
NOVEL METHODS FOR MANIPULA TING AND COMBINING

LIGHT FIELDS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Billy Chen

September 2006

c
 Copyright by Billy Chen 2006

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it

is fully adequatein scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Marc Levoy) Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it

is fully adequatein scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Hendrik Lensch)

I certify that I have read this dissertation and that, in my opinion, it

is fully adequatein scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Pat Hanrahan)

Approved for the University Committee on Graduate Studies.

iii

iv

Abstract

Image-basedmodeling is a family of techniques that usesimages, rather than 3D

geometricmodels,to represent a scene.A light �eld is a commonimage-basedmodel

used for rendering the appearanceof objects with a high-degreeof realism. Light

�elds are usedin a variety of applications. For example,they are usedto capture the

appearanceof real-world objects with complex geometry, like human bodies, furry

teddy bears,or bonsai trees. They are also usedto represent intricate distributions

of light, like the illumination from a
ash light. However, despitethe increasingpop-

ularit y of using light �elds, su�cien t tools do not exist for editing and manipulating

them. A secondlimitation is that thosetools that have beendeveloped have not been

integrated into toolkits, making it di�cult to combine light �elds.

This dissertationpresents two contributions towards light �eld manipulation. The

�rst is an interactive tool for deformation of a light �eld. Animators could usethis

tool to deform the shape of captured objects. The secondcontribution is a system,

called LightShop, for manipulating and combining light �elds. Operations such as

deforming,compositing, and focusingwithin light �elds can be combined together in

a singlesystem. Such operations are speci�ed independent of how that light �eld is

capturedor parameterized,allowing a userto simultaneouslymanipulateand combine

multiple light �elds of varying parameterizations.This dissertation�rst demonstrates

light �eld deformation for animating captured objects. Then, LightShop is demon-

strated in three applications: 1) animating captured objects in a composite scene

containing multiple light �elds, 2) focusingon multiple depths in an image, for em-

phasizingdi�erent layers in sports photography and 3) integrating captured objects

into interactive games.

v

vi

Ac knowledgmen ts

My successin graduate school would not have beenpossibleif not for the support

and guidanceof many people. First I would like to thank my advisor, Marc Levoy,

for his enduring patience and advice throughout my graduate career. There have

beenmultiple times whenMarc went above and beyond the call of duty to edit paper

drafts, �nalize submissions,and review talks. His guidance played a critical role

in my success. I would also like to thank Hendrik Lensch for his practical advice

and support. Hendrik hasan excellent intuition for building acquisition systems;his

adviceon such matters wasinvaluable. In the courseof conductingresearch together,

Hendrik becamenot only my mentor but also my good friend. I would also like to

thank the other members of my committee, Pat Hanrahan, Leo Guibas, and Bernd

Girod for their discussionson this dissertation. Their insights greatly improved this

thesis.

I would also like to thank my friends and family for their recreationaland emo-

tional support. In particular, my colleaguesin room 360 have becomemy life-long

friends: Vaibhav Vaish, Gaurav Garg, Doantam Phan, and Leslie Ikemoto. When I

look back at our graduateyears,I will remember our experiencesthe most. I am also

honoredto have the opportunit y to sharemy Ph.D. adventure with other friends in

the department. Most notably, thosenotoriousgslackers, with which I havehad many

mind-altering conversationsand experiences,greatly enhancedmy time at Stanford.

I am also deeply indebted to my family for believing in me and for giving me the

inspiration to apply and completea doctoral degree.

Last but not least, I would like to thank my girl friend, Elizabeth, who was my

pillar of support throughout my graduatecareer.During times of stress,shelistened.

vii

After paper deadlines,she celebrated. When research hit a dead-end,she inspired.

When research felt like it wasspiraling out of control, shebrought serenity. It should

be no surprisethat this dissertation would be impossiblewithout her. I dedicatethis

thesis to her.

viii

Con ten ts

Abstract v

Ac knowledgmen ts vii

1 In tro duction 1

2 Background 5

2.1 Image-basedModelsand Light Fields 5

2.1.1 The Plenoptic Function . 6

2.1.2 The Light Field . 6

2.1.3 Parameterizations. 7

2.1.4 A DiscreteApproximation to the ContinuousLight Field . . . 8

2.1.5 Renderingan Image from a Light Field 9

2.2 Acquisition Systems . 10

3 Ligh t Field Deformation 13

3.1 PreviousWork: 3D Reconstructionfor Deformation 15

3.2 Solving the Illumination Problem . 16

3.2.1 The Coaxial Light Field . 17

3.2.2 Using Coaxial Light Fields to Solve Illumination Inconsistency 18

3.2.3 Trading-o� Ray-transformation and Lighting Complexity . . . 22

3.3 Specifying a Ray Transformation . 23

3.3.1 Free-formDeformation . 24

3.3.2 Trilinear Interpolation . 24

ix

3.3.3 De�ning a Ray Transformation 27

3.3.4 Properties of the Ray Transformation 27

3.4 Implementing the Ray Transformation 35

3.5 Results . 37

3.6 Specifying Multiple Ray Transformations 38

3.7 RenderingMultiple DeformedLayers 39

3.8 Resultswith Multiple Deformations 41

3.9 Summary . 42

4 Ligh tShop: A System for Manipulating Ligh t Fields 45

4.1 Introduction . 45

4.2 LightShop's ConceptualModel . 47

4.3 Example: Focusingwithin a Light Field 49

4.4 LightShop's Design . 50

4.5 The LightShop Implementation . 52

4.5.1 Light Field Representation . 53

4.5.2 LightShop's Modeling Implementation 53

4.5.3 LightShop's Ray-shadingImplementation 55

4.6 ResultsUsing LightShop . 55

4.6.1 Digital Photography . 56

4.6.2 Integrating Light Fields into Games. 61

4.7 Summary . 65

5 Conclusions and Future Work 69

A Table of Ligh t Fields and their Sizes 71

B Pro jector-based Ligh t Field Segmentation 73

C The Ligh tShop API 79

C.1 Overview of the API . 79

C.2 LightShop's Modeling Interface . 80

C.2.1 Graphics Environment (Scene). 83

x

C.2.2 Modeling Functions Available to the Programmer 84

C.3 LightShop's Ray-shadingLanguage 85

C.3.1 Data Typesand Scope . 86

C.3.2 Flow Control . 87

C.3.3 Light Field Manipulation Functions 88

C.4 A Simple Example . 93

D Focus-based Ligh t Field Segmentation 103

E Other Ligh t Field Manipulations 107

E.1 Refraction and Focusing . 107

E.2 Shadows . 108

Bibliograph y 113

xi

xii

List of Tables

4.1 Light �eld operations . 47

A.1 Light �elds, their sizesand their acquisition methods 71

C.1 LightShop primitiv esand attributes 97

C.2 LightShop compositing operators . 97

xiii

xiv

List of Figures

2.1 Ray parameterizationfor a SLF . 9

3.1 Imagesof a twisted toy Terra Cotta Warrior 13

3.2 A lambertian scenewith distant lighting 17

3.3 The lambertian scenedeformed . 18

3.4 Two imagesfrom a coaxial light �eld 19

3.5 Goniometric Diagramsof Two Di�eren tial Patches. 20

3.6 Goniometric Diagramsof After Ray Transformation 21

3.7 Comparing deformation of a coaxial and �xed lighting light �eld . . . 22

3.8 Bilinear deformation . 26

3.9 Algorithm for free-formdeformation of rays 28

3.10 An illustration of ray transformation 29

3.11 A hierarchy of line transformations 30

3.12 A projective transform on lines . 33

3.13 Bilinear ray-transforms on lines . 34

3.14 Approximating an inversewarp by interpolation 36

3.15 An inversewarp is approximated by forwarding warping samples. . . 37

3.16 Deformation box for the toy Terra Cotta Warrior 38

3.17 Illustration of free-formdeformation on a light �eld 39

3.18 An imagefrom the teddy bear light �eld 40

3.19 Renderinga view ray . 42

3.20 Imagesfrom a deformed�sh light �eld 43

3.21 Imagesfrom a deformedteddy bear light �eld 44

xv

4.1 Warping view-rays to simulate deformation 48

4.2 Figure of focusingthrough a single lens 50

4.3 Example ray-shadingprogram for focusing 51

4.4 Overview of LightShop . 52

4.5 Comparing S3TC to uncompressedimagery 54

4.6 An imagefrom a wedding light �eld 56

4.7 Imagesfrom three light �elds of individuals in front of a greenscreen 57

4.8 Samplecode for relighting . 57

4.9 Imagesvirtually relit by linearly combining light �elds 58

4.10 Imagescomposited from the wedding and mugshot LFs 58

4.11 Code for compositing . 59

4.12 An imagefrom the swimmerslight �eld 59

4.13 Illustration of light integration for a singlepixel 61

4.14 Ray-shadingcode for multi-plane focusing 62

4.15 Imagesillustrating focusingand multi-fo cal planes 63

4.16 Imagesfrom VegaStrike . 64

4.17 Imagesfrom a light �eld of a toy spaceship 65

4.18 Screencapturesof toy ships in VegaStrike 66

B.1 Acquisition setup for capturing light �elds 74

B.2 A hand-drawn projector color mask 76

B.3 Imagesillustrating projected-basedlight �eld segmentation 77

C.1 Modeling a scenewith LightShop . 81

C.2 A LightShop ray-shadingprogram . 82

C.3 The lensmodel usedin LightShop . 83

C.4 Renderingfrom a sphere-planelight �eld 90

C.5 Imagesillustrating ray-warping for turning heads 93

C.6 Multiple viewsof the twisted light �eld 93

C.7 An imagerenderedfrom a sceneof light �elds 94

C.8 Novel viewsof a composite sceneof light �elds 95

C.9 LightShop function calls that model the toy scene 98

xvi

C.10An exampleray-shadingprogram for Figure C.7 99

C.11 Imageafter sampling from the Buddha light �eld 100

C.12 Imageafter compositing the
o wer over the Buddha light �eld 100

C.13 Imageafter compositing the refracted Buddha over the
o wer light �eld 101

D.1 Illustration of the alpha matte extraction pipeline 104

E.1 Combining focusingwith refraction 108

E.2 Imagesillustrating shadow-casting with light �elds 110

E.3 Focusingwith soft shadows . 111

xvii

xviii

Chapter 1

In tro duction

A long-term goal in computer graphics has been rendering photo-realistic imagery.

One approach for increasingrealism is image-basedmodeling, which usesimagesto

represent appearance.In recent years,the light �eld [LH96], a particular image-based

model, has beenusedto increaserealism in a variety of applications. For example,

light �elds capture the appearanceof real-world objects with complexgeometry, like

furry teddy bears[COSL05], or bonsai trees [MPN+ 02]. Incident light �elds capture

the local illumination impinging on an object, whether it is a
ash light with intricate

light patterns [GGH03], or general4D illumination [MPDW03, SCG+ 05, CL05]. In

the �lm industry, light �elds have found their usein creating \bullet-time" e�ects in

production �lms like The Matrix or national sports broadcastslike the Superbowl of

2001.Light �elds areusefulin representing objects that arechallengingfor traditional

model-basedgraphics1.

However, light �elds have their limitations, compared to traditional modeling.

Light �elds are typically represented using images,so it is not obvious how to ma-

nipulate them as we do with traditional models. This di�cult y explainswhy only a

handful of editing tools exist for light �elds. However, if onecould deform, composite

or segment light �elds, this would enablea user to interact with the object, rather

than just to view it from di�erent viewpoints.

1\traditional model" refers to the useof models to represent the geometry, lighting and surface
appearancein a scene.

1

2 CHAPTER 1. INTR ODUCTION

Another challenge is that the existing tools found in the literature, like view-

interpolation [LH96], focusing[VWJL04], or morphing [ZWGS02], werenot designed

for generallight �eld editing. Consequently, the abilit y to combine tools, similar to

how imagesare edited in Adobe Photoshop, is simply not o�ered by theseresearch

systems..

To addressthe two problemsof interacting with a light �eld and combining such

interactions, this dissertation presents two contributions toward manipulating and

combining light �elds:

1. a novel way to manipulate a light �eld by approximating the appearanceof

object deformation

2. a systemthat enablesa user to apply and combine operations on light �elds,

regardlessof how each dataset is parameterizedor captured

In the �rst contribution, a technique is presented that enablesan animator to

deform an object represented by a light �eld. Object deformation is a common

operation for traditional, mesh-basedobjects. Deformation is performedby moving

the verticesof the underlying mesh. The goal is to apply this operation to light �elds.

However, light �elds do not have an explicit geometry, so it is not immediately clear

how to simulate a deformation of the represented object. Furthermore, we require

the deformation to be intuitiv e so that it is accessibleby animators.

The key insight that enableslight �eld deformation is the use of free-form de-

formation [SP86] to specify a transformation on the rays in a light �eld. Free-form

deformation is a commonanimation tool for specifying a deformation for mesh-based

objects. We modify this deformation technique to induce a transformation on rays.

The ray transformation approximates a deformation of the underlying geometryrep-

resented by the light �eld. This operation enablesa user to deform real, captured

objects for usein animation or interactive games.

In the secondcontribution, we introducea systemthat incorporatesdeformation,

alongwith a host of other tools, into a uni�ed framework for light �eld manipulation.

We call this systemLightShop. Previous work for manipulating light �elds are sys-

tems designedfor a single task, like view interpolation. A systemthat incorporates

3

multiple operationsfacesadditional challenges.First, operationscanmanipulate light

�elds in a variety of ways, so the systemmust exposedi�erent functionality for each

operation. Someexamplesinclude summing over multiple pixels in each image(like

focusing),or shifting pixels acrossimages(like deformation). Second,light �elds may

be captured and parameterizeddi�erently, sothe systemmust abstract the light �eld

representation from the user. Thesechallengesindicate that careful thought must be

given to how to specify operations.

There are two key insights that drive the designof LightShop. The �rst insight is

to leveragethe conceptualmodel of existing 3D modeling packagesfor manipulating

traditional 3D objects. In systemslike RenderMan [Ups92] or OpenGL [BSW+ 05],

a user �rst de�nes a scenemade up of polygons, lights, and cameras. Then, the

usermanipulatesthe sceneby transforming vertices,and adjusting light and camera

properties. Finally, the user renders a 2D image using the de�ned camerasand

the scene. We call this conceptualmodel, model, manipulate, render. LightShop is

designedin the sameway, exceptthat the scenecontains only light �elds and cameras.

LightShop exports functions in an API to model (e.g. de�ne) a scene.The light �elds

are then manipulated and an image is rendered from the scene. The problem of

manipulating and renderinga light �eld is solved using the secondkey insight.

The secondkey insight is to specify light �eld operations as operations on rays.

Ray operations can be de�ned independent of the light �eld parameterization. Fur-

thermore, we de�ne these operations using a ray-shadinglanguagethat enablesa

programmer to freely combine operations. In a ray-shadingprogram, by composing

multiple function calls, a user can combine multiple operations on light �elds. To

render an imagefrom this manipulated scene,we map the ray-shadingprogram to a

pixel shading languagethat runs on the graphics hardware. The sameray-shading

program is executedfor every pixel location of the image. When the program has

�nished execution for all pixels, the �nal image is returned. Rendering an image

using the programmablegraphics hardware allows LightShop to produce imagesat

interactive rates and makesit more amenablefor integration into video games.

A systemlike LightShop can be usedin a variety of applications. In this disser-

tation, three applications are prototyped: 1) a light �eld compositing program that

4 CHAPTER 1. INTR ODUCTION

allowsa userto rapidly composeand deforma scene,2) a novel post-focusingprogram

that allows for simultaneously focusingat multiple depths, and 3) an integration of

a captured light �eld into a popular OpenGL space-
ight simulator.

The dissertation is organized in the following way. Chapter 2 describes back-

ground material related to light �elds. This chapter also motivates the needto ma-

nipulate light �elds by describing the increasingnumber of acquisition systemsand

their decreasingcost and complexity in acquiring a dataset. Chapter 3 describes

the �rst contribution of this thesis: a novel way to manipulate light �elds through

deformation. Chapter 4 describes the secondcontribution: LightShop, a systemfor

manipulating and combining light �elds. In this chapter, results are shown for ap-

plications in digital photography, and interactive games. Many of theseresults are

time-varying, so the readeris invited to perusethe webpage,

http://graphics.stanford. edu/papers/ bchen_thesi s . Chapter 5 concludeswith

a summary of the contributions and future improvements.

http://graphics.stanford.edu/papers/bchen_thesis

Chapter 2

Background

In this chapter, image-basedmodels are reviewed. In particular, the physics-based

notion of a light �eld is discussed,and its approximation, by a set of images, is

reviewed. Next, the need to manipulate and combine light �elds is motivated by

a discussionof the progressionof light �eld acquisition systems. In this discussion,

it is shown that these systemsare becoming easier to use, cheaper to build, and

more commonplace. Thesefactors lead to the result that light �elds are becoming

akin to imagesand traditional 3D models. Consequently, there is an increasingneed

to manipulate and interact with such datasets, beyond just rendering from novel

viewpoints.

2.1 Image-based Mo dels and Ligh t Fields

An image-basedmodel (IBM) usesimagesto represent an object's appearance,with-

out explicitly modeling geometry, surfaceproperties or illumination. The key idea

is that an object's appearanceis fully captured by the continuous distribution of

radiance eminating from that object. This distribution of radiance is called the

plenoptic function [AB91]. In practice, one can not fully capture an object's con-

tinuous plenoptic function and must therefore capture restrictions of it. The light

�eld [LH96, GGSC96] is onesuch restriction that allows for convenient acquisition of

real-world objects and e�cien t rendering. In the following, the notion of the plenoptic

5

6 CHAPTER 2. BACKGROUND

function is brie
y reviewed, followed by a discussionof the light �eld.

2.1.1 The Plenoptic Function

The plenoptic function [AB91, MB95a] is a seven dimensionalfunction that describes

the radiancealong a ray at time t, wavelength � :

P = P(x; y; z; � ; �; �; t) (2.1)

x; y; z; � ; � describe the ray incident to the point (x; y; z) with direction (� ; �) in spher-

ical coordinates. The interesting point about Equation 2.1 is that it fully describes

the appearanceof an object under �xed lighting. An object's appearancedependson

the incident illumination, surfaceproperties, and geometry [Kaj86]. The plenoptic

function captures this appearanceparameterizedas radiance along each point and

direction pair in the scene.When an imageneedsto be renderedfrom the plenoptic

function, the radiancealong a ray is computedby evaluating the plenoptic function.

In practice, measuringan object's entire continuous plenoptic function is impos-

sible, so it is approximated by discretization and restricted by dimensionreduction.

The 4D light �eld is onesuch approximation/restriction.

2.1.2 The Ligh t Field

First, assumethat the plenoptic function is static and doesnot vary over time. Next,

basedon the tristim ulus theory of color perception [FvDFH97], the locusof spectral

colors is approximated by a basis of three primaries: red, green and blue. This

converts Equation 2.1 to the following vector-valued equation:

Pr gb = Pr gb(x; y; z; � ; �) (2.2)

where Pr gb is a 3-vector corresponding to the weights for each red, green,and blue

primary.

One more reduction can be performed,which assumesthat the radiancealong a

ray is constant. This assumptionis true whenthe plenoptic function is de�ned in free

2.1. IMA GE-BASED MODELS AND LIGHT FIELDS 7

space.The redundancyin Equation 2.2 is removed by parameterizingthe light �eld

in terms of rays insteadof a (x; y; z) point and (� ; �) direction [LH96, Mag05]. Hence,

a light �eld is a four dimensionalfunction mapping rays in free spaceto radiance:

L = L(u; v; s; t) (2.3)

The input, a ray in free space,takes4 coordinates u; v; s; t to represent [LH96]. The

output, radiance, is approximated by a three-component RGB vector. The input

coordinatescan represent spatial positionsor directions dependingon the parameter-

ization. For example,in the two-planeparameterization[LH96], u; v and s; t are the

ray-intersectionswith the UV� and ST-planes. The next sectiondescribes the two

light �eld parameterizationsusedin this thesis. However, the light �eld operations,

asdescribed in Chapter 4, are independent of the parameterization.

2.1.3 Parameterizations

Throughout this thesis, light �elds useone of two parameterizations,two-planeand

sphere-plane.A third, the circular parameterization,is a special caseof the latter for

3D light �elds. Theseparameterizationsare not de�ned on any surfacein the scene.

This property allows the representation of objects with complexgeometry, like hair,

or fur (sincethe parameterizationneednot lie on the hair or fur geometry). However,

the disadvantage is that moresamplesneedto be captured in order to avoid ghosting

when rendering[CTCS00]. For light �eld parameterizationsthat make useof surface

geometry, the readeris referredto surfacelight �elds [WAA + 00], and view-dependent

texture maps [DTM96].

