sourceand usesthis ray to samplefrom the argumern light eld (in this case,light
eld 0). It returns the RGBA color of sampling from light eld O, in the direction
of the shadav ray. The resulting alpha is usedto maskthe color sampledfrom light
eld 1.

LiColor shadow= Shadow(O, IntersectST(1, ray));
LiColor col = LiOver(LiSampleLF(0, ray),
shadow.a * LiSampleLF(1,ray));

Figure E.2a and b illustrate shadavs cast from the girae and ower light elds
onto a ground plane (light eld). The toy girae and o wer are captured using the
gartry, in front of a xed-color badkground. Alpha mattes are extracted basedon
blue-screenmatting []. The imagesare renderedat 10 FPS. Soft shadavs are
combined with focusingto produce Figure E.3. This imageis renderedat 10 FPS.

This technique is obviously an over-simpli cation of shadavs. The planar-depth
assumptionfor alight eld is arestrictive one. If actual depth is known per ray (from
multi-baseline stereo, or range- nding, for example), this can be passedinto Light-
Shopasadepthvaluedlight eld and utilized in the shadav computation. LightShop's
framework is generalenoughto accourt for this extension.

Also, sincethe ower and gira e light elds are capturedunder xed illumination,
their surface appearancewill not match the user-sgeci ed illumination conditions.
This limitation is the samefor other image compositing/editing tools, like Adobe
Photoshop. One solution is to capture the light elds of the object under di erent
illumination conditions, and to useLightShop to add theselight elds to better ap-
proximate the user-sgeci ed illumination. A similar technique was usedin Section
4.6.1when compositing seeral actorsinto a weddinglight eld. Howewer, even with
thesesimpli cations, we demonstratethat shadavs provide morerealismto the scene.

110 APPENDIX E. OTHER LIGHT FIELD MANIPULA TIONS

(@) (b)

Figure E.2: Simulating shadavs. In image (a), sharp shadavs are being cast from
the girae and ower light eld. The shadav on the groundis computedby castinga
shadav ray from a synthetic light eld of a ground planeto a user-de nedpoint light
source. In image (b), we create multiple virtual light sourcesand sum their masks
to approximate soft shadavs. The shadav on the ower is computed by casting a
shadav ray from the ST-plane of the ower light eld to the point lights. Notice
that the soft shadav interacts correctly with the ower light elds. More point light
sourceswould lessenthe aliasingin the soft shadavs.

E.2. SHADOWS 111

Figure E.3: Focusingcombined with soft shadavs. A lenscamerawith nite aperture
is usedto focuson the depth of the toy gira e. Notice that the soft shadavs and the
toy owersare out of focus.

112 APPENDIX E. OTHER LIGHT FIELD MANIPULA TIONS

Bibliograph vy

[ABO1]

[AF04]

[AMHO2]

[Bar84]

[Bar04]

[BBM* 01]

[BSW* 05]

Edward H. Adelsonand JamesR. Bergen. The plenoptic function and
the elemerts of early vision. In Computation Modelsof Visual Processing
pages3{20, 1991. 5, 6

Nicholas Apostolo and Andrew Fitzgibbon. Bayesian video matting
usinglearnt imagepriors. In Proceedingsof ComputerVision and Pattern
Recognition (CVPR), pages407{414,2004. 106

TomasAkenine-Meller and Eric Haines. Real-time Rendering A K Pe-
ters, 2002. 63

Alan Barr. Global and local deformationsof solid primitiv es. In Proceed-
ings of SIGGRAPH, pages21{30, 1984. 35

Brian A. Barsky. Vision-realistic rendering: simulation of the scanned
foveal image from wavefront data of human subjects. In Proceedings
of Sympsium on Applied Perception in Graphics and Visualization
(APGV), pages73{81, New York, NY, USA, 2004.ACM Press. 69