Tw o-plane

L = L(u; v; s; t) (2.4)

In a two-planeparameterization,two planes,a UV- and ST-plane,are de�ned. A ray

is described by four coordinates, (u; v; s; t) which describe the two intersectionswith

8 CHAPTER 2. BACKGROUND

the UV- and ST-plane. This is a natural parameterizationfor datasetsacquiredfrom

an array of cameras. The UV-plane is de�ned as the plane on which the cameras

lie. The ST-plane is the plane on which all camera imagesare recti�ed. Images

are recti�ed by capturing a light �eld of a planar calibration target and computing

homographiesto a user-selectedcameraimage[VWJL04].

Sphere-plane

L = L(�; � ; s; t) (2.5)

The sphere-planelight �eld parameterization(SLF) usesa di�erent set of four coor-

dinates. A spherewith radius R surroundsthe object represented by the light �eld.

A ray is parameterizedby two intersections,(�; �) and (s; t). The �rst is the closest

intersection with the sphere. This is parameterizedusing sphericalcoordinates; � is

the angle from the vertical axis of the sphereand � is the rotation anglearound the

vertical axis. The secondintersection, parameterizedby (s, t), is on a plane that

is incident to the center of the sphere,with normal N . Figure 2.1 illustrates this

parameterization.

A specialcaseof the SLF for 3D light �elds is the circular parameterization, which

�xes � to 90� . The �sh, teddy bear and toy warrior light �elds listed in Table A.1

usethis parameterization.

2.1.4 A Discrete Appro ximation to the Con tin uous Ligh t

Field

Given the two parameterizationsdescribed above, acquisition systemsdiscretelysam-

ple the continuous light �eld with ray samples. In practice, thesediscrete samples

areacquiredfrom capturedphotographs.Assumingthat camerasarepinhole devices,

each photographmeasuresthe radiancealonga bundle of rays converging to the cen-

ter of projection of the camera. If multiple photographsare captured from di�erent

viewpoints, theseimagesapproximate the continuous light �eld.

2.1. IMA GE-BASED MODELS AND LIGHT FIELDS 9

q

(s,t)

f

y

x

z

Figure 2.1: Ray parameterizationfor a sphere-planelight �eld. (�; � ; s; t) are the four
coordinatesde�ning a ray. The ray is shown in red.

Usingdiscreteray samplesrequirescalculatinga samplingpattern and the number

of samplesto acquire. Assumingno knowledgeabout the geometryof the underlying

object, a good sampling strategy for the two-plane and sphere-planeparameteriza-

tions is to pick uniformly-spacedsamples[LH96, CLF98]. For the two-planeparam-

eterization, this meanspicking sampleson a grid in the UV- and ST-planes.For the

sphere-planeparameterization, this meanspicking � and � so that the samplesare

equallyspacedon the surfaceof the sphere.Ideally, s and t on the planearechosenso

that their projection to the rear-surfaceof the sphereform equally spacedsamples1.

2.1.5 Rendering an Image from a Ligh t Field

Oncea discreteapproximation of a light �eld has beencaptured, a commontask is

to rendera virtual view of the light �eld. Naturally, if the virtual view coincideswith

a captured viewpoint, then the relevant imagecan be returned. More interestingly, if

the virtual view is a novel view, an imagecan be renderedby sampling nearestrays

from the captured light �eld. Renderinga novel view from a light �eld is discussedin

1In practice, the sampling distribution on this ST-plane is determined by the pixel grid pattern
on the camerasensor,which createsa non-uniform pattern when projected onto the rear surfaceof
the sphere. However, in our datasets the samplesare denseenoughthat few artifacts are visible.

10 CHAPTER 2. BACKGROUND

more detail in [LH96, GGSC96, BBM+ 01]. This processof rendering an imagefrom

a light �eld hasnumerousnames,including \ligh t �eld sampling," \rendering from a

light �eld," \novel view synthesis," and \extracting a 2D slice".

2.2 Acquisition Systems

Historically, a major hurdle in the use of light �elds is acquiring densesamplesto

approximate the continuous function shown in Equation 2.3. Fortunately, recent ad-

vancesin cameratechnologycombined with novel usesof opticshavemadeacquisition

not only a practical task, but also a cheap and potentially commonone as well. As

light �elds becomemore common,userswill want to interact with them as they do

with imagesand traditional 3D models.

Early acquisition systemsmadeuseof mechanical gantries to acquire light �elds.

A camerais attached to the end of the gantry arm and the arm is moved to multiple

positions. Two useful gantry con�gurations are the planar and spherical ones. In

a planar con�guration, the end e�ector of the gantry arm moves within a plane,

enabling acquisition of two-plane parameterized light �elds. One example is the

gantry [Lev04a] used to acquire 3D scansof Michelangelo'sDavid [LPC+ 00] and a

light �eld of the statue of Night. This gantry is used to acquire several two-plane

light �elds listed in Table A.1. In a sphericalcon�guration, the end-e�ector travels

on the surfaceof a sphere,enabling acquisition of circular and spherical light �elds.

The Stanford SphericalGantry [Lev04b] is oneexample. This gantry is also usedto

acquire the sphere-planeand circular light �elds in Table A.1. While thesegantries

can capture a densesampling of a light �eld, they assumea static scene,are bulky,

and are costly. The Stanford SphericalGantry costs$130,000.

To capture dynamic scenes,researchers have built arrays of cameras.The abilit y

to acquire dynamic scenesenablesthe acquisition of complex objects like human

actors. Manex Entertainment �rst popularized this technique in the movie, The

Matrix . During one scene,the actressappears to freezewhile the camera moves

around her. This e�ect, now coinedthe \Matrix e�ect" or \bullet-time," wascreated

by simultaneously triggering an array of cameras,and rendering imagesfrom the

2.2. ACQUISITION SYSTEMS 11

captured photographs.

Other cameraarrays include the video cameraarray in the Virtualized Reality

Project at CMU [RNK97] , the 8x8 webcam array at MIT [YEBM02], the 48 pan-

translation camera array [ZC04], and the Stanford Multi-camera Array [WJV + 05,

WSLH02]. This thesisusesseveral datasetscapturedusingthe StanfordMulti-camera

Array. With the exceptionof the webcam array, each systemis costly and makesuse

of specializedhardware. Furthermore, arrays like the Stanford Multi-camera Array

generallyspana largearea(3 x 2 meters),which makesit challengingto move. These

acquisitiondevicesareusefulin a laboratory setting, but have limited usein everyday

settings.

To build mobile and cheap acquisition devices,researchers have exploited optics

to trade o� the spatial resolutionof a singlecamerafor multiple viewpoints of a scene.

One of the �rst techniquesis integral photography, in which a
y's-eye lens sheetis

placedin front of a sensorarray, thereby allowing the array to capture the scenefrom

many viewpoints [Oko76]. The total image is composedof tiny images,each with a

di�erent viewpoint. Today, such imagesare created by embedding lenseswithin a

camerabody [NLB+ 05] or a lens encasement [GZN+ 06]. This thesis contains light

�elds captured from the hand-heldlight �eld camerabuilt by Ng et al. In [GZN+ 06],

they construct a lensencasement containing 20 lenses.Each lensprovidesa di�erent

viewpoint of the scene.The lens encasement is attachable to any conventional SLR

camera. A light �eld is captured simply by pressingthe shutter button. Acquisition

devicessuch as this are mobile, cheap, and easy to use. As such devicesbecome

common, light �elds will becomeabundant and userswill want to manipulate this

data type asthey do with imagesand 3D objects. The �rst contribution of this thesis

is a novel way to manipulate theselight �elds, described in Chapter 3.

12 CHAPTER 2. BACKGROUND

Chapter 3

Ligh t Field Deformation

The �rst contribution of this thesis is a novel way to manipulate light �elds, by

approximating object deformation. An animator can then \breathe life" into objects

represented by light �elds. Our goal is similar to cartoon animation; the �nal result is

a deformedobject, but the object neednot bephysically plausible,volume-preserving,

or \w ater-tight". Figure 3.1 illustrates a deformation that twists a light �eld of a toy

Terra Cotta Warrior.

Figure 3.1: Light �eld deformationenablesan animator to interactively deformphoto-
realistic objects. The left �gure is an image from a light �eld of a toy Terra Cotta
Warrior. The middle imageshows a view of the light �eld after applying a deforma-
tion, in this case,a twist to the left. Notice that his feet remain �xed and his right
ear now becomesvisible. The right image shows the warrior turning to his right.
Animating the light �eld in this way makes it appear alive and dynamic, properties
not commonly associated with light �elds.

13

14 CHAPTER 3. LIGHT FIELD DEFORMATION

In order to deform a light �eld there are two core problems that need to be

solved. The �rst is specifying a transformation on the rays of the light �eld so that

it approximates a change in shape. The secondis ensuring that the illumination

conditions after deformation remain consistent.

For the �rst problem, recall from Chapter 2 that a light �eld is a 4D function

mapping rays to RGB colors. In practice, this 4D function is approximated by a

set of images. In other words, a light �eld can be thought of as a set of rays, or a

set of pixels. An object represented by a light �eld is composedof theserays. The

goal is to specify a transformation that maps rays in the original light �eld to rays

in a deformed light �eld. Many ray-transformations exist, but we seeka mapping

that approximates a change in the shape of the represented object. For example,

a simple ray-transformation can be constructedby exploiting the linear mapping of

3D points. If we represent this mapping as a 4x4 matrix and represent 3D points in

homogeneouscoordinates,then to deformthe light �eld we simply take each ray, pick

two points along that ray, apply the 4x4 matrix to both points, and form a new ray

from the two transformed points. This ray-transformation simulates a homogeneous

transformation on the object represented by the light �eld. In this chapter, wepresent

a ray-transformation that can intuitiv ely expressEuclidean, similarity, and a�ne

transformations. This transformation can also simulate the e�ect of twisting the 3D

spacein which an object is embedded, an e�ect that is di�cult with a projective

transformation.

The secondproblem to deformation is related to the property that the RGB color

along any ray in a light �eld is a function of the illumination condition. When a

ray is transformed, the illumination condition is transformed along with the ray.

When multiple rays are transformed, this can producean overall illumination that is

di�erent than the original. For example,considera light �eld of a scenewith a point

light and a
at surface. Considera ray r that is incident to a point on the surface.

The incident illumination makes an angle with respect to r . If we transform r , the

illumination angleremains�xed, relative to r . This causesthe apparent illumination

to di�er from the original light direction. The goal is to provide a way to ensure

that after deformation, the illumination remains consistent to the original lighting

3.1. PREVIOUS WORK: 3D RECONSTRUCTION FOR DEFORMATION 15

conditions. To solve this problem, a special kind of light �eld, called a coaxial light

�eld is captured.

Thesetwo problemsare not new. Previousapproachesavoid the two problemsof

specifying a ray-transform and preservingillumination by attempting to reconstruct

a 3D model basedon the input images1. Hence,an accurate3D model is necessary.

The solution presented in this thesisavoids building an explicit model and provides

a solution for maintaining a speci�c form of illumination during deformation.

3.1 Previous Work: 3D Reconstruction for Defor-

mation

Previousapproachesreconstruct geometry, surfaceproperties and illumination using

the imagesfrom the light �eld. Then the geometry is deformedby displacing mesh

vertices. The deformedobject can then be re-rendered. However, reconstructing a

geometryfrom imagesis a di�cult problem in computer vision. Nevertheless,several

techniquesexist, including multi-baseline stereo[KS96] and voxel coloring [SK98].

Assuming that a 3D model can be constructed, re
ectance properties are then

estimated. In [SK98], they assumethe object is di�use. Meneveaux and Fournier

discussa systemthat can make useof more complexre
ectance properties [MSF02].

The re
ectance properties can alsobe represented in a sampledform, as is shown by

Weyrich et al., in which they capture and deforma surfacere
ectance �eld [WPG04].

Knowing the surfaceproperties and geometry is su�cien t to keep the apparent il-

lumination consistent after object deformation. Once the mesh vertices have been

deformed,the appearanceof that part of the meshcan be renderedusing the local

surfacenormal, incident light direction and view direction.

This approach is successfulas long as geometry, surfaceproperties, and illumi-

nation can be accurately modeled. Unfortunately, this assumption fails for many

interesting objects for which light �elds are commonly used,like furry objects. The

1One approach, usedin light �eld morphing [ZWGS02], avoids 3D reconstruction and instead in-
ducesa ray-transformation betweentwo input light �elds by specifying corresponding rays. However,
they do not addressthe problem of inconsistent illumination.

16 CHAPTER 3. LIGHT FIELD DEFORMATION

approach presented in this thesisavoids explicit reconstruction and presents a tech-

nique for keepingillumination consistent and for specifying a ray-transformation.

3.2 Solving the Illumination Problem

In introducing our technique for light �eld deformation, we �rst addressthe problem

of maintaining consistent illumination during a transformation of the rays of a light

�eld. Then, we discusshow a transformation can be speci�ed by an animator in an

intuitiv e, interactive manner.

To understand the illumination problem that ariseswhen transforming the rays

of a light �eld, considerthe sceneshown in Figure 3.2. A point light is located at

in�nit y, emitting parallel light rays onto a lambertian, checkerboard surface.A light

�eld of this checkerboard is captured. Two rays of this light �eld are shown asblack,

vertical arrows. The corresponding light direction for these two rays is shown in

yellow. Notice that sinceboth rays of the light �eld are vertical and the illumination

is distant, the anglebetweenthe illumination ray and the light �eld ray is � . The key

idea is that no matter how a ray is transformed, the color along that ray direction

will be as if the illumination direction had madean angle � to the ray.

Figure 3.3shows the illumination directions for the two rays of the light �eld after

transforming the upper-right ray. Notice that the illumination direction maintains an

angle� with the ray direction. However, the two illumination directionsareno longer

parallel. The illumination after transforming the rays is di�erent than the original.

Becausethe color along a ray is a function of the relative angle between the

illumination and the ray, after transforming this ray the illumination direction points

in a di�erent direction. In most cases,this meansthat when a light �eld is deformed

(e.g. all its rays are transformed), the apparent illumination will also change. To

solve this problem, we capture a new kind of light �eld, called a coaxial light �eld ,

which maintains lighting consistencyduring deformationbut still capturesinteresting

shadinge�ects.

3.2. SOLVING THE ILLUMINA TION PROBLEM 17

Figure 3.2: A lambertian scenewith distant lighting. The checkerboard surfaceis lit
by a point light located at in�nit y. Two rays of the light �eld are shown in black.
They make an angle � with respect to the illumination direction.

3.2.1 The Coaxial Ligh t Field

Chapter 2 de�nes the 4D light �eld asradiancealongrays asa function of position and

direction in a sceneunder �xed lighting. Their de�nitions permit construction of new

views of an object, but its illumination cannot be changed. By contrast, [DHT + 00]

de�nes the 4D re
ectance �eld as radiancealong a particular 2D set of rays, i.e. a

�xed view of the world, as a function of (2D) direction to the light source. Their

de�nition permits the relighting of an object, but the observer viewpoint cannot be

changed. If onecould capture an object under both changingviewpoint and changing

illumination, one would have an 8D function (recently captured by [GLL+ 04]). The

light �elds of [LH96] and [DHT + 00] are 4D slicesof this function.

In this section,for the purposesof deformation, we introducea di�erent 4D slice,

which we call the coaxial light �eld . With a coaxial light �eld, we capture di�erent

views of an object, but with the light source�xed to the cameraas it moves. In

18 CHAPTER 3. LIGHT FIELD DEFORMATION

Figure 3.3: The rays representing the checkerboard are now transformed. Notice that
the illumination angle� remains�xed, relative to the ray directions. This causesthe
illumination to di�er from the original conditions.

fact, the camerarays and illumination rays coincide. Sinceperfectly coaxial viewing

and illumination is di�cult to achieve in practice, we merely place our light source

ascloseto our cameraaswe can. As an alternative, a ring light sourcecould alsobe

used. Figure 3.4shows two imagesfrom a coaxial light �eld capturedof a lambertian,

checkerboard surface.This kind of illumination is analogousto examining an object

with a
ashlight attached to the observer's head. Given this de�nition of a coaxial

light �eld, we now show how to useit to solve the illumination consistencyproblem.

3.2.2 Using Coaxial Ligh t Fields to Solve Illumination Incon-

sistency

What we show is that after deforming a coaxial light �eld the illumination remains

consistent to the original. That is, the lighting remains coincident to the center of

the virtual view. One way to study lighting in a sceneis to examinethe goniometric

3.2. SOLVING THE ILLUMINA TION PROBLEM 19

Figure 3.4: Two imagesfrom a coaxial light �eld. The lighting is a point light source
placedat the center of projection of the camera.As the cameramovesto an oblique
position (right), the checkerboard is dimmed due to the irradiance falling o� with the
anglebetweenthe lighting direction and the surfacenormal.

diagram at a di�erential patch on a lambertian surface.A goniometricdiagram plots

the distribution of re
ected radiance over the local bundle of rays incident to that

patch2. In a goniometricdiagram, the length of the plotted vectorsis proportional to

the re
ected radiancequantit y in that direction. Sincethe patch is on a lambertian

surface, it re
ects light equally in all directions (e.g. the diagram is not biased in

any direction by the re
ectance properties). Thus the shape and sizeof the diagram

gives us insight into the illumination condition. For example, under �xed lighting

a goniometric diagram of a patch on a lambertian surfacehas the shape of a semi-

circle. This is becausethe lambertian surfacere
ects radianceequally in all directions.

Furthermore, the radiusof the semi-circleis a function of the anglebetweenthe surface

normal and the illumination direction.

Now let us examine the goniometric diagram corresponding to coaxial lighting.

Let us return to Figure 3.4 which shows a checkerboard captured by a coaxial light

�eld. Consider two di�erential patchesA1 and A2 on the checkerboard. Figure 3.5

shows the associated goniometricdiagrams. Comparedto �xed lighting, the diagrams

indicate that re
ected radianceis now a function of the re
ection angle.

Described mathematically, becausethe surfaceis lambertian the radianceR can

2Somegoniometric diagrams are drawn as a function of radiant intensity. However, we felt that
plotting radiance provides a more intuitiv e notion of the re
ected \ligh t energy".

20 CHAPTER 3. LIGHT FIELD DEFORMATION

be described asa function of the light direction L and the surfacenormal N [CW93]:

R = �E = �I
N � L

r 2
(3.1)

where� is the BRDF for a di�use surface,E is irradiance, I the radiant intensity of

the point light and r the distancefrom the light to the patch.

Sincethe illumination is coaxial, any ray V from the patch has coaxial illumina-

tion, e.g. V = L. If we substitute this equality into Equation 3.1,

R = �I
N � V

r 2
(3.2)

weobserve that the distribution of radiancefrom the patch is a function of the viewing

direction V. This explains why there is a cosine-fallo� shown in the goniometric

diagrams.

Figure 3.5: Goniometric diagramsof two di�erential patches,A1 and A2. The radi-
ancein the local light �eld incident to each patch is plotted. The length of the ray
is proportional to the radiancein that direction. Notice that the length of ray V has
a cosinefall-o� with respect to the angle between the ray direction and the surface
normal, N

Now let usconsiderwhat happenswhenwedeformthe local light �eld about patch

A1 and render a novel view. Figure 3.6 illustrates a rigid-body transformation of the

local light �eld about A1. When renderinga novel view, we selectoneray emanating

3.2. SOLVING THE ILLUMINA TION PROBLEM 21

from A1 and oneray from A2. In both rays, the radiancealong thosedirections have

coaxial illumination. Only oneillumination condition satis�es this constraint: a point

light sourcelocatedat the virtual viewpoint. This illumination is consistent with the

initial conditions beforedeforming the rays.

Figure 3.6: Goniometric diagramsof two di�erential patches,A1 and A2, after trans-
forming the rays from A1. When a novel view is renderedby sampling rays from
the two diagrams,notice that the radiancealong L 1 hascoaxial illumination (shown
in red). Similarly, the radiancealong L 2 has coaxial illumination. The only plausi-
ble illumination condition for theseconstraints is a point light located at the virtual
viewpoint.

For comparison,Figure 3.7 shows novel viewsafter deforminga coaxial and �xed-

illumination light �eld. Only the coaxial light �eld generatesa correct rendering of

the deformedcheckerboard.

Thus, the advantage of using coaxial light �elds is that it ensuresthe correct

appearanceof objects under deformation, even though no geometry has been cap-

tured. However, coaxial light �elds have several limitations. First, the object must

be di�use; specular highlights will look reasonablewhen deformed,but they will not

22 CHAPTER 3. LIGHT FIELD DEFORMATION

Figure 3.7: Comparing deformation of a coaxial and �xed lighting light �eld. The
left image is a view from the deformedcoaxial light �eld. Notice that the illumina-
tion remains consistent; it simulates a point light located at the virtual viewpoint.
This is evident becausethe checkerboard dims at the top as its apparent surfacenor-
mal deviatesaway from the lighting direction. The right image is a view from the
�xed lighting light �eld. There is no appearancedue to point light illumination; the
radiancealong each ray hasa di�erent illumination direction.

be correct. Second,perfectly coaxial lighting contains no shadows. This makes ob-

jects look somewhat
at. In practice, our light sourceis placed slightly to the side

of our camera, thereby introducing someshadowing, at the expenseof slightly less

consistencyin the rendering.

The coaxial light �eld is one of several solutions for maintaining illumination

consistency. In fact, a solution dependson the both the complexity of the lighting

and the complexity of the ray-transformation. The next sectiondiscussesthis trade-

o�.

3.2.3 Trading-o� Ray-transformation and Ligh ting Complex-

it y

In general,no solution exists for keepingarbitrary illumination consistent under ar-

bitrary ray-transformation. The reasonis that under any lighting condition, a ray

transformation could causethe illumination direction to di�er from the original light-

ing conditions. The key to maintaining lighting consistencyis that the transformed

3.3. SPECIFYING A RAY TRANSFORMATION 23

ray must have an associated lighting direction that is consistent with the original

illumination 3. Therefore,the simpler the ray-transform, the more complexthe light-

ing can be, and vice-versa. A trivial exampleis the identit y transform. Under this

ray-mapping, the illumination can be arbitrarily complex. The equivalent trivial ex-

amplefor lighting is ambient lighting4. In this casethe ray-transform canbearbitrary

complex. Both thesecasesmaintain lighting consistency. Somethingbetween triv-

ial lighting and trivial ray-transformation is if the illumination is distant (and hence

has parallel illumination directions). In this caseany pure translation will preserve

lighting.

Given this trade-o� for preserving lighting during ray-transformation, we chose

coaxiallighting becauseit hasreasonableillumination propertiesandpreservescoaxial

illumination during transformation. The next section discussesthe details of the

actual ray-transformation.

3.3 Specifying a Ray Transformation

The secondproblemto light �eld deformation is specifying a ray transformation. Our

goal is to enablean animator to artistically expressmotion and feeling using light

�elds.

There are many ways to specify a transformation on rays. For example, in the

beginning of this chapter, a 4x4 matrix was used to specify a rigid-body transfor-

mation. However, specifying a matrix is not intuitiv e for an animator. Instead, we

borrow a technique from the animation community for specifying transformations on

traditional 3D models (e.g. with mesh geometry). We adapt it to transform light

�elds. The technique is called free-form deformation [SP86]. We �rst introduce the

original technique, then adapt it to deform light �elds.

3Here, we ignore global illumination e�ects like self-shadowing, and inter-re
ection.
4In computer graphics, ambient lighting is a constant term added to all lighting calculations for

an object. In reality, the ambient lighting is a composition of all indirect illumination. The trivial
casebeing consideredis if the object is only lit by ambient lighting, and hencehas uniform lighting
from all directions.

24 CHAPTER 3. LIGHT FIELD DEFORMATION

3.3.1 Free-form Deformation

In a traditional free-formdeformation (FFD) [SP86], a deformation box C is de�ned

arounda meshgeometry. The animator deformsC to form Cw, a setof eight displaced

points de�ning a deformed box5. The free-form deformation D is a 3D function

mapping C, the original box, to Cw , the deformedone:

D : < 3 ! < 3 (3.3)

More importantly, D is usedto warp all points inside the box C.

How is D parameterized? In the original paper by Sederberg and Parry, D is

represented by a triv ariate tensor product Bernstein polynomial. The details of their

formulation of D are unimportant for deforming light �elds. The key idea is that

we usetheir method for specifying a deformation. That is, an animator manipulates

a deformation box to specify a warp. The di�erence is that while the original FFD

warps 3D points, our formulation warps rays.

To make useof the FFD paradigm, we �rst de�ne a function that makes useof

the deformation box to warp 3D points. We will prove that this function does not

preserve straight lines, sowe modify it to warp ray parametersinstead of 3D points.

This modi�ed form will be the �nal ray warp. Let us begin by introducing the 3D

warping function, parameterizedby trilinear interpolation.

3.3.2 Trilinear In terp olation

To introduce trilinear interpolation, assumethat a deformation box (e.g. a rectan-

gular parallelepiped) is de�ned with 8 vertices, ci , i = 1: : : 8. These8 vertices also

de�ne three orthogonalbasisvectors,U, V , and W. The origin of thesebasisvectors

is X 0, one of the verticesof the box. Then for any 3D point p, Equation 3.4 de�nes

coordinates,u, v, and w:

u = V � W �(X � X 0)
V � W �U v = U� W �(X � X 0)

U� W �V w = U� V �(X � X 0)
U� V �W

(3.4)

5One assumption is that the animator doesnot move points to form self-intersecting polytopes.

3.3. SPECIFYING A RAY TRANSFORMATION 25

By trilinearly interpolating acrossthe volume, p can be described in terms of the

interpolation coordinatesand the 8 verticesof the cube:

p = (1 � u)(1 � v)(1 � w)c1 + (u)(1 � v)(1 � w)c2 +

(1 � u)(v)(1 � w)c3 + (u)(v)(1 � w)c4 +

(1 � u)(1 � v)(w)c5 + (u)(1 � v)(w)c6 +

(1 � u)(v)(w)c7 + (u)(v)(w)c8

(3.5)

Given the trilinear coordinates u; v; w for a point p, the transformed point is

computedusing Equation 3.5 and the points in Cw substituted for ci . Any 3D point

can be warped using this technique.

Unfortunately, this technique does not preserve straight lines. To observe this

property, without lossof generality let us examinethe bilinear interpolation caseand

considerthe deformation shown in Figure 3.8. Three collinear points a;b and c are

transformed. We test for collinearity by forming a line between two points (in this

case,a and c) and showing that the third point lies on the line:

ax + by+ c = 0 (line in standard form) (3.6)

� x + y = 0 (line through a and c) (3.7)

1 � 1 = 0 (substituting b) (3.8)

We show that after transformation, a0; b0 and c0 are no longer collinear. After

bilinear interpolation,

a0 =

2

4
0

0

3

5 b0 =

2

4
2
3
10
9

3

5 c0 =

2

4
3

4

3

5 (3.9)

The line formed from a0 and c0 is:

4
3

x � y = 0 (3.10)

26 CHAPTER 3. LIGHT FIELD DEFORMATION

a (0,0)

b (1,1)

c (3,3)

a ̀(0,0)

c` (3,4)

b` (,)2
3

10
 9

Figure 3.8: A transformation usingbilinear interpolation doesnot preserve collinear-
it y. On left, four control points are initially arranged in a square. On right, the
control points are displaced. Three collinear points, a, b, and c are selected.On the
right, the line formed by a0 and c0 is no longer coincident to displacedpoint b0.

and substituting b0 into Equation 3.10yields the following statement:

� 4
3

� � 2
3

�

�
10
9

=
� 2
9

6= 0 (3.11)

This shows that b0 does not lie on the line formed by a0 and c0. Therefore straight

lines are not preserved.

To preserve the straight raysrepresenting a light �eld, wede�ne the transformation

on its ray parametersinsteadof the 3D spacein which the rays areembedded. In this

way, rays in the light �eld are always mapped to straight rays. Note however, that

preservingstraight rays in the light �eld during transformation does not guarantee

that straight lines represented by the light �eld remain straight. We comeback to

this property after de�ning the light �eld ray transformation.

3.3. SPECIFYING A RAY TRANSFORMATION 27

3.3.3 De�ning a Ray Transformation

The key idea in de�ning a ray transformation that preservesthe straight rays of the

light �eld is to de�ne the transformation in terms of the ray parameters. In this way,

rays are always mapped to straight rays. We usethe two-planeparameterizationof a

ray and factor the trilinear warp into two bilinear warps that displacethe (u; v) and

(s; t) coordinates in the UV- and ST-plane, respectively.

First, to compute the location of the UV- and ST-planesand the (u; v; s; t) co-

ordinates for a ray, we intersect the ray of the light �eld 6 with the deformation box

C. The two intersection planesde�ne the UV- and ST-planes. The corresponding

intersection points de�ne the (u; v; s; t) coordinates. In other words, the two planes

de�ne the entrance and exiting planefor the ray asit travelsthrough the deformation

box.

Next, a separatebilinear warp is applied to the (u; v) and (s; t) coordinates. Fac-

torizing the trilinear warp into two bilinear warps is advantageousfor two reasons.

First, bilinearly warping in this way preserves straight rays representing the light

�eld. That is, the new light �eld is represented by a set of straight rays. Second,two

bilinear warps take18scalarmultiplications of the coe�cien ts. A singletrilinear warp

takes42 scalarmultiplications. Thereforebilinear warps can be computedquicker.

The bilinear warp is a simpli�ed version of Equation 3.5. The four interpolat-

ing points are those de�ning the UV- or ST-plane. This warp producesa new ray

(u0; v0; s0; t0) which is then re-parameterizedto the original parameterization of the

light �eld. Figure 3.9 summarizesthe algorithm for transforming a ray of the light

�eld. Figure 3.10 illustrates how a ray is transformed,pictorially.

3.3.4 Prop erties of the Ray Transformation

Given the above de�nition of a ray transformation, it is useful to compareit to other

transformationsto understandits advantagesand disadvantages.A commonsetof 3D

transformations is the specializationsof a projective transformation. The projective

6The captured light �eld already has a ray parameterization, but needsto be re-parameterized
for ray transformation.

28 CHAPTER 3. LIGHT FIELD DEFORMATION

transf orm ra y (r ay)
1 ruvst rep arameterize (r ay)
2 puv biwarp (r uv)
3 pst biwarp (r st)
4 quvst [puv ; pst]
5 return rep arameterize original (quvst)

Figure 3.9: Algorithm for using bilinear interpolation to transform rays.

transformation is a group of invertible n x n matrices, related by a scalarmultiplier.

In the caseof transformations on 3D points, n = 4.

The projective transformation mapsstraight lines to straight lines [HZ00]. There-

fore, it is useful to compareour ray-transformation to it. We show that our ray-

transformation cande�ne Euclidean,similarity, and a�ne transforms. Unfortunately,

aswe will show, not all generalprojective transforms can be produced. However, we

show that our ray-transform can perform mappingsbeyond projective mappings,like

twisting.

Euclidean, Similarit y, and A�ne Transforms

A Euclidean transform models the motion of a rigid object; anglesbetween lines,

length and area are preserved. If the object is also allowed to scaleuniformly, then

this modelsa similarity transform; anglesare still preserved, aswell asparallel lines.

If an object can undergonon-isotropicscalingand rotation followed by a translation,

this transformation models an a�ne one7. A�ne transforms preserve parallel lines,

ratios of lengths of parallel line segments, and ratios of areas.

Mathematically, thesethree transforms can be written in matrix form:

x0 = Tx =

2

4
A t

0 1

3

5 x (3.12)

wherex and x0 are 4x1 vectors,T a 4x4 matrix, A a 3x3 matrix, t a 3x1 vector and

0 a 1x3 vector. If A = G, for orthogonal matrix G, then T is a Euclidean transform.

7It can be shown that an a�ne matrix can be factored into a rotation, a non-isotropic scaling,
and another two rotations, followed by a translation [HZ00].

3.3. SPECIFYING A RAY TRANSFORMATION 29

UV

ST

UV

ST

Figure 3.10: An illustration of ray transformation. On the left is a top-down view
of the original light �eld. The parameterization of the light �eld is shown as two
horizontal lines. The deformation box is drawn as a black square; it has its own
two-planeparameterization, labeledUV and ST. One ray, shown in bold red, is re-
parameterizedusing the UV and ST two planesof the box. The ray in the original
parameterization is shown in light red. The intersection points are shown as black
points. Thesetwo points are transformed using bilinear interpolation to map to the
two black points on the right image. The two new points de�ning the warped ray are
re-parameterizedto the original light �eld. The warped ray is shown in bold red, the
repararameterizedone, in light red.

If A = sG, for scalars, then T is a similarity transform. If A can be factored as

A = R(�)R(� �)DR(�) (3.13)

whereR is a rotation matrix and D a diagonalmatrix, then T is an a�ne transform.

Notice that the Euclideanand similarity transformsarespecialcasesof the a�ne one.

Given thesetransforms,we now show how to place8 control points, which de�ne

the two planesfor ray-transformation, to produce the equivalent ray-mapping. The

two key ideas are 1) the control points are transformed by the a�ne (or a special

case,like Euclidean) mappings and 2) the a�ne mappings preserve collinearity. A

mapping that preservescollinearity ensuresthat points that lie on a line still lie on a

line after the transformation. We will prove by construction, the following theorem:

Theorem 1 A line transformation de�ned by an a�ne map, A, can be produced by

30 CHAPTER 3. LIGHT FIELD DEFORMATION

Projective

Affine

Euclidean

Similarity

Bilinear Ray Warp

Figure 3.11: A hierarchy of line/ray transformations. The bilinear ray-transformation
introduced in Section3.3.3 can simulate up to a�ne transforms and a subsetof the
projective ones.It canalsoperform line transformations that are impossiblewith the
projective transform, such as twisting.

the ray-transformation described in Section 3.3.3 by applyingA to all 8 control points.

The proof is by construction. The ray-transform in Section 3.3.3 is speci�ed by 8

control points, 4 de�ning the UV-plane and 4 for the ST-plane. We call the control

points, which are in homogeneouscoordinates,a, b, c, . . . , h. The new control points

are de�ned as follows: a0 = Aa, b0 = Ab, c0 = Ac, . . . , h0 = Ah. In other words,

the new control points are simply the a�ne mappingsof the original control points.

Thesecontrol points will be usedfor the bilinear warp in the UV- and ST-planes

Given the displacedcontrol points a0, . . . h0, we now show that any warped ray is

transformed in exactly the sameway as the a�ne mapping. This is done by taking

2 points in the UV- and ST-planes,bilinearly warping them, and showing that these

3.3. SPECIFYING A RAY TRANSFORMATION 31

two new points are the samepoints using an a�ne warp. Furthermore, since the

a�ne warp preserves collinearity, the line formed by the two a�nely warped points

is the sameas the line madeby connectingthe bilinearly warped points on the UV-

and ST-planes.

Supposewe have a point Puv on the UV-plane:

Puv = (1 � u)(1 � v)a + (u)(1 � v)b+

(1 � u)(v)c+ (u)(v)d
(3.14)

where u and v are the interpolation coordinates on the UV-plane. Then using the

displacedcontrol points, we can bilinearly interpolate the warped point for Puv :

P0
uv = (1 � u)(1 � v)a0+ (u)(1 � v)b0+

(1 � u)(v)c0+ (u)(v)d0
(3.15)

But recall that a0 = Aa, b0 = Ab, c0 = Ac, . . . , h0 = Ah. Substituting this in:

P0
uv = (1 � u)(1 � v)Aa + (u)(1 � v)Ab+

(1 � u)(v)Ac + (u)(v)Ad
(3.16)

and factoring out A reveals:

P0
uv = A[(1 � u)(1 � v)a + (u)(1 � v)b+ (1 � u)(v)c+ (u)(v)d] = APuv (3.17)

Equation 3.17 states that the bilinearly warped point P 0
uv can be computed by ap-

plying the a�ne warp A to Puv . A similar argument can be made for P 0
st = APst .

Since a�ne warps preserve collinearity of points, the a�ne warp has mapped any

line through Puv and Pst to a line through P 0
uv and P0

st . This proves that any a�ne

mapping of lines can be producedby our ray-transform.

Tackling the General Pro jectiv e Transform

Unfortunately, the proof-by-construction presented above doesnot apply to general

projective transforms. In Equation 3.17, supposeA is a projective transform of the

32 CHAPTER 3. LIGHT FIELD DEFORMATION

form:

x0 = Ax =

2

4
P t

vT s

3

5 x (3.18)

with 3x3 matrix P, 3x1 vector t, 3x1 vector v and scalar s. In this case,A can

not be factored out of the equation becausethere may be a di�erent homogeneous

division for each term in the equation. This meansthat directly applying a projective

transform to the control points will not yield the sameray-transform as a projective

transform. Note that this wasthe casewith the a�ne map. Figure 3.12is a graphical

explanation of the projective transform. In this case,the transform is in
atland,

e.g. a 2D projective transform. What we've shown so far is that a bilinear ray-warp

constructed by projectively mapping the original control points does not produce

the sameray-warp. But can a di�erent construction of the control points yield an

equivalent ray-warp? Unfortunately, the answer is no. The reason is simple. If

the control points are not projectively mapped, then warped rays between control

points will never match projectively warped rays. Therefore, for generalprojective

transforms, it is impossibleto producean equivalent bilinear ray warp.

Fundamentally, the 8 control points of the bilinear ray transform need to map

to the 8 projectively transformed points. If this is not the case,then rays formed

from opposingcornersin the undeformedcasewill map to di�erent rays when using

the bilinear and the projective warp. However, as shown in Figure 3.12 for the 2D

case,if the 4 control points coincide with the projectively warped points then rays

still do not match betweenbilinear and projective mappings. Therefore, for general

projective transforms, it is impossibleto producean equivalent bilinear ray warp.

Bey ond Pro jectiv e Transforms

Although the bilinear ray-transform cannot reproduce all projective transforms, it

has two nice properties that make it more useful for an animator. First, bilinear

ray-transforms can simulate the e�ect of twisting (like in Figure 3.1); projective

transforms can not. Twisting is a rotation of one of the facesof the deformation

box. Bilinear ray-warping handlesthis caseas it normally handlesany ray warp. 3D

projective transforms, however, cannot map a cube to a twisted one becausesome

3.3. SPECIFYING A RAY TRANSFORMATION 33

Figure 3.12: A 2D projective transform applied to lines on a checkerboard. On the
left, are the checkerboard lines before transformation. The checkerboard is a unit
square,with the lower-left cornerat the origin. Notice, the lines intersect the borders
of the checkerboard in a uniform fashion. On the right, are the checkerboard lines
after a projective transform. The projective transformation has translated the top-
left cornerto (0; 0:5) and the top right corner to (0:5; 1) Notice, that the intersections
are no longer uniform along the borders. In our ray-transformation, the uniformly-
spacedintersectionson the left imagemap to uniform intersectionson the right image
(this is alsotrue in the a�ne casebecauseparallel lines are preserved). However, the
projective transform does not preserve this property for the borders, shown on the
right.

of the sidesof the box are no longer planar. Projective transforms preserve planes:

any four points that lie on a plane must lie on the sameplane after the transforma-

tion8. Becauseof this invariant, projective transforms cannot represent ray warps

that involve bending the sidesof the deformation box, like twisting. However, this

ray transformation is useful for an animator to produce twisting e�ects on toys or

models.

The trade-o� is that the bilinear ray-transform no longer preservesstraight lines

within the scenerepresented by the light �eld. Although this transform keepsthe

rays of the light �eld straight after warping, lines in the scenerepresented by the

8The proof is a simple extension of the 2D version (that preserves lines), described in Theorem
2.10 of [HZ03].

34 CHAPTER 3. LIGHT FIELD DEFORMATION

light �eld may curve. Figure 3.13 illustrates this idea. The light �eld is representing

a scenecontaining a single, straight line. This line is shown in bold. Three points

are selectedon this line, l , p, and q. The light �eld rays that are incident to these

three points are shown in light blue. Now, supposewe induce a deformation of the

light �eld by displacing the points c and d, de�ning the UV-plane. Sincea and b

are not displaced,the plane containing points a, b, l and q remains the sameafter

deformation. However, the bilinear transformation of the uv coordinates causesthe

ray through p to be transformed into the ray going through p0 in the deformedcase.

p0 does not lie on the plane containing the original line. This shows that the line

through l, p, q is no longer a line after applying this bilinear-transformation on the

UV-plane.

a

b

c

d

l

p

q

UV-plane ST-plane UV-plane ST-plane
a

b

c`

d`

l

p`

q

(a) (b)

Figure 3.13: A light �eld of a singlestraight line is deformed. (a) shows the original
light �eld con�guration. The line is shown in bold. Three points on the line are
selected. The light �eld rays through thesepoints are shown in light blue. In (b),
the light �eld is deformedby vertically displacingc and d to c0 and d0. The new light
�eld represents a non-straight line, even though the bilinear ray transform preserved
straight rays.

The seconduseful property of the bilinear-transform is that it guarantees that

the deformed box always adheresto the animator's speci�cation. In other words,

the boundary edgesand facesof the resulting deformedbox will always be what the

3.4. IMPLEMENTING THE RAY TRANSFORMATION 35

animator speci�es. In contrast, when using a projective transform the deformedbox

may not be exactly the sameaswhat the animator speci�ed. This is a usefulproperty

when specifying multiple adjacent deformation boxes.