Chris Buehler, Michael Bosse Leonard McMillan, StevenJ. Gortler, and
Michael F. Cohen. Unstructured lumigraph rendering. In Proceedings of
SIGGRAPH, pages425{432,2001. 10, 47

OpenGL Architecture ReviewBoard, Dave Shreiner,MasonWoo, Jackie
Neider, and Tom Davis. OpenGL(R) Programming Guide : The O cial
Guideto Learning OpenGL(R), Version 2 (5th Edition) . Addison-Wesley
2005. 3,47, 85

113

114

[CACT 02]

[CCSS01]

[CLOS]

[CLF98]

[COSLO5]

[CTCSO00]

[CWO3]

[DHT*00]

[DTM96]

BIBLIOGRAPHY

Yung-Yu Chuang, Aseem Agarwala, Brian Curless, David H. Salesin,
and Richard Szeliski. Video matting of complex scenes.In Proceedings
of Transactionson Graphics (SIGGRAPH), pages243{248,2002. 106

Yung-Yu Chuang, Brian Curless,David H. Salesin,and Richard Szeliski.
A bayesian approad to digital matting. In Proceedings of Computer
Vision and Pattern Recognition (CVPR), volume 2, pages264{271.IEEE
Computer Scciety, Decenber 2001. 103

Billy Chen and Hendrik P. A. Lensd. Light sourceinterpolation for
sparselysampledre ectance elds. In Proceadings of Workshopon Vi-
sion, Modeling and Visualization (VMV) , pages461{468,2005. 1

Emilio Camahort, ApostolosLerios, and Don Fussell.Uniformly sampled
light elds. In Proceedings of Eurographics Rendering Workshop pages
117{130,1998. 9, 64

Billy Chen, Eyal Ofek, Heung-YeungShum, and Marc Levoy. Interactive
deformation of light elds. In Proceadings of Symmsium on Interactive
3D Graphicsand Games(13D) , pages139{146,2005. 1, 47, 91

Jin-Xiang Chai, Xin Tong, Shing Chow Chan, and Heung-Yeung Shum.
Plenoptic sampling. In Proceedings of SIGGRAPH, pages307{318,2000.
;

Michael Cohenand John Wallace. Radiosity and Realistic Image Synthe-
sis. AcademicPress,1993. 20

Paul Debewec, Tim Hawkins, Chris Tchou, Haarm-Pieter Duiker, West-
ley Sarokin, and Mark Sagar. Acquiring the re ectance eld of a human
face. In Proceadings of SIGGRAPH, pages145{156,2000. 17, 47

Paul E. Debewec, Camillo J. Taylor, and Jitendra Malik. Modeling and
renderingarchitecture from photographs: A hybrid geometry-andimage-
basedapproad. Proceeedings of Computer Graphics 30(Annual Confer-
enceSeries):11{20,1996. 7

BIBLIOGRAPHY 115

[EL99]

[FVDFH97]

[GGHO3]

[GGSC96]

[GLL*04]

[GZN* 06]

[HLCS99]

[Hor06]

[HZ00]

Alexei A. Efros and Thomas K. Leung. Texture syrthesis by non-
parametric sampling. In Proceadings of International Conference on
Computer Vision (ICCV), pages1033{1038,1999. 41

JamesD. Foley, Andries van Dam, StevenK. Feiner,and John F. Hughes.
Computer Graphics: Principles and Practice. Addison-Wesley 1997. 6

Michael Goesele Xavier Granier, WolfgangHeidrich, and Hans-Reter Sei-
del 1. Accurate light sourceacquisition and rendering. In Proceedings of
Transactionson Graphics (SIGGRAPH), pages621{630,2003. 1

Steven J. Gortler, Radek Grzeszczuk,Richard Szeliski,and Michael F.
Cohen. The lumigraph. In Proceedings of SIGGRAPH, pages43{54,
1996. 5, 10, 47

Michael Goesele,Hendrik P. A. Lensd, Jochen Lang, Christian Fuchs,
and Hans-Reter Seidel. Disco { acquisition of translucert objects. In
Proceedings of Transactionson Graphics (SIGGRAPH), pages835{844,
2004. 17