In summary, our analysisof the bilinear ray-transform showsthat it canreproduce

up to a�ne mappingsof rays. It cannot reproduceall projective mappings,but can

produce other e�ects, like twisting, which are impossiblefor projective transforms.

Furthermore,a bilinear ray-transform is guaranteedto adhereto the eight newcontrol

points speci�ed by the animator. This enablesan intuitiv e method for specifying a

ray-transformation of the light �eld. Next we discusshow the bilinear ray transform

is implemented to enableinteractive light �eld deformation.

3.4 Implemen ting the Ray Transformation

The ray transformation discussedsofar warps all rays of the light �eld. The problem

is that light �elds are dense,so transforming every ray is a time consumingprocess.

A typical light �eld hasover 60 million rays (seeAppendix A). Applying a transfor-

mation to all 60million rays prevents interactive deformation. Instead,we exploit the

fact that at any given time, an animator only needsto seea 2D view of the deformed

light �eld, e.g. never the entire dataset. This meansthat we only needto warp the

view rays of the virtual camera. In other words, we deform rays \on demand" to

producean imagefrom the desiredview point.

How are the warps on the light �eld and the warps on the view rays related? The

two warps are in fact inversesof each other, as shown in [Bar84]. For example, to

translate an object to the left, one can either apply a translation to the object, or

apply the inversetranslation (i.e. translate to the right) to the viewing camera.

Therefore, to render an image from a deformedlight �eld, we apply the inverse

ray warp to the view rays of the virtual camera. Given a view ray in the deformed

space,we needto �nd the pre-image(e.g. ray) in the undeformedspacesuch that

warping the pre-imageyields the given view ray. To �nd the pre-imageof a ray, we

forward warp many rays, and interpolate amongstnearby rays. Figure 3.14illustrates

this interpolation in ray space.

36 CHAPTER 3. LIGHT FIELD DEFORMATION

In the actual implementation, we use texture-mapping to help us forward-warp

many ray samplesand interpolate amongst them. Recall from Section 3.3.3 that a

ray transformation is de�ned by 8 control points de�ning a deformation box (e.g.

two planesin the UVST parameterization). To forward warp many ray samples,we

simply createmany sampleson the UV- and ST-planesand bilinearly warp them. To

interpolate betweenUV- and ST-samples,we triangulate the points and usebarycen-

tric coordinatesto shadeeach triangle. In this way, the texture colorcodesthe original

coordinates of each UV and ST point. We used64 x 64 x 2 textured triangles per

plane for our datasets.Figure 3.15shows the UV-planes(left) and ST-planes(right)

for a deformation box.

U

S

U

S

ray warp

undeformed space deformed space

Figure 3.14: A pre-imageof a ray is found by computing the forward warp for many
samplerays, and interpolating amongstnearestrays. The above two diagramsare2D
ray-spacediagramsillustrating the undeformedspace(left) and the deformedspace
(right). Rays in ray-spaceare represented as points. The pre-imageof the ray in
the deformedspace(shown in red) is found by computing the nearestrays (shown
in green), �nding their counterparts in the undeformedspace,and interpolating the
original ray positions. The interpolation is represented by the black lines. The pre-
imageis shown in blue in the undeformedspace.

3.5. RESULTS 37

Figure 3.15: An inversewarp is approximated by forward warping many ray samples
and then interpolating the results. We usea hardware-acceleratedtexture-mapping
approach to quickly interpolate amongthe ray samples.

3.5 Results

We now present results illustrating how the bilinear ray-transform is used to intu-

itiv ely specify a ray-transformation on the light �eld. This ray-transformation simu-

lates the e�ect of deformingthe object represented by the light �eld. The animations

can be found at the following webpage:

http://graphics.stanford.e du/papers/b chen_thesis .

Figure 3.1 at the beginning of this chapter illustrates a twisting e�ect on the

light �eld. Figure 3.16shows the associated deformation box for the twisted soldier.

The twisting of the deformation box is impossiblefor a projective transform. Figure

3.17 illustrates a bilinear ray-transform that simulates an a�ne ray warp. The user

suppliesa deformation by moving verticesof the box (shown in gray) to a deformed

position (shown in red).

In theseresultssofar, the deformationis globaland lacks localcontrol. In contrast,

an animator typically applies multiple deformations to a single object. In the next

section,we introduce a technique for applying multiple, independent ray transforms

http://graphics.stanford.edu/papers/bchen_thesis

38 CHAPTER 3. LIGHT FIELD DEFORMATION

Figure 3.16: Deformation box usedto twist the toy Terra Cotta Warrior.

to a singlelight �eld, to further increasethe expressive power of animating light �elds.

3.6 Specifying Multiple Ray Transformations

The deformationsshown in the previoussectionillustrate global e�ects like twisting.

However, such e�ects are broad; they apply over the entire light �eld. In contrast,

with traditional meshmodels the animator may have local control over parts of the

mesh, enabling subtle deformations and e�ects. Local control over a light �eld is

accomplishedby segmenting the light �eld into layers and by supplying a di�erent

ray transformation to each layer.

A layer is simply a light �eld, whoseinput rays are a subsetof the original input

rays. Recall that light �elds are approximated by a set of images.In this representa-

tion, a layer is simply a subsetof pixels (over all images)corresponding to a particular

region of the object. For example,considerFigure 3.18, which shows an imagefrom

3.7. RENDERING MULTIPLE DEFORMED LAYERS 39

Figure 3.17: Illustration of free-form deformation on a light �eld. The left image is
from a light �eld of a statue bust. The deformation box has been overlaid in red.
Moving verticesof the box inducesa ray-transformation on the light �eld. The visual
e�ect is a deformation on the object represented by the light �eld, as shown in the
image on the right. The red lines show the deformedbox, the gray lines show the
original box. The usersuppliesthe deformation by draggingverticeswith the mouse
in a graphical user interface.

a light �eld captured of a toy teddy bear. The \head" layer of the light �eld are all

pixels (in all images)that \see" the teddy bear's head. Therefore,in segmenting the

teddy bear light �eld, we split the light �eld into multiple light �elds, which we call

layers. To computetheselayers,we useprojector illumination. Appendix B describes

this technique in moredetail. The important thing is that the output is a set of coax-

ial layers (e.g. light �elds). The animator then suppliesdeformationsto each coaxial

layer. Finally, the deformedlayers are renderedtogether with correct visibilit y. This

renderingalgorithm is described next.

3.7 Rendering Multiple Deformed Layers

The goal of the rendering algorithm is to producean imagefrom a given viewpoint,

while maintaining correct visibilit y betweendeformedlayersof the light �eld. Unlike

40 CHAPTER 3. LIGHT FIELD DEFORMATION

Figure 3.18: Illustrating a \la yer" of a light �eld. An image from a light �eld of a
teddy bear is shown. The head layer of this light �eld corresponds to every pixel in
all imagesthat seethe teddy bear's head.

the global deformation case,deforminga layer can causea visibilit y change. In other

words, deforming a layer may reveal or occludelayers behind it.

In order to render with correct visibilit y, the algorithm makes two assumptions

about the deformedlayers: 1) the control points de�ning the deformation box com-

pletely enclosethe regionrepresented by that layer and 2) the alpha maskscomputed

from projector-basedsegmentation accuratelydescribe that object's opacity. We use

the �rst assumptionto sort the layers in a front-to-back depth order with respect to

each view ray. The secondassumptionallows us to usealpha to test whether a view

ray is incident upon an object represented by a particular layer.

To render an image,a view ray is shot out from each pixel. The idea is that this

ray travelsthrough di�erent deformedlayers. As it travelsthrough each layer the ray

is transformed;we then test if it is incident to an object represented by that layer. If

3.8. RESULTS WITH MULTIPLE DEFORMATIONS 41

it is not, then the ray continuesto the next layer, and the processis repeated. If the

ray is incident to an object within the layer, then the color sampledfrom this layer

is returned as the color along the original view ray.

More concretely, for each output pixel of the image form a view ray. Sort the

layers in a front-to-back order with respect to the view-ray. The layer locations are

de�ned by their deformation box. The boxes are assumedto be non-intersecting.

Traversingeach layer, warp the view-ray using the associated ray-transformation (see

Section 3.4 for how this is implemented). Use the transformed ray to samplefrom

this layer. If the alpha along this ray is non-zero,this meansthe ray has \hit" an

object in this layer and we return its color9. If the alpha is zero, then we proceed

to the next layer along the view-ray. Figure 3.19 gives a pictorial exampleof this

renderingalgorithm for a singleview-ray.

Does this rendering algorithm solve our problem with changesin visibilit y? For

occlusions,yes. For disocclusions,only partially. For occlusions,if a layer is deformed

to occludeanother layer, when traversing the ray in a front-to-back order, the front

layer will be renderedcorrectly. Disocclusionsare more challenging. A layer may

deformin a way that revealsparts of background layersthat werenot capturedduring

acquisition. This problem canbe solved by usinghole-�lling techniques,although our

work has not implemented such techniques. Heuristics basedon texture structure

[EL99, WL01] or a priori knowledge[ZWGS02] could be usedto reconstruct the holes

in theselayers. Thesealgorithms could beappliedon the layersof the segmented light

�eld beforedeformation. Now we show results using the entire deformation process.

3.8 Results with Multiple Deformations

In Figure 3.20 a �sh light �eld is animated by controlling three deformation boxes.

The middle box is beingwarped,while the front box (the head)and the back box (the

tail) are rotated accordingto the bendingof the middle box. Notice that visibilit y is

renderedcorrectly: the headpixels are drawn in front of the body and tail pixels.

9Recall that the alpha valuesin each layer are determined using the projector-basesegmentation
technique described in Appendix B.

42 CHAPTER 3. LIGHT FIELD DEFORMATION

Figure 3.19: Rendering a view ray. The left pair of imagesshow the deformation
boxes in the deformedand undeformedspace. A view ray, shown in black, crosses
the layers. As the ray traversesthe front layer (containing the pink object), it is
deformedand tested for visibilit y (shown in the middle). In this case,the alpha is 0
and we proceedto the next layer. In the next layer (shown in greenon the right),
the view ray is deformedand tested for visibilit y. In this casethe alpha is non-zero
and its associated color is returned for this view-ray.

Figure 3.21 shows a few framesfrom an animation of a furry teddy bear. Using

projectors, the bear is split into several deformation boxes to allow for independent

arm, leg and headmotion.

3.9 Summary

The �rst contribution of this thesis is light �eld deformation, a novel way to interact

with light �elds. The technique is an intuitiv e tool that lets animators deform light

�elds. We describe two key challengesin accomplishingdeformation: maintaining

consistent illumination andspecifyinga ray transformation. Weshow how to maintain

consistent illumination through capturing a coaxial light �eld. We then introduce a

novel ray transformation and analyzeits properties,showing that it canperform a�ne

and other non-projective transforms. Our implementation exploits texture-mapping

on graphicshardware to facilitate interactive deformation.

Then, we show how to extend global deformation to local light �eld deformation

by segmenting the light �eld into layers. Segmentation is accomplishedusing active

3.9. SUMMARY 43

Figure 3.20: Deforming a �sh with three independent deformations. The top-left
imageshows the original �sh with deformation boxesshown in the top-right image.
The middle-left image shows the deformed�sh with corresponding control boxes in
the middle-right image. The bottom-left image shows a di�erent view. Notice that
visibilit y changesare handled correctly by our algorithm, the �sh head pixels are
renderedin front of the tail pixels. This light �eld was createdwith 3D Studio Max.

illumination, asdescribed in Appendix B. After deformingeach layer, our novel ren-

dering algorithm rendersan imagewhile preservingcorrect visibilit y betweenlayers.

The techniquehasits limitations. Coaxial illumination is a limiting type of illumi-

nation. For example,shadows arenot possible.Onetopic of future work is investigat-

ing the relationship between the types of ray-transformations and the illumination

conditions that remain consistent under those transforms. A secondlimitation in-

volvesspecifying the ray-transformation. The warp is speci�ed by moving 8 control

points in 3D. This meansthat there are 24 degreesof freedom. However, there are

multiple con�gurations of control points that yield the sameray transform, so there

is a redundancy in the speci�cation. It would be useful to investigate other, more

e�cien t ways to specify ray transformations, perhapsin ray-space.

Despite theselimitations, the technique is shown to be useful for animators and

can be extendedto other deformation techniques(like skeleton-baseddeformation).

In the secondhalf of this thesis, we incorporate deformation as a tool in a host of

tools for generalmanipulation of light �elds.

44 CHAPTER 3. LIGHT FIELD DEFORMATION

(a) (b) (c)
Figure 3.21: A deformation on a teddy bear. Image (a) shows a view of the original
captured light �eld. In this case,the cameraswerearrangedin a ring, thus capturing
a circular light �eld. Image (b) shows a deformation in which the head, arms and
legsare all bendedor twisted independently. Image(c) shows the deformation boxes
usedto specify the motion of the teddy bear.

Chapter 4

Ligh tShop: A System for

Manipulating Ligh t Fields

4.1 In tro duction

The �rst half of this dissertation introduced light �eld deformation. This tool, like

those found in the literature, operatesin a stand-aloneapplication. In comparison,

image manipulation applications, like Adobe Photoshop, allow a user to use and

combine multiple tools. The abilit y to combine tools enablescreative manipulation

of images.

The secondcontribution of this dissertation is a systemthat providesa userwith

a mechanism to use and combine multiple tools for manipulating light �elds. We

call this systemLightShop. A systemthat operateson multiple light �elds facestwo

key challenges.First, operations can manipulate light �elds in a variety of ways, so

specifying an operation must be designedcarefully. For example,someoperationsare

sum over multiple pixels in each image (like focusing), or shift pixels acrossimages

(like deformation). Second,light �elds are captured and parameterizeddi�erently,

so one must designthe systemso that operations are independent of the light �eld

representation.

45

46CHAPTER 4. LIGHTSHOP: A SYSTEM FOR MANIPULA TING LIGHT FIELDS

Keepingthesechallengesin mind, wedesignedLightShop with the following goals:

1. Light �eld operations must be speci�ed independent of the representation.

2. The systemmust be extendableto incorporate new operations.

3. The systemmust be amenableto graphicshardware.

The �rst designgoal addressesthe problem of multiple light �eld parameterizations.

The secondgoal addressesthe problem of specifying operationsand combining them.

The third goal enablesinteractive manipulation and editing. This also enableslight

�elds to be easily integrated into video games.

Giventhesedesigngoals,what arecommonoperationsthat shouldbeincorporated

into LightShop? Table 4.1 lists �v e common operations on light �elds and their

applications. Ray transforms were demonstrated in the �rst half of this thesis for

light �eld deformation. Compositing light �elds is demonstratedin an application,

called \p op-up light �elds," to createghost-freerenderingsfrom light �elds. The idea

is to segment a light �eld into multiple two-plane parameterizations(e.g. layers),

whereeach ST-planeservesasa local geometricproxy to that part of the scene.The

�nal imageis renderedby compositing the samplesfrom each layer of the light �eld.

The third classof operations are the arithmetic operations on colors sampledfrom

light �elds. This has a usein relighting applications where several light �elds of an

object are captured under varying illumination. By taking linear combinations of

samplesfrom theselight �elds, relighting can be simulated. The fourth operation is

focusingwithin a light �eld. Insteadof creatinga virtual view from a pinholecamera,

onecansimulate a camerawith a �nite-depth-of-�eld by summingover sampledcolors

in the light �eld. Researchershave demonstrateits usein seeingbehind occludersand

noisereduction. The �nal operation is perhapsthe most fundamental: synthesizing

a novel view. This involves sampling and interpolating from data in a light �eld to

createan imagefrom a novel viewpoint.

Given our designgoalsand a list of commonoperationson light �elds, we cannow

introduce the system. To begin, we describe our conceptualmodel for manipulating

andcombining light �elds. This conceptualmodel will driveLightShop'sentire design.

4.2. LIGHTSHOP'S CONCEPTUAL MODEL 47

Op eration Application
ray transformation light �eld deformation [COSL05, ZWGS02]
compositing pop-up light �elds [SS04]
arithmetic facerelighting [DHT + 00]
focusing synthetic aperture photography [VWJL04, IMG00, LH96]
sampling novel view interpolation [LH96, GGSC96, BBM+ 01]

Table 4.1: Common light �eld operations found in the literature.

4.2 Ligh tShop's Conceptual Mo del

What doesit meanto manipulate and combine light �elds? To answer this question,

we borrow from current modeling packagesfor mesh-basedgeometry. In particular,

we study Pixar's RenderMan[Ups92] and OpenGL [BSW+ 05]. Both software pack-

agesare designedfor modeling and manipulating 3D objects. We characterizetheir

conceptualmodel asonethat modelsa scenecontaining multiple objects, manipulates

theseobjects, and rendersan output image basedon the modi�ed scene. We then

adapt this conceptualmodel for manipulating light �elds.

In RenderMan,functions are exported to the user through the RenderManInter-

face. Thesefunctions modify internal state that represents the sceneand rendering

contexts. Somefunctions enablethe de�nition of polygons,surfaces,lights and shad-

ing properties: RiPolygon, RiSurface, RiLightSource, Thesefunctions are

part of the modeling process. Other functions modify previously de�ned objects:

RiDeformation, RiSolidBegin, Thesefunctions are part of the manipulation

process.Finally, after a sceneis modeledand modi�ed it is renderedby the system.

In RenderManthis renderingprocessis hidden from the user.

OpenGL also maintains similar internal state and exports a set of functions to

model and manipulate the scene.However, instead of hiding the rendering process,

OpenGL exposestwo steps of the rendering pipeline to enable more control. The

vertex shaderenablesa user to manipulate vertex information. The fragment shader

allows for pixel-processingbefore frame-bu�er operations. In other words, the frag-

ment shaderis a mechanism for the user to specify how an image is renderedfrom

the scene.

48CHAPTER 4. LIGHTSHOP: A SYSTEM FOR MANIPULA TING LIGHT FIELDS

Sinceboth RenderManand OpenGL arewell-known modelingpackages,wedesign

LightShop with a similar 3-part conceptualmodel: model, manipulate, and render.

For modeling a scene,LightShop exports functions for inserting two primitiv e typesin

a scene:light �elds and viewing cameras.Appendix C lists the associated functions.

Once a sceneis composed,to manipulate it a user must specify operations on light

�elds. Recalling our designgoals, these operation must be speci�ed in a way that

is independent of the light �eld representation, easily extendable,and amenableto

graphicshardware.

The key insight to our designis that an operation on a light �eld can be realized

by manipulating the viewing rays from the renderingcamera.This is best explained

by an example. Recall from Chapter 3 on deformation that rendering an image of

a deformed light �eld can be performed in two ways: 1) transform all rays of the

light �eld and interpolate a novel view or 2) apply the inverse ray-transform on

all view-rays, and sample from the original light �eld. In the secondapproach, by

manipulating the view-rays we can renderdeformedlight �elds. Figure 4.1 illustrates

warping view-rays to simulate deformation. It turns out that all operations listed in

Table 4.1 can be realizedby manipulating view-rays in a straight-forward manner.

warp

camera light field

Figure 4.1: Warping view rays to simulate deformation. The rays emanating from
the cameraare transformed beforesampling from the light �eld. This can simulate
the e�ect of deforming the original light �eld.

This approach has three advantages over directly manipulating the light �eld.

First, specifying an operation is in terms of the view-rays, which is independent of

the parameterizationsof the light �eld and optimized for changing only those rays

4.3. EXAMPLE: FOCUSING WITHIN A LIGHT FIELD 49

neededfor renderinga 2D image. Second,theseview-ray operationscanbecombined,

one after another. For example,one can �rst warp a view-ray, then samplefrom a

light �eld, then composite it with the color from another light �eld. In fact, these

operations are represented as functions in a language. We call a set of operations

a ray-shadingprogram. This is similar to Ken Perlin's Pixel Stream Editor [Per85].

The third advantage is that this languagecan be directly mapped to the fragment

shader,somanipulating view-rays is amenableto graphicshardware. In fact, we the

implement the ray-shading program as a fragment-shading program. The graphics

renderingpipeline executesthis program for every pixel, renderingan output image.

In summary, LightShop usesa conceptualmodel of 1) modeling a scene,2) ma-

nipulating that sceneand 3) rendering it to an output image. Modeling is performed

by calling on LightShop's modeling API. The sceneis both manipulated and ren-

dered through the ray-shadingprogram. The ray-shadingprogram is a user-written

program that speci�es exactly how a view-ray should interact with light �elds in the

scene.The program is executedper output pixel and returns an RGBA color for that

pixel. To demonstratehow a light �eld is manipulated, we present an examplewhere

render an imagewith shallow depth-of-�eld from a light �eld.

4.3 Example: Focusing within a Ligh t Field

We now show an examplethat illustrates how a light �eld may be manipulated. Our

exampleis creating an image focusedat particular depth in the light �eld. Objects

(represented by the light �eld) at the focuseddepth will be sharp, objects o� this

depth will be blurred. Figure 4.2 brie
y summarizeshow focusingoccurs. Focusing

is discussedin more detail in the graphics [LCV+ 04, WJV + 05, IMG00, LH96] and

vision [VWJL04] literature.

Assumeduring the modeling phasea sceneis created containing a single light

�eld and a singlecamera1. To manipulate the light �eld, a userwrites a ray-shading

program that describes how view-rays are manipulated as they travel through the

light �eld. Figure 4.3 illustrates the ray-shadingprogram for creating an imagewith

1Recall that a sceneis modeled by LightShop's modeling API, described in Appendix C.

50CHAPTER 4. LIGHTSHOP: A SYSTEM FOR MANIPULA TING LIGHT FIELDS

image plane focal planelens

Figure 4.2: Focusing through a single lens. The radiance contributing to a single
imagepixel is a summation of light emitted from a point on the focal plane through
the lens aperture. More speci�cally, the radiant exitance/emittance from a point on
the focal planeis integratedasthe irradianceon a imagepixel. The radiant exitanceof
points o� the focal planeis spreadacrossmultiple pixels (e.g. this point is \blurred").

a shallow depth-of-�eld. The ray-shading program takes as input a 2D xy pixel

location. It returns an RGBA color for this pixel location. The key component is

the use of two for-loops and the summation operator to simulate light aggregation

at the pixel location. To sample from the light �eld, the function, LiSampleLF is

called. It takesa light �eld index and a ray, and returns a color sampledalong that

ray direction. Appendix C contains more details about this function, LiSampleLF.

The other operations listed in Table 4.1 are implemented as easily as focusing.

They are discussedin Appendix C. Now that we have discussedthe conceptual

model behind LightShop and shown how to implement operations, we present the

LightShop designin the following section.

4.4 Ligh tShop's Design

Figure 4.4 illustrates the overall designof LightShop. The systemis designedto follow

the model, manipulate, render conceptualmodel. It takes two inputs. The �rst is a

seriesof function calls to model a scene.The secondinput is a ray-shadingprogram

that describeshow a pixel should be colored,given the scene(e.g. the manipulating

4.4. LIGHTSHOP'S DESIGN 51

LtColor main(LtVec2 pixelLocation) {
LtColor sum = LtVec4(0,0,0,0);
for(i=0; i < 1.0; i += 0.1) {

for(j = 0; j < 1.0; j += 0.1) {
LtRay ray = LiGetRay(0, pixelLocation, LtVec2(i,j));
LtColor col = LiSampleLF(0,ray);
sum += col;

}
}
return sum;

}

Figure 4.3: Example ray-shadingprogram for focusing. The core functionality that
enablesfocusing is that two for-loops and a summation are used to simulate the
aggregationat a pixel location, over the lensaperture. The two LightShopray-shading
functions, LiGetRay and LiSampleLFare discussedin more detail in Appendix C.

and renderingcomponent). The output is a 2D image.

Following the arrows in Figure 4.4, the input modeling calls are evaluated by the

modeler, which createsan internal representation of the scene. This scenerepre-

sentation is passedto the renderer,which takes the input ray-shadingprogram and

executesit over every output pixel location to produce a 2D image. To manipulate

and combine light �elds, a usermodi�es the ray-shadingprogram. As the ray-shading

programexecutes,it accessesthe sceneto retrieve data from the light �elds. Recalling

our three designgoals,�rst note that the ray-shadingprogram de�nes operations on

rays, which is independent of the light �eld representation. Second,sincethe program

utilizes a ray-shadinglanguage,new operationscan be easilyde�ned simply by writ-

ing new expressions.Third, the job of the renderer,which executesthe ray-shading

program at each ouput pixel location, can be directly mapped to a fragment shader.

This makesLightShop amenableto graphicshardware.

Note that this design is independent of any implementation. LightShop can be

thought of as a speci�cation for manipulating and rendering light �elds. In the fol-

lowing sectionwe discussoneparticular implementation of LightShop usingOpenGL.

Other implementations (using DirectX, for example)are alsopossible.

52CHAPTER 4. LIGHTSHOP: A SYSTEM FOR MANIPULA TING LIGHT FIELDS

LightShop

scene

LtColor main(LtVec2 pos) {
 LtVec2 lens = LtVec2(0,0);
 LtRay ray =
 LiGetRay(0, pos, lens);
 LtColor samp =
 LiSampleLF(0, ray);
}

LtColor main(LtVec2 pos) {
 LtVec2 lens = LtVec2(0,0);
 LtRay ray =
 LiGetRay(0, pos, lens);
 LtColor samp =
 LiSampleLF(0, ray);
}

modeler

renderer

LtInt camera0 = LiCamera();
LtInt lightfield0 =
 LiLightField(ºflowerº);

A
P
I

ray-shading program

function calls

output image

Figure 4.4: Overview of LightShop. The user passestwo inputs to the system. The
�rst is a seriesof function calls that de�ne a scene. The secondis a ray-shading
program denoting how a pixel should be colored,given the scene.The function calls
are passedto the modeler which createsan internal representation of the scene.The
sceneis outputted to LightShop's renderer,which takesthe user-de�nedray-shading
program and executesit per pixel of the output image. During computation, the
ray-shading program accessesthe scene. When the rendererhas executedfor every
output pixel location, the output imageis constructedand outputted.

4.5 The Ligh tShop Implemen tation

Recall that LightShop is composedof three parts: the modeling interface, the ray-

shadinglanguage,and the renderer. The modeling interfaceis implemented in C++;

the ray-shadinglanguageand the rendererleveragethe OpenGL programmableren-

dering pipeline. The goalof the systemis to manipulate and renderlight �elds. First,

4.5. THE LIGHTSHOP IMPLEMENT ATION 53

we describe our light �eld representation.

4.5.1 Ligh t Field Represen tation

All light �elds are represented by a set of images,regardlessof parameterizationand

acquisition method. These imageshave a RGBA color per pixel2. The imagesare

concatenatedtogether into a single �le 3. The �le is then compressedusing S3 tex-

ture compression[INH99], yielding a 4:1 compressionratio. This compresseddata�le

represents the light �eld. The compressionrate is modest, and few artifacts are

visible. However, Figure 4.5 illustrates a casewherethe compressionartifacts areevi-

dent. Other compressiontechniquesexist for light �elds: vector-quantization [LH96],

predictive imagecoding [MG00], wavelet-basedcompression[Pe01], aswell asmodel-

basedcompression[MRG03]. However, S3texture compressionis supported natively

on the graphicshardware; decompressionis quick and invisible to LightShop.

All acquireddata is converted to this internal representation. During the modeling

phase,whena light �eld is inserted into the scene,the appropriate �le is loadedfrom

disk and stored into memory. The modeling implementation is described next.

4.5.2 Ligh tShop's Mo deling Implemen tation

LightShop's modeling interface is implemented in C++ and utilizes the OpenGL

graphicsstate to passinformation to the ray-shadingcomponent. The programmer

usesthe interfaceto load light �elds and de�ne cameras.When a procedureis called

to insert a light �eld, LightShop loads the compressed�le from disk to graphics

memory in the form of a 3D texture. Similarly, whena usercalls a function to insert

a camera, data structures are allocated in graphics memory as uniform variables.

Uniform variables are variables that are accessibleby the fragment shaderand are

�xed when rendering a primitiv e in OpenGL4. In this way, when the ray-shading

2Alpha is obtained using active illumination (App endix B) or focusing (App endix D).
3For the two-planeparameterization, the imagesare �rst recti�ed to a commonplanebeforebeing

concatenatedtogether. The recti�cation is performed by taking a light �eld of a planar calibration
target [VWJL04].

4For more information on programmable graphics hardware, the reader is referred to [Ros04].

54CHAPTER 4. LIGHTSHOP: A SYSTEM FOR MANIPULA TING LIGHT FIELDS

Figure 4.5: ComparingS3TCto uncompressedimagery. The top left is an imagefrom
an uncompressedversionof the Burgherslight �eld (seeAppendix A). The top right is
from a light �eld usingS3TCcompression.The bottom row of zoomed-inimagesshow
a comparisonbetween the two images. Notice the triangular compressionartifacts
along the shoulder. The specular highlights are alsocorrupted by compressionnoise.

program executes(in the fragment shader), it has accessto light �eld and camera

data.

4.6. RESULTS USING LIGHTSHOP 55

4.5.3 Ligh tShop's Ray-shading Implemen tation

LightShop's ray-shading languageis implemented using the OpenGL Shading Lan-

guage(GLSL) [Ros04]. In other words, the ray-shadingprogramis run through a pre-

processorwhich performs variable name mangling, macro substitution and for-loop

expansionsto facilitate auxiliary state that LightShop needsin order to maintain a

consistent graphicsenvironment. The preprocessedray-shadingprogram is now valid

GLSL code and is compiledby the graphicsdriver and linked into the renderingpro-

gram for execution. The details are of the implementation are discussedin Appendix

C.

Using GLSL is advantageousbecauseit is designedfor real-time rendering. This

enablesLightShop to be usedasan interactive editing tool or asa library for games.

Sampling from light �elds is fast becauseGLSL takesadvantage of texture memory

coherence.Additionally , bilinear interpolation from oneslice is computationally free

so quadrilinear interpolation takes 4 computations as opposedto 16. A secondad-

vantage is that renderingan output imageis taken careof by OpenGL. That is, the

converted ray-shadingprogram (e.g. fragment shader) is automatically executedfor

every output pixel and stored in the frame bu�er. In fact, the LightShop's renderer

implementation is exactly OpenGL's renderingpipeline.

Given this implementation, we now show results of using LightShop in digital

photography and interactive games.

4.6 Results Using Ligh tShop

The following results show applications of LightShop to digital photography and in-

teractive games.All light �elds and their properties are enumerated in Appendix A.

Animation results are found on the websiteat

http://graphics.stanford.e du/papers/b chen_thesis .

56CHAPTER 4. LIGHTSHOP: A SYSTEM FOR MANIPULA TING LIGHT FIELDS

4.6.1 Digital Photograph y

In this �rst demonstration,LightShop is usedin two digital photography applications:

1) composingmultiple light �elds, similar to Photoshopfor images,and 2) performing

novel post-focusingfor sports photography.

Comp osing Scenes

LightShop can be used as a compositing tool for light �elds, the 4D analogy to

image compositing with Adobe Photoshop. As a demonstration, LightShop is used

to composite light �elds of several actors into a light �eld of a weddingcouple. Figure

4.6 shows oneimagefrom this wedding light �eld. This light �eld wascaptured using

a hand-held light �eld camera[NLB+ 05].

Figure 4.6: An imagefrom a light �eld of a wedding couple.

Figure 4.7 shows imagesfrom three light �elds of three actors. We will composite

theseactors into the wedding light �eld. The actors are captured using the camera

array. Each actor is standing in front of a greenscreento facilitate matte extraction

[SB96]. Additionally , we acquirea light �eld of each actor under two lighting condi-

tions: left light on and right light on. In order to acquire thesemultiple light �elds,

the actor must stand still for about 10 seconds.The purposeof acquiring light �elds

under di�erent illumination is to enablecoarserelighting. LightShop can simulate

4.6. RESULTS USING LIGHTSHOP 57

coarserelighting by taking linear combinations of the di�erently lit light �elds. A

sample ray-shading program that relights using two light �elds is shown in Figure

4.8. Figure 4.9 shows the result of virtually relighting an actor by varying the linear

combination weights. Theselight �elds are listed as \m ug shots" in Table A.1.

Figure 4.7: Images from three light �elds of three individuals in front of a green
screen,with two lights on.

LtColor main(LtVec2 loc) {
LtRay ray = LiGetRay(0, loc, LtVec2(0,0))
LtColor left = LiSampleLF(0, ray)
LtColor right = LiSampleLF(1, ray)
LtColor out = 0.25 * left + 0.75 * right;
out.a = 1;
return out;

}

Figure 4.8: Sampleray-shadingcodefor relighting. Two light �elds, \left" and \righ t"
are sampled.The light �elds correspond to left and right illumination, respectively.

In Figure 4.10a, the actors are relit to approximate the surrounding illumination

and composited into the wedding scene. In Figure 4.10b, a deformation is inserted

after relighting and before compositing into the scene. The rightmost actor's pose

has changed. Figure 4.11 shows the associated ray-shading program. Imagessuch

as Figure 4.10b are nearly impossibleto createusing conventional 2D editing tools.

The pixels that form this imageare selectedfrom morethan 436images.In addition,

sincewe are manipulating light �elds multiple viewscan be rendered,each exhibiting

the proper parallax. The imagesare renderedat 40 FPS.

58CHAPTER 4. LIGHTSHOP: A SYSTEM FOR MANIPULA TING LIGHT FIELDS

Figure 4.9: Virtually relighting an individual by taking linear combinations of colors
of rays sampledfrom two light �elds. The left- and right-most imagesare from the
original light �elds, lit from the left and right, respectively. The secondimage is
sampledfrom a light �eld that takes0.66 of the left light �eld and 0.33 of the right
one. The third imageusesthe ratios 0.33and 0.66 for the left and right light �elds,
respectively. Becausethe illumination is at only two positions,simulating a smoothly
moving light sourceby blending will causethe shadows to incorrectly hop around.

(a) (b)

Figure 4.10: (a) An imagefrom the composite light �eld. To approximate the illumi-
nation conditions in the wedding light �eld, we take linear combinations of the light
�elds of a given individual under di�erent lighting conditions. The illumination does
not match well becausethe lighting conditions were too sparse. (b) An image from
the composite light �eld wherewe have turned a coupleindividuals' heads.

Manipulating Focus

The next demonstration usesLightShop as a post-focusing tool. However, unlike

conventional focusing(seeSection4.3), which hasa singleplane of focus,LightShop

4.6. RESULTS USING LIGHTSHOP 59

LtColor main(LtVec2 loc) {
LtRay ray = LiGetRay(0, loc, LtVec2(0,0))
// deform light fields
...
// relight light fields
...
// composite light fields together
LtColor out = LiOver(woman, wedding);
out = LiOver(right_man, out);
out = LiOver(left_man, out);
return out;

}

Figure 4.11: Ray-shadingcode for compositing the wedding scene.

allows a user to createan imagewith multiple planesof focus. This feature is useful

in sports photography, whereareasof interest may occur at multiple depths. A sports

photographerwould then want to focus only on thesedepths. For example,Figure

4.12 shows one imagefrom a light �eld captured of several Stanford swimmers. We

will show how to useLightShop to createan imagewheredi�erent swimmersare in

focus.

Figure 4.12: Oneimagefrom the swimmerslight �eld. Notice that aremultiple planes
of interest, corresponding to each swimmer.

60CHAPTER 4. LIGHTSHOP: A SYSTEM FOR MANIPULA TING LIGHT FIELDS

The key ideais to combine the focusingandcompositing operator usingLightShop.

We focus on di�erent depths of the light �eld and composite these focusedimages

together. In order to independently blur di�erent depthsof the light �eld, wesegment

it into layers. Recall from Section 3.6 that a layer is a subsetof the original light

�eld. In this case,instead of using projectors for light �eld segmentation, we use

focus. Appendix D describesthis focus-basedsegmentation technique in more detail.

Treatedasa black box, the algorithm takesa light �eld asinput, and outputs separate

layers (e.g. light �elds).

Once the light �eld has beensegmented into layers, a separate\fo cusedimage"

can be computed from each layer. Each layer's sharpnessis speci�ed by its own

cameraand focal depth. In other words, if the light �eld is segmented into 3 layers,

the user de�nes 3 camerasin the scene,one for each layer. The focal properties of

each cameradetermine how light in the layer is integrated for a singlepixel. Figure

4.13 illustrates how the integration occursfor a singlepixel, through multiple layers.

Oneimportant aspect of this focusingprocessis the ordering in which compositing

rays and focusing (e.g. integration) occurs. If one were to integrate rays from each

layer of the light �eld and composite afterwards, this would produce an incorrect

result. The physically correct result is to �rst composite individual rays (i.e. the

black ray segments in Figure 4.13), then integrate the composited rays together. In

addition, sinceeach layer is a light �eld (and not an image), the refraction of the rays

enablesdefocusingto seethrough occludersand around corners.This is impossibleto

perform correctly if the layersare only 2D images.Figure 4.14shows the ray-shading

program that accomplishesthis compositing and focusingresult.

In summary, in order to createa multi-fo cal planeimageof the Stanfordswimmers,

�rst segment the light �eld into layers,onefor each swimmer. Appendix D describes

how the layers can be extracted from the swimmerslight �eld. Second,insert each

layer into the scene. For each layer, insert a lens camera. The camerashave the

sameattributes (i.e. image plane, lens aperture, lens position, etc.) except for the

focal distance5. The focal distance controls the amount of blurring for that layer.

5If the four camerashad di�eren t posesand had pinhole apertures, onecould also useLightShop
to construct multi-p erspective images like cross-slit images,panoramas,or general linear cameras
[YM04].

4.6. RESULTS USING LIGHTSHOP 61

light field light fieldlight field

pixel

image
plane

optics optics optics

S

Figure 4.13: Illustration of how light is integrated for a single image pixel, over
multiple layers. For a single pixel, light is integrated over di�erent regions in each
layer. The regionsare shown as light-blue frusta. Specifying di�erent camerasacts
asoptics to manipulate thesefrusta. Notice that thesefrusta neednot be coincident
at the optics interface, as the interface betweenthe red and greenlight �eld shows.
If we assumethat the objects represented by theselayers lie on the ST-plane in the
two-planeparameterization,then the objects in the red and blue layer will be in focus,
while the object within greenlight �eld will be blurred. This is becausethe radiant
emittance of onepoint in the red and blue light �elds is integrated as the irradiance
at a single pixel (e.g. focused). The black line shows one ray as it travels through
the deformedfrusta.

Then executethe ray-shadingprogram illustrated in Figure 4.14. This code correctly

refracts, compositesand integratesthe rays to form the multi-fo cal plane image.

Figure 4.15a shows a conventional image with a single plane of focus. In Figure

4.15b the photographer has focusedon the front and back swimmers,but left the

middle oneblurred. Alternativ ely, the photographermay want to focuson the middle,

and back swimmers, but create a sharp focus transition to the front swimmer, as

shown in Figure 4.15c.

4.6.2 In tegrating Ligh t Fields in to Games

In the �nal application, LightShop is demonstratedasa tool for integrating light �elds

into interactive games.We successfullyintegrate a light �eld of a toy space-shipinto

a modern OpenGL space-
ight simulator. In addition, we show how light �elds can

62CHAPTER 4. LIGHTSHOP: A SYSTEM FOR MANIPULA TING LIGHT FIELDS

LtColor main(LtVec2 currentPixel) {
LtColor finalColor = LtVec4(0,0,0,0);
LtColor sum = LtVec4(0,0,0,0);

// iterate over the lens aperture
for(float x=0.0;x<1.0;x+=1.0/16) {

for(float y=0.0;y<1.0;y+=1.0/16) {
LtColor composite_sample = LtVec4(0,0,0,0);

// iterate over the 3 layers in the scene
for(float i = 0; i < 3; i++) {

LiVec2 lensSample = LtVec2(x,y);

// form a ray from camera i's optical properties
LtRay ray = LiGetRay(i, currentPixel, lensSample);

// sample from light field i
LtVec4 sample = LiSampleLF(i, ray);

// composite the ray colors
composite_sample = LiOver(sample, composite_sample);

}

// sum over the aperture
sum += composite_sample;

}
}
return finalColor;

}

Figure 4.14: Ray-shadingcode for multi-plane focusing. The �rst 2 for-loops iterate
over the lensaperture. The inner for-loop iterates over the light �eld �eld layers. For
each layer, the ray is transformed accordingto the optics of the associated camera.
Then the appropriate light �eld is sampled,using this ray. The returned color value
is composited with colorsalong previousray segments. The �nal composited color is
then summedwith other rays in the aperture to producethe focusinge�ect.

4.6. RESULTS USING LIGHTSHOP 63

(a) (b) (c)

Figure 4.15: (a) Conventional focusingin a light �eld. The front swimmerlies on the
focal plane. (b) A multi-fo cal plane image where the front and back swimmersare
brought into focus for emphasis.The middle swimmer and the crowd are defocused.
(c) The front swimmer is defocused,but a large depth of �eld exists over the depths
of the middle and back swimmer. There is a sharp transition in focus between the
front and mid swimmers,but the photograph still hasa pleasingresult.

be hacked, using LightShop, for producing refraction and shadowing e�ects. These

e�ects are described in Appendix E.