Todor Georgiev,Colin Zheng,ShreeK. Nayar, David Salesin,Brian Cur-
less,and Chintan Intwala. Spatio-angularresolutiontrade-o s in integral
photography. In Proceadings of Eurographics Symmsium on Rendering
pages263{272,2006. 11

Wolfgang Heidrich, Hendrik Lensd, Michael F. Cohen,and Hans-Reter
Seidel. Light eld techniquesfor re ections and refractions. In Proceed-
ings of Eurographics Rendering Workshop pages187{196,1999. 91

Daniel Horn. Vegastrike. http://ve gastrike.souceforge.net 2006. 63

Richard Hartley and Andrew Zisserman. Multiple View Geometry in
computer vision. PressSyndicate of the University of Cambridge, 2000.
28, 105

116

[HZ03]

[IMGOO]

[INH99]

[Kaj86]

[KS96]

[LCV* 04]

[LevO4a]

[Lev04b]

[LHO6]

[LPC*00]

BIBLIOGRAPHY

Richard Hartley and Andrew Zisserman. Multiple View Geometry in
Computer Vision (Second Edition). PressSyndicate of the University of
Cambridge, 2003. 33

Aaron Isaksen,Leonard McMillan, and Steven J. Gortler. Dynamically
reparameterizedlight elds. In Proceedings of SIGGRAPH, pages297{
306,2000. 47, 49

Konstantine lourcha, Krishna Nayak, and Zhou Hong. System and
method for xed-rate block-basedimagecompressionwith inferred pixel
values. US Patent 5,956,431 1999. 53

JamesT. Kajiya. The renderingequation. In Proceedingsof SIGGRAPH,
pagesl43{150.ACM Press/ ACM SIGGRAPH, 1986. 6

Sing Bing Kang and Rick Szeliski. 3-d scenedata recovery using omni-
directional multibaseline stereo. In Proceedings of Computer Vision and
Pattern Recognition (CVPR), pagesl167{183,1996. 15

Marc Lewvoy, Billy Chen, Vaibhav Vaish, Mark Horowitz, lan McDowall,
and Mark Bolas. Syrthetic aperture confocal imaging. In Proceedings of
Transactionson Graphics (SIGGRAPH), pages825{834,2004. 49

Marc Levoy. The stanford large statue scanner.
http://gr aphics.stanfod.edu/projects/mich/mgantry-in-lab/mgantry-
in-lab.html, 2004. 10

Marc Lewvoy. Stanford spherical gartry.
http://gr aphics.stanfod.edu/projects/gantry, 2004. 10, 74

Marc Levoy and Pat Hanrahan. Light eld rendering. In Proceedings of
SIGGRAPH, pages31{42,1996. 1, 2, 5, 7, 9, 10, 17, 47, 49, 53, 82, 89

Marc Lewvoy, Kari Pulli, Brian Curless, Szymon Rusinkiewicz, David
Koller, Lucas Pereira, Matt Ginzton, Sean Anderson, James Dauvis,

BIBLIOGRAPHY 117

[Mag05]

[MB95a]

[MBO5b]

[MBGNOS]

[MGO0]

Jereny Ginsberg, Jonathan Shade, and Duane Fulk. The digital
michelangelo project: 3D scanning of large statues. In Kurt Akeley
editor, Proceedings of SIGGRAPH, pages131{144.ACM Press/ ACM
SIGGRAPH / Addison WesleyLongman, 2000. 10

Marcus A. Magnor. Video-basal Rendering A K Peters, 2005. 7

Leonard McMillan and Gary Bishop. Plenoptic modeling: An image-
basedrendering system. Proceedings of Computer Graphics 29(Annual
ConferenceSeries):39{46,1995. 6

Eric N. Mortensenand William A. Barrett. Intelligent scissorsfor im-
age composition. In Proceadings of Computer graphics and Interactive
Techniques pages191{198,1995. 103

Tom McReynolds, David Blythe, Brad Grantham, and Scott Nelson.
Programming with opengl: Advancedtechniques. In Course 17 notesat
SIGGRAPH 98, 1998. 63

Marcus Magnor and Bernd Girod. Data compressiorfor light eld ren-
dering. In Proceedings of Transactionson Circuits and Systemdor Video
Technola@y, number 3, pages338{343,2000. 53

[MPDWO03] Vincent Masselus Pieter Peers,Philip Dutre, and YvesD. Willems. Re-

[MPN* 02]

[MRGO3]

lighting with 4d incidert light elds. In Proceedings of Transactionson
Graphics (SIGGRAPH), pages613{620,2003. 1

Wojciech Matusik, Hanspeter P ster, Addy Ngan, Paul Beardsley Remo
Ziegler,and LeonardMcMillan. Image-based®d photography usingopac-
ity hulls. In Proceedings of Transactionson Graphics (SIGGRAPH),
pages427{437,2002. 1

Marcus Magnor, Prashart Ramanathan, and Bernd Girod. Multi-view
coding for image-basedrendering using 3-d scenegeometry In IEEE

118

[MSF02]

[NLB* 05]

[OkoT76]

[PD84]

[Pe01]

[Per85]

[RNK97]

[Ros04]

[SB96]

[SCG' 05]

BIBLIOGRAPHY

Transactionson Circuits and Systemsfor Video Technolayy, pages1092{
1106,2003. 53

D. Menewaux, G. Subrenat, and A. Fournier. Reshadinglight elds.
Tednical report, IRCOM/SIC, March 2002. No 2002-01. 15

Ren Ng, Marc Levoy, Mathieu Bredif, GeneDuval, Mark Horowitz, and
Pat Hanrahan. Light eld photography with a hand-held plenoptic cam-
era. Tednical report, Stanford University, 2005. 11, 56

Takanori Okoshi. Three-Dimensional Imaging Techniques Academic
Press,1976. 11

Thomas Porter and Tom Du. Compositing digital images.In Proceed-
ings of Computer Graphics number 3, pages253{259,1984. 90

Ingmar Peter and Wolfgang Stra er. The wavelet stream: Interactive
multi resolution light eld rendering. In Proceedings of Eurographics
Rendering Workshop pages262{273,2001. 53

Ken Perlin. An image syrnthesizer. In Proceedings of SIGGRAPH, pages
287{296.ACM Press/ ACM SIGGRAPH, 1985. 49 86

Peter Rander, PJ Narayanan, and Takeo Kanade. Virtualized reality:
Constructing time-varying virtual worlds from realworld evens. In IEEE
Visualization 1997, pages277{284,1997. 11

Randi J. Rost. OpenGL ShadingLanguage Addison-Wesley 2004. 53,
55, 86, 87

Alvy Ray Smith and JamesF. Blinn. Blue screenmatting. In Proceedings
of Computer Graphicsand Interactive Techniques pages259{268,1996.
56, 109

Pradeep Sen, Billy Chen, Gaurav Garg, StephenR. Marsdner, Mark
Horowitz, Marc Levoy, and Hendrik P. A. Lensd. Dual photography. In

BIBLIOGRAPHY 119

[SHO9]

[SK98]

[SP86]

[SS04]

[Ups92]

[VWJLO04]

[WAA* 00]

[WFZ02]

[WJV*05]

Proceedings of Transactionson Graphics (SIGGRAPH), pages745{755,
2005. 1

Heung-Yeung Shum and Li-Wei He. Renderingwith conceitric mosaics.
In Proceadings of SIGGRAPH, pages299{306,1999. 89

Stewe Seitz and Kiriakos N. Kutulakos. Plenoptic image editing. In
Proceedings of International Conferenee on Computer Vision (ICCV),
pagesl7{24,1998. 15