Ligh t Fields in Vega Strik e

BecauseLightShop is implemented in OpenGL and GLSL, this makes it easy to

integrate it into interactivegames.Gameprogrammersthat utilize the programmable

vertex and fragment shaderscan useLightShop's functions to accesslight �elds like

any other texture. The vertex shader needsonly to de�ne a quad spanning the

projected area of the light �eld and the fragment shaderexecutesthe LightShop's

ray-shadingprogram to color the quad. From the gameprogrammer'spoint of view,

LightShop provides an interface for a \3D billb oard" [MBGN98, AMH02] 6.

To demonstrateLightShop's use in interactive games,it is integrated into Vega

Strike, an open-sourceOpenGL-basedspace-shipgame [Hor06]. Vega Strike is a

popular space
ight simulator with 1.3million downloadssinceits inception in 2001. It

is a medium-sizedopen sourceproject with approximately 100,000lines of code. The

6The billb oard appears 3D since a 3D object appears to be inside it, but in fact the light �eld
representation is in general4D.

64CHAPTER 4. LIGHTSHOP: A SYSTEM FOR MANIPULA TING LIGHT FIELDS

gameis well supported by the community, with multiple user-contributed modules

including Privateer, and Wing Commander. Figures 4.16 shows somescreenshotsof

the game.

The light �eld that we wish to insert into VegaStrike represents a toy ship. The

acquired light �eld is uniformly sampled[CLF98] around the toy ship. Figure 4.17

shows a view from this light �eld.

Figure 4.16: Imagesfrom VegaStrike.

In VegaStrike,each model hasmultiple meshesde�ning its geometry. Each meshin

turn hasoneassociated 2D texture map. In the gameloop, whena meshis scheduled

to be drawn at a particular location, the appropriate MODELWVIEWmatrix is loaded

into OpenGL and the associated texture is madeactive. The meshverticesare then

passedto OpenGL, along with the associated texture coordinates.

To integrate LightShop into VegaStrike, the game programmer de�nes a Tex-

ture4D sub-classthat referencesthe light �eld data. The meshfor a light �eld object

is simply a quadrilateral spanning[-1, 1] x [-1, 1] x [-1, -1] in x, y, and z in normalized

devicecoordinates. The vertex shadertakesthis quadrilateral and mapsit to the cor-

rect screencoordinates, depending on the location of the view cameraand the light

�eld. The game programmer writes a simple ray-shading program (e.g. fragment

program) that samplesfrom the light �eld. This fragment shaderis activated when

the light �eld is ready to be drawn. Figure 4.18, shows the light �elds of the toy ships

integrated into the game.

4.7. SUMMARY 65

Figure 4.17: Image from a light �eld of a toy spaceship.

The signi�cance of this application is that through the use of LightShop, light

�elds can be integrated into the standard graphics pipeline. This meansthat one

can take real-world objects and placethem into gamesor other graphicsapplications.

Another possibility is to uselight �elds from pre-renderedimagesof complexscenes.

This e�ectively cachesthe imagesof a traditional 3D object, and LightShop is usedto

interactively render it. This level of facility in integrating light �elds into interactive

applicationsis unprecedented. Hopefully it will encouragethe useof such image-based

models in interactive games.

4.7 Summary

In summary, the secondcontribution of this thesis is LightShop, a system for gen-

eral manipulation and renderingof light �elds. It borrows from traditional modeling

packagesby using the model, manipulate, render conceptualmodel. The modeling

component is represented by an API. Manipulating and renderinga light �eld is rep-

resented by manipulating view-rays as they emit from the virtual viewpoint. These

66CHAPTER 4. LIGHTSHOP: A SYSTEM FOR MANIPULA TING LIGHT FIELDS

Figure 4.18: In-gamescreencapturesof the light �elds of the toy shipsin VegaStrike.
The gameruns in real-time (30+ fps). In the top-left, the protagonist approaches
an unidenti�ed space-craft. Notice that the light �eld is integrated seamlesslyinto
the surrounded3D graphics. The top-right shows a closerview of the ship. Detailed
geometrycanbeseen.Bottom-left showsan out-of-cockpit view wherethe protagonist
has attacked the ship. The ship's shields light up around the light �eld. In the
bottom-right the ship light �eld makesa passby the cockpit. A particle systemfor
the thrusters hasbeenrenderedwith the light �eld.

manipulations are encapsulatedin a ray-shadinglanguagethat allows for novel de�-

nitions of operations and combining existing ones.

The system satis�es our initial designgoals for building a light �eld manipula-

tion system. The conceptualmodel of manipulating view-rays instead of light �elds

allows the user to abstract away the actual light �eld representation. The use of

a ray-shading languageenablesfor easily extending the system to new operations

and combinations of operations. Finally, by mapping the ray-shading languageto a

fragment shader,the systemis amenableto graphicshardware.

4.7. SUMMARY 67

We show several compelling examplesusingLightShop in digital photography and

interactive games.Thesedemonstrationsillustrate that LightShop cannot only oper-

ate on a variety of light �elds, but allows a userto creatively combine and manipulate

them. It is our hope that LightShop can serve asa corecomponent in any light �eld

manipulation application. This thesis illustrates onestep towards that direction.

68CHAPTER 4. LIGHTSHOP: A SYSTEM FOR MANIPULA TING LIGHT FIELDS

Chapter 5

Conclusions and Future Work

This thesis presents two contributions towards light �eld manipulation. The �rst is

an interactive technique for deforming a light �eld. We discussthe two key chal-

lengesto deformation: specifying a ray-transformation and maintaining consistent

illumination. Our solutions are a modi�ed free-form deformation and coaxial light

�elds. The secondis a system,LightShop, that enablesfor generalmanipulation of

a light �eld. We designthe systemto abstract away the light �eld parameterization,

be easilyextendable,and be amenableto graphicshardware. The systemis designed

having three-stages: model, manipulate, and render. We have demonstrated that

deformations and LightShop have applications in photo-realistic animation, digital

photography, and interactive games.

Above are just a few domains that could bene�t from a system like LightShop.

Other potential domains include opthalmology, surgical simulation, or rapid proto-

typing of scenes.In opthalmology, one important problem is the synthesisof scenes,

as seenthrough human optical systems, for the analysis of corneal aberrations or

diseases[Bar04]. LightShop can useShack-Hartmann wavefront data to refract view-

rays, and samplefrom light �elds of real scenes.The imagesrenderedusing Light-

Shopwould contain optical aberrationsconsistent with human eye characteristicsand

alsobe renderedfrom imagery representing real scenes.BecauseLightShop allows a

user to arbitrarily manipulate rays, there is a potential for designingoptical systems

to correct for such aberrations. In surgical simulation, LightShop can be used to

69

70 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

simulate dynamic organ behavior by the use of light �eld deformation. The visual

feedback of a realistic deformingorganmay be useful for training purposes.In rapid-

prototyping of scenes,�lm directorsor gamedesignersmay want to quickly composea

photo-realistic scene,for pre-visualizationpurposes.Fundamentally, LightShop o�ers

a simple mechanism for composingrealistic scenes.

LightShop could be extended in a number of ways. First, one can �nd more

usesfor LightShop itself. For example, light �eld segmentation (either using active

illumination or focus)could be better incorporated into the editing pipeline. Another

novel use of LightShop is in combining multi-p erspective imaging (i.e. panoramas)

with focusing. One could produce panoramasthat contain spatially-varying focus

properties. This might be useful in blurring unwanted objects in street panoramas.

A third useof LightShop is to modify a 3D modeling tool, like 3D Studio Max, to

output function calls to drive LightShop. In this sense,LightShop acts asa light �eld

rendererplugin for the modeling tool.

Other improvements extend LightShop's architecture. For example, in addition

to RGBA per ray, one could incorporate depth, normal, or time as additional data.

This would allow for more creative operations like painting, or new datasets like

time-varying light �elds. Theseextensionsare incremental stepstoward the ultimate

editing tool: manipulation of re
ectance �elds. Sincere
ectance �elds represent the

exitant light �eld as function of incident lighting (it is 8 dimensional), it is a more

comprehensive representation than a light �eld. In time, asdata-acquisitionbecomes

easierand compressiontechniquesimprove, onecan imagineextendingLightShop to

Re
ectShop, a generalediting tool for re
ectance �elds. Re
ectShop would enable

not only changesin the shape of capturedobjects, but alsochangesin incident illumi-

nation. A scenecomposited in Re
ectShop would encapsulatecorrect global illumi-

nation, i.e. shadows, inter-re
ection, scattering, etc. This has the potential to allow

directors to completely synthesize realistic actors, immersegamersin a completely

real environment, or enabledoctors to train on photo-realistic simulation imagery.

Hopefully, such editing tools will increasethe useof image-basedmodelsin computer

graphics.

App endix A

Table of Ligh t Fields and their

Sizes

LF Resolution Width Heigh t Size Acquisition Fig.
Buddha 128 x 128 x 32 x 32 4 RU 4 RU 16 ray-tracer C.7
Burghers 256 x 256 x 16 x 16 37 37 10 LF camera 4.5
�sh 320 x 240 x 180 360� 0 13 ray-tracer 3.20

o wer 256 x 256 x 16 x 16 550 80 16 gantry C.7
gira�e 256 x 256 x 16 x 16 550 80 16 gantry E.2
glassball (x2) 256 x 256 x 32 x 32 2 RU 2 RU 128 ray-tracer E.1
highlight 256 x 256 x 32 x 32 2 RU 2 RU 64 ray-tracer C.8
swimmers 292 x 292 x 16 x 16 37 37 10 LF camera 4.12
ship 256 x 256 x 31 x 61 360� 124� 130 sph. gantry 4.17
teddy bear 240 x 320 x 180 360� 0 13 sph. gantry 3.21
toy warrior 480 x 640 x 360 360� 0 52 turn table 3.1
twisted heads 512 x 512 x 12 x 5 1770 600 15 cameraarray C.5
mug shots 512 x 512 x 12 x 5 1770 600 15 cameraarray 4.7
wedding 292 x 292 x 16 x 16 37 37 10 LF camera 4.6

Table A.1: Light �elds, their sizes(in MB), and acquisition methods. The Width
andHeigh t denotemaximum distancebetweencamerashorizontally andvertically, in
mm. When the light �eld usesa sphere-planeparameterization,\sph. gantry," width
and height are speci�ed in terms of degreesfor � and � . \R U" stands for rendering
units, which is in the coordinate systemof the renderer. The \turn table" acquisitionis
acquiredby placingthe toy on a mechanical turntable and taking successive snapshots
while rotating the table.

71

72 APPENDIX A. TABLE OF LIGHT FIELDS AND THEIR SIZES

App endix B

Pro jector-based Ligh t Field

Segmentation

In this appendix, we describe a technique to segment a light �eld into layers, using

projector illumination. The de�nition of a layer is described in Section 3.6. To

motivate the useof projectors to segment a light �eld into layers,considerthe teddy

bear shown in Figure 3.18. Suppose,beforecapturing a coaxial light �eld, we paint

the bear. We paint his head red, his body blue, his left arm green,etc. Now, when

capturing a light �eld of the painted teddy bear, the color of each pixel in this dataset

denotesthe layer in which that pixel belongs. For example,all reddish pixels in the

light �eld correspond to rays which are incident to the teddy bear's head. This

is one solution for segmenting a light �eld into layers: paint the individual regions

then acquiredthis colored light �eld . Unfortunately, painting the object destroys the

geometry and the appearanceof the object. In other words, if we �rst paint the

object and acquire a colored light �eld, then we cannot capture the object with its

original appearance. If we �rst acquire a coaxial light �eld and then a colored light

�eld, then the geometrywill changebetweenacquisitionsfrom applying the paint.

For this reason,weuseprojectors to e�ectively \pain t" the object. In other words,

the imagethat is loadedinto the projectors will color di�erent regionsof the object.

This solution preserves the object's geometry. Afterwards, the projectors can be

turned o�, and a coaxial light �eld can be captured for light �eld deformation. The

73

74 APPENDIX B. PROJECTOR-BASED LIGHT FIELD SEGMENTATION

coaxial light �eld is then segmented into layers (e.g. light �elds) by using the color

information from the coloredlight �eld. For example,to segment the headlayer from

the coaxial light �eld, we examineall red-coloredpixels in the coloredlight �eld and

usetheir locations to copy from the coaxial light �eld to the headlayer.

Figure B.1 illustrates the acquisition setup using the Stanford SphericalGantry

[Lev04b]. Two projectorsthrow colorsonto the teddy bear. Oneprojector illuminates

the teddy bear's front, and the other his back. When capturing a light �eld with this

projector illumination, which we call a colored light �eld, the color of each pixel in

the light �eld denotesthe layer.

Figure B.1: The acquisition setup for capturing light �elds. The camerais attached
to the end e�ector of the Stanford spherical gantry and rotates in a circle around
the object. Two projectors (one shown above) are placed above and outside of the
gantry. The two projectors display a �xed pattern onto the front and back parts of
the teddy bear. With the �xed pattern illuminated, the camera then proceedsto
capture a coloredlight �eld of the object. After acquiring this coloredlight �eld, the
projectors are turned o� and the secondarylight attached to the camerais turned
on. With this new illumination, a separate,coaxial light �eld is captured. The colors
in the coloredlight �eld are usedto segment out layers from the coaxial light �eld.

75

Sowhat imagesaredisplayed on the projectorswhile the cameracapturesimages?

In the caseof the teddy bear, the imagesare color masksthat coarselysegment the

bear into regions. Note the di�erence between a region and a layer. A region is a

physical region on the teddy bear (i.e. the head region). The corresponding layer

is a light �eld in which all rays are in incident to that region. Figure B.2 shows

an examplemask for the front of the teddy bear. A similar mask is created for the

projector aimed at the back of the teddy bear. The imagesare createdby hand in

an interactive process.A personsits at a computer that has two video outputs; the

video outputs are exact clonesof each other. One output is shown on a standard

CRT monitor. The other output is displayed through a projector, aimedat the teddy

bear. Usinga drawing programdisplayedon the CRT monitor, the userpaints colored

regionswhich are displayed live onto the teddy bear, through the projector. Drawing

the imagesthat the projector emits takes lessthan 10 minutes becausethe images

needonly to segment the bear into layers, not to preciselyilluminate �ne geometry

like its fur. After painting thesecoloredregions(which are projected onto the teddy

bear), a coloredlight �eld is capturedunder this newillumination. The middle image

in Figure B.3 is an image from the colored light �eld captured with this projector

illumination.

Notice in this image that within one color region there are still changesin color

due to varying albedoor non-uniform illumination brightness. To solve this problem,

we capture an additional light �eld, wherethe projectorsare emitting a
o odlit white

pattern. The imagesfrom this
o odlit light �eld are usedto normalizethe data from

the coloredlight �eld, thus reducingnon-uniformity artifacts. Normalization of each

imageof the coloredlight �eld is computedby the following equation:

B 0 = 256� B=W (B.1)

where W is a
o odlit image (8 bits per channel), B is a colored image and B 0 is

the normalizedcolor image. Figure B.3 shows imageB 0 for onecamera'sview of the

teddy bear light �eld. Notice that the union of all coloredregionsin the normalized

imageis also a binary mask for an object's opacity. In other words, we may usethe

76 APPENDIX B. PROJECTOR-BASED LIGHT FIELD SEGMENTATION

coloredregionsas an alpha mask for each image. In fact this mask is directly stored

in the alpha channel for each layer.

Figure B.2: A hand-drawn color mask is displayed on the front-facing projector to
physically segment the teddy bear into coloredregions.The userdraws a coarsecolor
mask. With this illumination pattern (and a corresponding back-facing pattern)
turned on, a colored light �eld is captured.This light �eld is used to segment out
layers from the coaxial light �eld.

In summary, to segment the teddy bear light �eld, we useprojectors to e�ectively

paint the bear when we acquire the data. This colored light �eld has the property

that the colors of each pixel denote the layer to which that pixel belongs. Then, a

separatecoaxial light �eld is acquired. The colors in the coloredlight �eld are used

to segment the coaxial light �eld into layers. Each layer has alpha per pixel, which

describes an object's opacity. The output of this algorithm is a set of layers (e.g.

light �elds), each with alpha.

77

Figure B.3: Segmenting a teddy bear light �eld by using projector illumination. The
left imageis the bear under
o odlit illumination. The middle imageshows the same
bearwhenprojectedwith color masks.The colorsdesignatelayersfor the head,torso,
arms, legsand joints. Each color denotesthe layer to which that pixel belongs. On
the right is the sameview after normalization. Notice that the union of the colored
regionsform an alpha mask for this image. We store this information in the alpha
channel. Theseillumination conditions are captured for each cameraposition in the
light �eld.

78 APPENDIX B. PROJECTOR-BASED LIGHT FIELD SEGMENTATION

App endix C

The Ligh tShop API

This appendix describesthe LightShop API and implementation details. The overall

designand motivation for the systemare described in Chapter 4.

C.1 Overview of the API

Recall that LightShop consistsof a modeling interface,a ray-shadinglanguageand a

renderingsystem. The modeling interfaceexports a set of functions that are usedto

de�ne a scenecontaining light �elds. The ray-shading languageis usedto describe

how that sceneshould be renderedto a 2D image, i.e. how a view-ray is shaded,

given multiple light �elds in the scene.LightShop's rendererthen executesthe user-

de�ned ray-shadingprogramat each pixel of the output image. Each executionof the

programshadesa singlepixel until the entire imageis rendered.Figure 4.4 illustrates

an overview of LightShop.

To use the interface, a programmer makes a seriesof procedurecalls to setup a

scenewith light �elds. These include positioning light �elds and de�ning viewing

cameras. To describe how an image is rendered from this scene,the programmer

writes a ray-shadingprogram that describeshow a view ray from a selectedcamera

is shadedas it interacts with the light �elds. Figures C.1 and C.2 show a program

containing procedurecalls to setup a scene,and a ray-shadingprogram that dictates

how an imageshould be rendered.

79

80 APPENDIX C. THE LIGHTSHOP API

First we describe LightShop's modeling interface. Then, we describe the ray-

shading languagethat allows the programmer to specify how a 2D imageshould be

renderedfrom the light �elds in the scene.

C.2 Ligh tShop's Mo deling In terface

In LightShop, a sceneis modeledwith two primitiv e types: cameraswith a singlelens1

and light �elds. The programmercalls speci�c functions that insert theseprimitiv es

into an internal representation of the scene. Each primitiv e stores its own related

information: focal distance,sampling, etc. This information is called LightShopat-

tributes or attributes for short. Table C.1 shows the supported LightShop primitiv es,

and their associated attributes.

In LightShop, a camerawith a lens (henceforth called a \lens camera" or \cam-

era") follows the simple lensmodel. Figure C.3 illustrates the model. It hasan image

plane, a lens plane, and a focal plane. Intuitiv ely, light emitted from a point on the

focal plane passesthrough an aperture in the lens plane and is focusedonto a point

on the image plane. More speci�cally, on the image plane is a rectangular region

de�ning the digital sensoror �lm area. The cameraattributes \lo wer left," \up," and

\righ t" de�ne both the image plane and the sensorarea. The lens plane is parallel

to the imageplane. The lensaperture is a rectangular region lying on the lensplane.

The attributes \lens center," \lens width," and \lens height," de�ne the location of

this lens aperture. The focal plane is parallel to the lensplane and imageplane. Its

location is de�ned by the \fo cal distance" attribute, which is the distance between

the focal and lens plane. Sincedi�raction is not modeled, a pinhole cameracan be

createdby setting the \lens width" and \lens height" attributes to 0. As wewill seein

SectionC.3.3, the LiGetRay ray-shadingfunction makesuseof the cameraattributes

to form a ray, given the 2D locations of the image pixel and a samplepoint on the

lens.

1Although LightShop could include a more complex optical system, in practice a single lens
model su�ces for many applications. When more complexity is necessary, LightShop's ray-shading
languageallows for arbitrary ray refraction (seeSection C.3).

C.2. LIGHTSHOP'S MODELING INTERFACE 81

// Initialize LightShop
LiBegin();

// insert the camera
LtInt camera0 = LiCamera();

// set camera0's attributes
LtDir lowerLeft= {-1, -1, -1};
LtDir up = {0, 2, 0};
LtDir right = {2, 0, 0};
LiDir lensCenter = {1,1,1};
LiFloat focalDistance = 10.0;
LiInt xRes = 512;
LiInt yRes = 512;

LiAttributeCam(c amer a0, ``x res'', &xRes);
LiAttributeCam(c amer a0, ``y res'', &yRes);
LiAttributeCam(c amer a0, ``lower left'', lowerLeft);
LiAttributeCam(c amer a0, ``up'', up);
LiAttributeCam(c amer a0, ``right'', right);
LiAttributeCam(c amer a0, ``lens center'', lensCenter);
LiAttributeCam(c amer a0, ``focal distance'', focalDistance);

// insert the light field
LtColor clear = {0, 0, 0, 0};
LtMatrix translate = {1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, -10, 1};
LtInt lightField1 = LiLightField(``li ght fi eld .t lf '') ;
LiAttributeLF(li ghtF iel d1, ``sampling'', ``quadralinear'');
LiAttributeLF(li ghtF iel d1, ``wrapping'', clear);
LiAttributeLF(li ghtF iel d1, ``transform'', translate);

// tell LightShop to clean up
LiEnd();

Figure C.1: A simpleLightShopprogramthat modelsa scenecontaining a lenscamera
and a light �eld.