ThomasW. Sederkergand Scott R. Parry. Free-formdeformation of solid
geometry models. In Proceedings of SIGGRAPH, pages151{160, 1986.
2,23 24

Heung-Yeung Shum and Jian Sun. Pop-up light eld: An interactive
image-basednodeling and rendering system. In Proceedings of Transac-
tions on Graphics pagesl143{162,2004. 47, 105

Stewe Upstill. The RenderMan Compmanion: A Programmer's Guide to
Realistic Computer Graphics Addison-Wesley 1992. 3, 47

Vaibhav Vaish, Bennett Wilburn, Neel Joshi, and Marc Levoy. Using
plane + parallax for calibrating densecameraarrays. In Proceedings of
Computer Vision and Pattern Recognition (CVPR), pages2{9, 2004. 2,
8, 47, 49, 53

Daniel N. Wood, Daniel I. Azuma, Ken Aldinger, Brian Curless, Tom
Duchamp, David H. Salesin,and Werner Stuetzle. Surfacelight elds for
3d photography. In Proceedings of SIGGRAPH, pages287{296,2000. 7

Yoni Wexler, Andrew Fitzgibbon, and Andrew Zisserman. Bayesianes-
timation of layersfrom multiple images.In Proc. ECCV, pages487{501,
2002. 106

Bennett Wilburn, NeelJoshi, Vaibhav Vaish, Eino-Ville Talvala, Emilio
Antunez, Adam Barth, Andrew Adams, Mark Horowitz, and Marc Levoy.

120

[WLO1]

[WPG04]

[WSLHO2]

[yaf0s]

[YEBMOZ2]

[YMO4]

[YYMOS5]

[Z2C04]

[ZKU* 04]

BIBLIOGRAPHY

High performanceimaging using large cameraarrays. In Proceedings of
Transactionson Graphics (SIGGRAPH), pages765{776,2005. 11, 49

Li-Yi Wei and Marc Levoy. Texture syrthesis over arbitrary manifold
surfaces.In Proceadings of SIGGRAPH, pages355{360,2001. 41

Tim Weyrich, Hanspeter P ster, and Markus Gross. Rendering de-
formable surfacere ectance elds. In Proceadings of Transactionson
Computer Graphicsand Visualization, pages48{58, 2004. 15

Bennett Wilburn, Michael Smulski, Hsiao-HengKelin Lee, and Mark
Horowitz. The light eld video camera.In Proceedings of Media Proces-
sors 2002, SPIE Electronic Imaging, 2002. 11

yafray. yafray. http://www.yafr ay.org/, 2005. 94

JasonC. Yang, Matthew Everett, Chris Buehler,and Leonard McMillan.
A real-time distributed light eld camera.In Proceedings of Eurographics
Rendering Workshop pages77{86, 2002. 11

Jingyi Yu and Leonard McMillan. Generallinear cameras. In Proceed-
ings of European Conference on Computer Vision (ECCV), pagesl4{27,
2004. 60

Jingyi Yu, Jason Yang, and Leonard McMillan. Real-time re ection
mapping with parallax. In Proceedings of Symmsium on Interactive 3D
Graphicsand Games(I13D) , pages133{138,2005. 91

Cha Zhang and Tsuhan Chen. A self-recon gurable cameraarray. In
Proceedings of Eurographics Symmsium on Rendering pages243{254,
2004. 11

C. Lawrence Zitnick, Sing Bing Kang, Matthew Uyttendaele, Simon
Winder, and Richard Szeliski. High-quality video view interpolation us-
ing a layeredrepresemation. In Proceedings of Transactionson Graphics
(SIGGRAPH), pages600{608,2004. 103

BIBLIOGRAPHY 121

[ZWGSO02] Zhunping Zhang, Lifeng Wang, Baining Guo, and Heung-Yeung Shum.
Feature-basedlight eld morphing. In Proceedings of Transactionson
Graphics (SIGGRAPH), pages457{464,2002. 2, 15, 41, 47