82 APPENDIX C. THE LIGHTSHOP API

LtColor main(LtVec2 currentPixel)
{

LtColor col = LtVec4(0,0,0,0);

// convert the current pixel location to a ray based on camera 0
LtRay=LiGetRay(0, currentPixel, LtVec2(0, 0));\\

// use the ray to sample from light field 0
col = LiSampleLF(0, ray);

// return the color sampled from the light field
return col;

}

Figure C.2: A simple ray-shading program that takes the scenemodeled in Figure
C.1 and returns the color of a singlepixel of the display image. LightShop's renderer
executesthe program over all pixels to computea �nal image.

For light �elds, we approximate the continuous4D function with discretesamples

that can be thought of asa 4D texture. Hence,light �elds in LightShop have similar,

texture-like attributes: samplingmethod (i.e. nearest-neighbor, or quadralinear,and

wrapping behavior (i.e. repeat or clamp to a value). Nearest-neighbor sampling

simply extracts the color of the ray \nearest" to the input ray. Quadralinearsampling

[LH96] is the 4D equivalent to bilinear interpolation in 2D.

The third light �eld attribute, \transform", is an optional attribute that allowsthe

programmerto passimplementation-speci�c parametersto LightShop. For example,

in the implementation described in Section4.5, LightShop supports the two-planepa-

rameterization of light �elds. The \transform" attribute is usedto passa 4x4 matrix

that is applied to the vectorsdescribingthe UV- and ST-planeof the light �eld. This

allows a programmer to position a light slab by providing an appropriate transform

matrix. Other implementations may usethis attribute for other applications.

Notice that LightShop doesnot specify a particular light �eld parameterization;

the attributes are invariant to this and the implementor may support various types

(i.e. UVST 2-plane,sphere-plane,circular, etc.) at her discretion.

C.2. LIGHTSHOP'S MODELING INTERFACE 83

lens_center

x

y

z

lower left right

up lens_center

width

height
focal distance

Figure C.3: The lens model used in LightShop. The pink, green and blue rectan-
gles are the sensorarea, lens aperture and focal plane, respectively. Thesecamera
attributes are usedby the LiGetRay ray-shadingfunction, described in SectionC.3.3.

C.2.1 Graphics Environmen t (Scene)

Given the previously de�ned primitiv es, a programmer createsa sceneby calling

speci�c functions that modify an internal representation of the world. This internal

representation is called the graphics environment or scene, which is invisible to the

programmerand completelycontained within LightShop. The graphicsenvironment

is simply a set of camerasand a set of light �elds; it is sharedbetweenthe modeling

interfaceand the ray-shadinglanguage.

84 APPENDIX C. THE LIGHTSHOP API

C.2.2 Mo deling Functions Av ailable to the Programmer

The goalof the LightShopfunctions is to provide an interfacebetweenthe programmer

and the graphics environment. The functions use speci�c data types de�ned by

LightShop for arguments and return values. We �rst de�ne thesedata types, then

describe the proceduresthat use them. The data types are presented using a C-

like syntax as an explanatory medium. However, note that LightShop can also be

implemented in other high-level languageslike Java or Python.

The name of each data type is pre�xed with Lt (L ightShop t ype). Procedures

and variablesare pre�xed with Li (L ightShop interface).

Scalar T yp es

typedef long LtInt;

typedef float LtFloat;

typedef char* LtString;

typedef void LtVoid;

typedef void* LtPointer;

LightShop supports the usual data typesfound in C.

Vector T yp es

class LtVector3;

class LtVector4;

class LtMatrix3;

class LtMatrix4;

typedef LtVector3 LtPoint;

typedef LtVector3 LtDir;

typedef LtVector4 LtColor;

The Vector[34] typesaregenericvectorsusedfor variablescontaining 3D points,

C.3. LIGHTSHOP'S RAY-SHADING LANGUA GE 85

normals,homogeneouscoordinates,etc. For convenience,LightShop alsode�nes spe-

ci�c typesfor points, colors,and directions. The matrix typesstore transformations

that canbeapplied to LtVector[34] s. Matrix elements arespeci�ed in column-major

order, similar to OpenGL [BSW+ 05].

Functions

These functions allow the implementation to initialize any LightShop state and to

ensurethat this state is clearedwhen LightShop is done. They must be the �rst and

last procedurecalls to LightShop.

LtVoid LiBegin();

LtVoid LiEnd();

The following proceduresinsert and modify attributes of each of the primitiv es:

camerasor light �elds. Note that the functions take in an integer identifying the

particular instance. The identi�er is returned when the programmer calls the ap-

propriate function to insert the primitiv e. The attribute namesusedin the function

arguments are speci�ed in Table C.1.

LtInt LiCamera();

LiAttributeCam(LiInt cameraID, LtString attributeName,

LtPointer value);

LtInt LiLightField(LtString filename);

LtVoid LiAttributeLF(LtInt lightFieldID,

LtString attributeName,

LtPointer value);

C.3 Ligh tShop's Ray-shading Language

After using the modeling interface to de�ne a scenecontaining light �elds, the pro-

grammer writes a ray-shading program that preciselyde�nes how this sceneshould

86 APPENDIX C. THE LIGHTSHOP API

be renderedto a 2D image. An image is created by associating a ray to each out-

put pixel, and deciding on how to shadethis \view-ray". As the view-ray travels

through the scene,its color (RGBA) or direction may changedue to interaction with

light �elds. This is similar to ray-tracing exceptthat objects are represented by light

�elds. LightShop's ray-shading languageallows the programmer to preciselyde�ne

how this view ray is a�ected by the light �elds.

The ray-shadinglanguageexecutesin a mannersimilar to the Pixel StreamEditor

[Per85]. It takes as input the xy location of a pixel of the 2D image, executesthe

ray-shading program at this pixel, and outputs a RGBA color. At any one pixel,

the program has accessto the graphics environment (i.e. the light �elds and the

cameras). It usesthis environment to �rst form a ray from the given pixel position

and then to shadethe color of this ray. The pixel color is set to the computed ray

color. LightShop's renderer executesthe sameray-shading program at each pixel

location to progressively construct the �nal image.

First we describe the language'sdata types, then
o w control, then high-level

functions available to the programmer. We use GLSL [Ros04] as the explanatory

medium for data types and procedures. It has a C-like syntax and we build func-

tionalit y on top of it in our implementation in Section 4.5. However, note that the

ray-shading languagecould be implemented in other languageslike C++, HLSL, or

Cg.

C.3.1 Data T yp es and Scope

typedef void LtVoid;

typedef int LtInt;

typedef float LtFloat;

typedef vec2 LtVec2; // A general 2-vector

typedef vec3 LtVec3; // A general 3-vector

typedef vec4 LtVec4; // A general 4-vector

typedef mat4 LtMat4; // A general 4x4 matrix of floats

C.3. LIGHTSHOP'S RAY-SHADING LANGUA GE 87

typedef vec4 LtColor; // A RGBAcolor value

typedef vec3 LtPoint; // A XYZ3D point

typedef vec3 LtDir; // A direction vector

typedef vec4 LtPlane; // A plane equation Ax+By+Cz+D=0

struct LtRay {

LtVec4 pos;

LtDir dir;

};

The ray-shading languagesupports the standard C data types. The LtRay type

describesa ray in 3-space.It is usedfor sampling from a light �eld to obtain a color

in that ray direction. A ray in LightShop is represented by a point on the ray (in

homogeneouscoordinates) and a direction. Although a ray can be described by four

parameters,the point-direction representation facilitates ray intersectioncalculations.

The scope of variables is the sameas in C++, i.e. local scope within the enclosing

block and global scope otherwise.

C.3.2 Flo w Con trol

The program starts executionin the mainfunction. The samemainfunction executes

for every output pixel of the image. It takesas input the current pixel location and

outputs a RGBA color. It can alsoaccessthe global graphicsenvironment.

Aside from a few di�erent token names,the LightShop ray-shadinglanguageuses

the samegrammar asGLSL [Ros04]. Looping is accomplishedusing the samesyntax

and keywords as those in C++: for , while , and do ... while . Looping allows a

programmerto map the colorsof multiple rays in di�erent light �elds to a singlepixel

color. One useful application is for focusing, wherea single pixel color is computed

by integrating over the colorsof multiple rays (seeSection4.6.1). Branchesalso use

the samesyntax asin C++: if and if ... else . This allows the program to have

88 APPENDIX C. THE LIGHTSHOP API

per-pixel variabilit y. Functions are de�ned and called in the sameway as in C++.

A return type is followed by the nameof the function, followed by a parameter list.

The languageallows for function overloading.

C.3.3 Ligh t Field Manipulation Functions

On top of this language,LightShop o�ers the standard math functions (sin, asin,

pow, etc.) and several high-level functions speci�cally for manipulating light �elds.

The ray-utilit y function, LiGetRay, takesas input a 2D pixel location, a 2D po-

sition on the lens aperture and a cameraprimitiv e. It usesthe cameraattributes,

de�ned in SectionC.2, to producea ray. First, LiGetRay forms an intermediate ray

basedon the pixel location and sampleposition on the lens. This ray is then refracted

through the lens and returned as output. The amount of refraction is basedon the

simplelensmodel; rays emitted from onepoint on the imageplaneconvergeto a point

on the focal plane de�ned by Gaussianoptics. Recall that the focal plane and other

cameraattributes arespeci�ed during the modeling process,described in SectionC.2.

The LightShop function is the following:

LtRay LiGetRay(LiInt cameraID, LtVec2 currentPixel,

LtVec2 lensSample)

For example,in the simple ray-shadingprogram shown in Figure C.2, LiGetRay

returns the refractedray that started from the current pixel location, entered the lens

center and refractedout. Section4.3demonstrateshow focusingcanbe accomplished

by summing the colorsof rays that enter multiple positions on the lensaperture.

Oncea ray hasbeenformed, it can be passedas input to several high-level func-

tions. These functions form a basis for a wide variety of light �eld manipulation

operations. Additionally , thesefunctions can be called in combination, which allows

arbitrarily complex light �eld manipulations.

The following arethe LightShop functions: 4D sampling , which samplesa RGBA

color from a light �eld; comp ositing , which combinestwo RGBA colorsinto a single

one;and warping , which mapsrays to rays.

C.3. LIGHTSHOP'S RAY-SHADING LANGUA GE 89

4D Sampling

The sampling proceduretakesas input a ray and a light �eld and returns the color

in that ray direction. Becauselight �elds in LightShop are represented in a sampled

form, any given ray direction may not have a color in the light �eld. Hence, the

procedureutilizes the sampling light �eld attribute to determinehow it shouldreturn

a color for any given ray. The sampling procedureis most commonly usedfor novel

view synthesis from light �elds:

LtColor LiSampleLF(LtInt lightfieldID, LtRay ray)

For the two-plane parameterization, sampling the color along a ray direction is

performedexactly in the samemanner as described in Levoy and Hanrahan [LH96].

The color of a ray is a function of rays who have the nearestintersections(u; v; s; t) on

the UV- and ST-plane. The sampling attribute determineswhether to usenearest-

neighbor or quadralinear interpolation.

The algorithm for samplingfrom sphere-planelight �elds generalizesthe technique

usedfor rendering from concentric mosaics[SH99]. Assumethat a view-ray r from

a user-de�ned camerais sampling from a sphere-planelight �eld. The ray intersects

the sphereand the planede�ning the SLF. The farther intersectionwith the sphereis

ignored. Recall, the planeis incident to the center of the sphere.Its normal is de�ned

to be parallel to the vector from the cameracenter to the center of the sphere. In

other words, the orientation of the plane is view-dependent. The sphereintersection

locatesnearestcameras.The planeintersectionlocatesnearestpixels in thosenearest

cameras.Nearest-neighbor or quadralinear interpolation can be applied. Figure C.4

illustrates the samplingprocess.Ray r intersectsthe sphereat point m and the plane

p at point x. m is usedto selectnearestcamerasa and b. x is usedto selectnearest

pixels a0 and b0.

Comp ositing

Recallthat a colorsampledfrom a light �eld contains RGBA channels.RGB represent

an approximation to the radiancealongthe ray direction in the light �eld. A, or alpha,

90 APPENDIX C. THE LIGHTSHOP API

r
x

a

b

p

m
a'

b'

Figure C.4: Plan-view of rendering from a sphere-planelight �eld.

represents both opacity and coverage. Once a color has beensampledfrom a light

�eld, it can be composited with samplesfrom other light �elds. Using the proper

compositing operators and ordering allows a programmer to render an image of a

sceneof light �elds.

The compositing operator allows for all twelve of Porter and Du� 's [PD84] com-

positing operations. Similar to their formulation, LightShop assumesthat the colors

in the light �eld are premultiplied by the alpha channel. This is usefulbecausecom-

positing equationsfor RGB are the sameas thosefor alpha.

The twelve compositing operations for two RGBA colors, A and B, can be ex-

pressedas a linear combination. More speci�cally, to compute the composited color,

the programmerspeci�es weights, w1; w2 to the linear combination of A and B:

C = w1A + w2B (C.1)

For particular choicesof w1 and w2, the resulting color have familiar forms, as

shown in TableC.2. The LightShopproceduresin this table return a LtColor and take

in two LtColor s asargument. One exampleis shown below for the over compositing

operator:

LtColor LiOver(LtColor A, LtColor B)

C.3. LIGHTSHOP'S RAY-SHADING LANGUA GE 91

Also, for brevity the symmetric procedurefor each operation has beenomitted from

the table (i.e. B over A, B in A, etc.).

Speci�c procedurenameshave beengiven to the commoncompositing operations.

The LightShop procedurefor generalcompositing is:

LtColor LiComposite(LtFloat w1, LtColor A, LtFloat w2, LtColor B)

Warping

LightShop'swarping functions take a ray asinput and return a new(i.e. warped) ray.

Ray warping is commonly usedto simulate deformation of a light �eld [COSL05], or

refractive e�ects [HLCS99, YYM05].

LightShop providestwo typesof warps to the programmer: proceduralwarps and

4D table lookup. Procedural warps are commonly-usedutilit y functions for warping

rays. These are various functions that transform points. New rays can be formed

by taking two points on the original ray, applying a transformation on them, and

forming a vector from the two new points. Someof thesefunctions are shown below:

LtPoint LiRotateX(LtPoint v, LtFloat theta)

LtPoint LiRotateY(LtPoint v, LtFloat theta)

LtPoint LiRotateZ(LtPoint v, LtFloat theta)

LtPoint LiRotateXAboutPt(LtPoin t v, LtPoint org,

LtFloat theta)

LtPoint LiRotateYAboutPt(LtPoin t v, LtPoint org,

LtFloat theta)

LtPoint LiRotateZAboutPt(LtPoin t v, LtPoint org,

LtFloat theta)

Figure C.5 illustrates a twisting e�ect that canbeaccomplishedusingLightShop's

warping functions. Figure C.6 shows several other viewsof this \t wisted light �eld".

92 APPENDIX C. THE LIGHTSHOP API

To accomplish the twisting e�ect for the left individual, two points on each view

ray are selectedand rotated about a vertical axis centered over the left person. The

amount of rotation is a function of the height of each of the points. The higher

a point is, the more rotation is applied. LiRotateYAboutPt is usedto perform the

rotation. The warped ray is formedfrom the rotated points. A similar warp is de�ned

for twisting the right individual. To keepthe left and right ray-warps from creating

discontinuities in the image,the �nal ray warp is a linear combination of the left and

right twists. The weight for each twist is inversely related to the ray's proximit y to

the left or right twist axes.

The warping functions that use a 4D lookup table represent the ray warp with

discretesamples.The lookup table is treated in the sameway asa light �eld, except

that the valueper ray is not an RGBA color, but a newray. Onecanthink of the light

�eld asa ray-valued oneasopposedto a color-valued one. The LightShop procedure

that samplesfrom the ray-valued light �eld is shown below. Notice that it returns a

ray instead of a color.

LtRay LiWarpRayLookup(LtInt lightFieldID, LtRay ray)

The lookup table is treated in the sameway asa light �eld, exceptthat the value

per ray is not an RGBA color, but information describinga warped ray. LightShop

represents this ray information as two 3D points on the ray. Sinceeach point takes

3 coordinates, xyz, the warped ray needs6 coordinates. These 6 coordinates are

stored separately in the 3 RGB channels of 2 light �elds. The alpha channel of

both light �elds is usedto indicate if a warp exists (1) or not (0) for that particular

input ray. Using 6 coordinates to represent a ray wastes space,since a ray can

be represented by 4 coordinates. However, the extra channel is used as a
ag for

when a ray warp is de�ned. Additionally , no extra information about the coordinate

system of the parameterization needsto be known (i.e. the plane locations for a

2-planeparameterization). By convention, it is assumedthat the two light �elds have

sequential identi�ers, so that a ray warp lookup is performed by specifying the ray

and the light �eld containing the �rst point on the warped ray.

C.4. A SIMPLE EXAMPLE 93

Figure C.5: On the left is an imagefrom a light �eld of two people. Notice that their
headsare not facing the samedirection. On the right we apply a ray-warp to turn
their heads.

Figure C.6: Multiple views of the twisted light �eld. Notice that the actors appear
to be looking in the samedirection in all the images.

C.4 A Simple Example

Given our API, we concludethis appendix with a toy example that illustrates the

expressive power of the LightShop system. LightShop is usedto renderan imagefrom

a sceneof light �elds, as shown in Figure C.7. Other views of this composited light

�eld are shown in Figure C.8.

First, we describe the input to LightShop. The sceneconsistsof 4 light �elds.

Two of them represent the Buddha and the
o wer. The third light �eld represents

the ray warp that simulatesthe refraction e�ect of the glassball. The fourth light �eld

represents the specularhighlight of the ball. The sizeof each light �eld is enumerated

in Table A.1. All light �elds in this exampleusethe two-planeparameterization.

The light �eld that represents the 4D lookup table for warping a view ray is

computedsynthetically by ray-tracing through a spherewith glassmaterial properties.

94 APPENDIX C. THE LIGHTSHOP API

More speci�cally, in a ray-tracing program called yafray [yaf05], we create a scene

consistingof a singlesphere. We set the material properties of this sphereto mimic

refractive glasswith index of refraction 1.5. Then, for 32x32 camerapositions, we

ray-trace 256x256rays into the scenecontaining the glasssphere. For each ray, the

ray-tracer outputs a description of the refracted ray. We store this description in the

RGBA components of the light �eld. This light �eld yields a mapping from any ray

(from the 32x32x256x256rays) to a ray refracted through the glassball.

Figure C.7: A renderedimagefrom a composite light �eld scene.

The procedurecalls that model the sceneare shown in Figure C.9. Referring to

Figure C.9, the programmer �rst inserts a camera into the scene. It is a pinhole

camerapointed at a speci�c location (namely, wherewe will position the light �elds).

The next set of procedure calls insert light �elds into the scene. The integer

identi�ers of each light �eld begin at 0 and increasesequentially (i.e. the Buddha

light �eld is mapped to identi�er 0). Light �elds 0 and 1 are typical light �elds that

have RGBA asvaluesper ray. Light �eld 2 is a 4D lookup table that warps rays as if

the ray had gonethrough a glassball. Light �eld 3 is an RGBA light �eld containing

the specular highlight of the glassball. Next, the programmerspeci�es various light

�eld attributes that de�ne their position.

C.4. A SIMPLE EXAMPLE 95

Figure C.8: Novel viewsof the sceneof composited light �elds.

Oncethe scenehasbeenmodeled,the programmerwrites a ray-shadingprogram

that de�nes preciselyhow a 2D image is renderedfrom this scene.This is done by

writing a program that executesper output pixel of the imageto determinethe color

of each pixel, given the sceneof light �elds.

Figure C.10 shows the ray-shading program. We now proceedto describe each

step of the program and show its e�ects on the current output image.

First, we convert the current pixel location into a ray and usethis ray to sample

from the Buddha light �eld. We set the background color to be black. Lines 5{13

produceFigure C.11.

Next, in line 17 we use the sameray to sample from the
o wer light �eld and

composite that color over the Buddha sample,which producesFigure C.12.

Now, to create the spherical refraction e�ect, we warp the view ray as if the ray

had gone through the glassball. Recall that light �eld 2 maps an input ray to a

96 APPENDIX C. THE LIGHTSHOP API

warped ray. We usethe LiWarpRayLookupprocedureto acquirethe warped ray. This

warped ray is then used to sample from the Buddha and the
o wer light �eld to

producea refractive version. Figure C.13 shows the current imageafter lines 20{26.

Finally, in lines 44-46we add a specular highlight to the sceneby sampling from

the light �eld containing the ball's specular highlight and adding this color to the

�nal color. This producesthe �nal image, as shown in Figure C.7, other views are

shown in Figure C.8.

C.4. A SIMPLE EXAMPLE 97

Primitiv e A ttribute Default Description
lenscamera lower left [-1, -1, -1] lower left of the imageplane

up [0, 2, 0] vector from the lower left to the
upper left of the imageplane

right [2, 0, 0] vector from the lower left to the
lower right of the imageplane

lenscenter [1, 1, 1] vector from the lower left to the
center of the lensaperture

lenswidth 2 width of the lensaperture
lensheight 2 height of the lensaperture
focal distance 1 the perpendicular distance

betweenthe lensplane and the
focal plane

x res 512 horizontal resolution of the
output image

y res 512 vertical resolution of the
output image

light �eld sampling quadralinear sampling method:
nearest-neighbor or quadralinear

wrapping [0, 0, 0, 0] wrapping behavior when sampling
outside the light �eld: \clamp",
\rep eat", or a RGBA user-de�ned
color

transform 4x4 identit y a transformation applied to the
rays of the light �eld

TableC.1: Primitiv esand attributes that LightShop supports. Other imageoptions,
like bias, gain, pixel samplingrates, �lter sizes,color quantization, etc., could alsobe
supported by LightShop.

Op eration w1 w2 Expression Function
A add B 1 1 A + B +
A over B 1 1 � � A A + (1 � � A)B LiOver
A in B � B 0 � B A LiIn
A out B 1 � � B 0 (1 � � B)A LiOut
A atop B � B 1 � � A � B A + (1 � � A)B LiAtop
A xor B 1 � � B 1 � � A (1 � � B)A + (1 � � A)B LiXor

Table C.2: Commoncompositing operations that have special namesin LightShop.

98 APPENDIX C. THE LIGHTSHOP API

// Initialize LightShop
LiBegin();

// insert the camera
LtDir lowerLeft = {4.14, 4.00, 7.92};
LtDir up = {0.00, -8.00, 0.00};
LtDir right = {-7.99, 0.00, 0.15};
LtFloat lensWidth = 0;
LtInt camera0 = LiCamera();
LiAttributeCam(` `lo wer left'', lowerLeft);
LiAttributeCam(` `up '' , up);
LiAttributeCam(` `ri ght' ', right);
LiAttributeCam(` `le ns width'', lensWidth);
LiAttributeCam(` `le ns height'', lensHeight);

// insert the light fields
LtInt lightField0 = LiLightField(``b uddha'');
LtInt lightField1 = LiLightField(``f lo wer'');
LtInt lightField2 = LiLightField(``g la ss ball'');
LtInt lightField3 = LiLightField(``h ig hl igh t' ');

// set light field attributes
LtMatrix4 transform0 = {4,0,0,0,0,4,0,0, 0,0 ,4 ,0, 0, 0, 3.5 ,1 };
LtMatrix4 transform1 = {.6,0,0,0,0,.6,0, 0,0 ,0 ,.6 ,0 ,- 1.2 5, 0,4 .0 ,1} ;
LtMatrix4 transform2 = {1,0,0,0,0,1,0,0, 0,0 ,1 ,0, .5 ,0 ,0, 1} ;

LiAttributeLF(li ght Fi el d0, ``transform'', transform0);
LiAttributeLF(li ght Fi el d1, ``transform'', transform1);
LiAttributeLF(li ght Fi el d2, ``transform'', transform2);
LiAttributeLF(li ght Fi el d3, ``transform'', transform2);

// tell LightShop to clean up
LiEnd();

Figure C.9: LightShop function calls that model the toy sceneshown in Figure C.7.

C.4. A SIMPLE EXAMPLE 99

00 LtColor main(LtVec2 currentPixel) {
// the output color for this pixel
LtColor col;

// form a ray from the current pixel
05 LtRay ray=LiGetRay(0,cu rr entPi xel,L tVec2(0 ,0));

// set the background color to be black
LtColor background = LtVec4(0,0,0,1);
col = background;

10
// sample from the Buddha light field
// and composite over a black background
col = LiOver(LiSampleLF (0 , ray), col);

15 // sample from the flower light field and
// composite it over the buddha one
col = LiOver(SampleLF(1 , ray), col);

// warp view ray to simulate the refraction effect
20 LtRay warpedRay = LiWarpRayLookup(2, ray);

if(warpedRay.di r != 0) {
LtColor refractedBuddha = LiSampleLF(0, warpedRay);
LtColor refractedFlower = LiSampleLF(1, warpedRay);

25 LtColor refraction = LiOver(refracted Fl ower,
LiOver(refractedB uddha, background));

// tint the refracted ray color
LtColor tint = LtVec4(1, .5, .5, 1);

30 refraction = tint * refraction;

// composite refracted color to output pixel color
col = LiOver(refractio n, col);

}
40 // obtain the specular highlight of

// the glass ball and add it to the scene
LtColor highlight = LiSampleLF(3, ray);

45 col = col + highlight;
return col;

}

Figure C.10: A toy exampleray-shading program. It rendersthe image shown in
Figure C.7.

100 APPENDIX C. THE LIGHTSHOP API

Figure C.11: The imageafter sampling from the Buddha light �eld.

Figure C.12: The imageafter compositing the
o wer RGBA sampleover the Buddha
one.

C.4. A SIMPLE EXAMPLE 101

Figure C.13: The image after compositing the refracted Buddha and
o wer light
�elds. There are jaggy artifacts in the refraction due to the limited sampling rate of
the ray warp. For simplegeometricobjects, this artifact canberemediedby providing
a function characterizing the ray warp. For more complexobjects, a higher sampling
rate is necessary. LightShop can handle either solutions.

102 APPENDIX C. THE LIGHTSHOP API

App endix D

Focus-based Ligh t Field

Segmentation

In this appendix we describe how to segment a light into layers using focus. The

dataset we useis the swimmerslight �eld (seeSection4.6.1and Appendix A). Seg-

menting this dataset for a given layer is equivalent to computing an alpha matte for

each imageof the light �eld. Thus the goal is to compute thesealpha mattes.

To compute the alpha mattes for each layer, we processthe layers in a front-to-

back order. For the front swimmer,an implementation of intelligent scissors[MB95b]

is used to segment it out in one of the imagesof the light �eld. Figure D.1a illus-

trates this contour and D.1b shows the binary mask. This binary mask needsto be

propagatedto all images,but in this caseit turns out that the front swimmer lies on

the ST plane, so the binary mask remains�xed to her silhouette in all images.

Next, a tri-map is created basedon the binary mask to serve as an input to a

Bayesianmatte extraction algorithm [CCSS01]. The technique is similar to the one

usedby Zitnick et. al [ZKU+ 04]. A tri-map consistsof a foreground, background,

and unknown region of the image. The foregroundmask is computedby eroding the

initial binary mask(shown in Figure D.1c). The background is computedby dilating

the binary masktwiceand taking the di�erence of the dilated masks(shown in Figure

D.1d). The unknown regionliesbetweenthe foregroundand background masks.This

tri-map is passedinto the Bayesianmatte extraction algorithm to producethe alpha

103

104 APPENDIX D. FOCUS-BASED LIGHT FIELD SEGMENTATION

matte in Figure D.1e. Figure D.1f shows the extracted front swimmerfor this image.

Sincethis swimmer lies on the ST plane,we can usethe samealpha matte to extract

her from all images.

(a) (b) (c)

(d) (e) (f)

Figure D.1: Illustration of the alpha matte extraction pipeline. The userusesintelli-
gent scissorsto specify a binary mask in (a). The mask is shown in (b). The mask is
then eroded by 3 pixels to form a foregroundmask shown in (c). Dilating the mask
by 2 and 30 pixels and taking their di�erence producesthe background mask in (d).
The output of the Bayesianmatte extraction is shown in (e). A neighborhood sizeof
4 pixels was used. (f) shows the extracted front swimmer.

For the layers belongingto the middle and back swimmer, the binary mask in a

single imagewill shift in the other imagesdue to parallax. To handle this shift, we

choosea plane approximating the depth of that layer. This plane is then used to

project a binary mask in one image to all other images. In other words, the plane

actsasa geometricproxy to propagatea binary maskin oneimageto all other images

in the light �eld. How do we selectthe planar proxy depth? The solution is to use

105

focus.

We use LightShop to create imageswhere we focus on di�erent depths in the

swimmers light �eld. When a layer comesinto focus, the corresponding depth is

recorded. Given the depth of this plane, a binary mask in one imageis projected to

all other imagesby a homography induced by the plane [HZ00].

Now we quickly review how to computea 3x3 homography matrix that is induced

between two camerasand a plane. Using the notation presented in Hartley and

Zisserman'sbook, two camerasare de�ned with projection parameters,K [I j0] and

K 0[Rjt]. The homography induced by a plane, nT + d = 0, is given by:

H = K 0(R � tn T =d)K � 1 (D.1)

Equation D.1 correctly computesthe homography for generalcamerapositions.

However, for camerasin a two-planeparameterization,we can simplify the equation

further. For cameraimagesfrom a two-planeparameterization,each cameracan be

thought of as having an o�-axis projection, with a commonprinciple direction. This

meansthat R mapsto the identit y matrix and the intrinsics and extrinsicsonly have

a translation component that is a function of the relative camera locations in the

UV-plane. Mathematically, Equation D.1 reducesto

H = K 0(I � tn T =d)K � 1 (D.2)

whereK 0, K have the form of 2

6
6
6
4

f 0 cx

0 f cy

0 0 1

3

7
7
7
5

(D.3)

and t = [� cx � cy � cz]. cx , cy, and cz are the relative coordinates for the position

of the secondcamera. In summary, Equations D.2 and D.3 provide a closed-form

solution for computing homographiesbetweencamerasin a two-planeparameterized

light �eld.

A similar technique is used for rendering ghost-freeimagesfrom under-sampled

light �elds [SS04]. Insteadof a plane,onecoulduseimagepriors on the distribution of

106 APPENDIX D. FOCUS-BASED LIGHT FIELD SEGMENTATION

the foregroundand alpha mask,like optical
o w [CAC+ 02], imagegradients [WFZ02],

or continuity acrossimages[AF04]. We found that using a plane was su�cien t on

the swimmersdataset.

The above technique works well when computing alpha valuesfor an unoccluded

layer. However, alpha mattes be occluded by foreground layers. For this reason,

alpha mattes for each layer are computed in a front to back order. Then, the alpha

valuesfrom the front layers are usedto mask valuesin the current layer. This will

account for occlusions,but what about disocclusions? Disocclusionsin the alpha

mask are handled by selectingthe image in the light �eld that exposesthe largest

areaof the swimmer in that layer. This image is usedto compute the initial binary

maskvia intelligent scissors.This way, the maskin all other imagescanonly undergo

an occlusion1.

In summary, this appendix hasdescribed a technique for using focusto segment a

light �eld into layers. The input is a singlelight �eld and the output is a set of alpha

masks,oneset for each layer.

1For regions in a layer that undergo both occlusions and disocclusions, we manually segment
those regions into only occlusion or disocclusion.

App endix E

Other Ligh t Field Manipulations

This appendix contains ways to manipulate light �elds. They are not essential to

LightShop, but werediscovered in the processof using it to edit light �elds. Perhaps

thesemanipulations will inspire the readertowards other novel light �eld operations.

E.1 Refraction and Focusing

The �rst manipulation demonstratescombining refraction and focus. Appendix C.4

demonstratedrefraction through a sphere. An interesting property of refracting a

scenethrough a sphere is that the sphereacts as an optical lens, creating a real

image of the scenein front of it. Then in Section 4.6.1 a method for focusing was

presented. Focusingallowsthe userto focusat a depth, blurring out other parts of the

scene.Combining refraction and focusing,we can e�ectively focuson the real image

in the refraction by the sphere. Figure E.1a illustrates this concept. The camerais

focusedon this real image,so both the sphereand the background are out of focus.

Changingthe focal plane of the camera,onecan focuson the background light �eld,

and the sphereand the real imagego out of focus. This is shown in Figure E.1b. The

function calls for modeling the sceneare similar to thoseshown in Figure C.9 for the

toy example. The ray-shadingprogram combinesthe double for-loop found in Figure

4.3 with the refraction and compositing code found in Figure C.10.

107

108 APPENDIX E. OTHER LIGHT FIELD MANIPULA TIONS

(a) (b)

Figure E.1: Combining focusingwith refraction. In (a), the lens camerais focused
on the real imagecreatedby the refracting sphere.Both the background and sphere
are out of focus. In (b), the lenscamerais focusedon the background.

E.2 Shadows

The secondmanipulation enableslight �elds to cast shadows on one another. This

is possiblebecauseLightShop's ray-shadinglanguageis generalenoughto act as a a

ray-tracer for light �elds. The idea is simple. Assumethat an object represented by a

light �eld is
at. In fact, the object lieson the ST-planeof a two-planeparameterized

light �eld. Next, we assumeeach light �eld has alpha valuesper ray, representing

coverage.Now, to determineif a part of a light �eld is in shadow, the ray is intersected

with the ST-plane. From this depth, a \shadow ray" is shot to all light sources1. This

shadow-ray samplesfrom all other light �elds to determineocclusion(basedon alpha).

This processof computing shadows is easilyencodedasa ray-shadingprogram. In

the following ray-shadingcode fragment, light �eld 0 castsa shadow onto light �eld

1. The user-de�ned function Shadowtakesa light �eld and a 3D point. In this case,

the 3D point is formedby intersectingthe view ray with the ST planeof light �eld 1.

1While light primitiv es are currently not supported by LightShop, a user can still de�ne light
positions and passthem into ray-shading program via GLSL.

E.2. SHADOWS 109

The Shadowfunction then forms a shadow ray from the 3D point to the point light

sourceand usesthis ray to samplefrom the argument light �eld (in this case,light

�eld 0). It returns the RGBA color of sampling from light �eld 0, in the direction

of the shadow ray. The resulting alpha is usedto mask the color sampledfrom light

�eld 1.

LiColor shadow = Shadow(0, IntersectST(1, ray));

LiColor col = LiOver(LiSampleLF(0, ray),

shadow.a * LiSampleLF(1,ray));

Figure E.2a and b illustrate shadows cast from the gira�e and
o wer light �elds

onto a ground plane (light �eld). The toy gira�e and
o wer are captured using the

gantry, in front of a �xed-color background. Alpha mattes are extracted basedon

blue-screenmatting [SB96]. The imagesare renderedat 10 FPS. Soft shadows are

combined with focusingto produceFigure E.3. This imageis renderedat 10 FPS.

This technique is obviously an over-simpli�cation of shadows. The planar-depth

assumptionfor a light �eld is a restrictive one. If actual depth is known per ray (from

multi-baseline stereo,or range-�nding, for example), this can be passedinto Light-

Shopasa depth-valuedlight �eld andutilized in the shadow computation. LightShop's

framework is generalenoughto account for this extension.

Also, sincethe
o wer and gira�e light �elds arecapturedunder �xed illumination,

their surfaceappearancewill not match the user-speci�ed illumination conditions.

This limitation is the samefor other image compositing/editing tools, like Adobe

Photoshop. One solution is to capture the light �elds of the object under di�erent

illumination conditions, and to useLightShop to add theselight �elds to better ap-

proximate the user-speci�ed illumination. A similar technique was used in Section

4.6.1when compositing several actors into a wedding light �eld. However, even with

thesesimpli�cations, wedemonstratethat shadowsprovide morerealismto the scene.

110 APPENDIX E. OTHER LIGHT FIELD MANIPULA TIONS

(a) (b)

Figure E.2: Simulating shadows. In image (a), sharp shadows are being cast from
the gira�e and
o wer light �eld. The shadow on the ground is computedby castinga
shadow ray from a synthetic light �eld of a ground plane to a user-de�nedpoint light
source. In image (b), we create multiple virtual light sourcesand sum their masks
to approximate soft shadows. The shadow on the
o wer is computed by casting a
shadow ray from the ST-plane of the
o wer light �eld to the point lights. Notice
that the soft shadow interacts correctly with the
o wer light �elds. More point light
sourceswould lessenthe aliasing in the soft shadows.

E.2. SHADOWS 111

Figure E.3: Focusingcombined with soft shadows. A lenscamerawith �nite aperture
is usedto focuson the depth of the toy gira�e. Notice that the soft shadows and the
toy
o wers are out of focus.

112 APPENDIX E. OTHER LIGHT FIELD MANIPULA TIONS

Bibliograph y

[AB91] Edward H. Adelson and JamesR. Bergen. The plenoptic function and

the elements of early vision. In ComputationModelsof Visual Processing,

pages3{20, 1991. 5, 6

[AF04] Nicholas Apostolo� and Andrew Fitzgibbon. Bayesian video matting

usinglearnt imagepriors. In Proceedingsof ComputerVision and Pattern

Recognition (CVPR) , pages407{414,2004. 106

[AMH02] TomasAkenine-M•oller and Eric Haines. Real-time Rendering. A K Pe-

ters, 2002. 63

[Bar84] Alan Barr. Global and local deformationsof solid primitiv es. In Proceed-

ings of SIGGRAPH, pages21{30, 1984. 35

[Bar04] Brian A. Barsky. Vision-realistic rendering: simulation of the scanned

foveal image from wavefront data of human subjects. In Proceedings

of Symposium on Applied Perception in Graphics and Visualization

(APGV) , pages73{81, New York, NY, USA, 2004.ACM Press. 69

[BBM+ 01] Chris Buehler, MichaelBosse,LeonardMcMillan, Steven J. Gortler, and

Michael F. Cohen. Unstructured lumigraph rendering. In Proceedingsof

SIGGRAPH, pages425{432,2001. 10, 47

[BSW+ 05] OpenGL Architecture ReviewBoard, Dave Shreiner,MasonWoo, Jackie

Neider, and Tom Davis. OpenGL(R) Programming Guide : The O�cial

Guide to Learning OpenGL(R), Version 2 (5th Edition) . Addison-Wesley,

2005. 3, 47, 85

113

114 BIBLIOGRAPHY

[CAC+ 02] Yung-Yu Chuang, Aseem Agarwala, Brian Curless, David H. Salesin,

and Richard Szeliski. Video matting of complex scenes.In Proceedings

of Transactionson Graphics(SIGGRAPH), pages243{248,2002. 106

[CCSS01] Yung-Yu Chuang, Brian Curless,David H. Salesin,and Richard Szeliski.

A bayesian approach to digital matting. In Proceedings of Computer

Vision and Pattern Recognition (CVPR) , volume2, pages264{271.IEEE

Computer Society, December 2001. 103

[CL05] Billy Chen and Hendrik P. A. Lensch. Light source interpolation for

sparselysampledre
ectance �elds. In Proceedings of Workshopon Vi-

sion, Modeling and Visualization (VMV) , pages461{468,2005. 1

[CLF98] Emilio Camahort, ApostolosLerios,and Don Fussell.Uniformly sampled

light �elds. In Proceedings of Eurographics Rendering Workshop, pages

117{130,1998. 9, 64

[COSL05] Billy Chen,Eyal Ofek, Heung-YeungShum, and Marc Levoy. Interactive

deformation of light �elds. In Proceedings of Symposium on Interactive

3D Graphicsand Games(I3D) , pages139{146,2005. 1, 47, 91

[CTCS00] Jin-Xiang Chai, Xin Tong, Shing Chow Chan, and Heung-YeungShum.

Plenoptic sampling. In Proceedingsof SIGGRAPH, pages307{318,2000.

7

[CW93] MichaelCohenand John Wallace.Radiosity and Realistic ImageSynthe-

sis. AcademicPress,1993. 20

[DHT + 00] Paul Debevec, Tim Hawkins, Chris Tchou, Haarm-Pieter Duiker, West-

ley Sarokin, and Mark Sagar.Acquiring the re
ectance �eld of a human

face. In Proceedings of SIGGRAPH, pages145{156,2000. 17, 47

[DTM96] Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. Modeling and

renderingarchitecture from photographs:A hybrid geometry-and image-

basedapproach. Proceeedingsof Computer Graphics, 30(Annual Confer-

enceSeries):11{20,1996. 7

BIBLIOGRAPHY 115

[EL99] Alexei A. Efros and Thomas K. Leung. Texture synthesis by non-

parametric sampling. In Proceedings of International Conference on

Computer Vision (ICCV) , pages1033{1038,1999. 41

[FvDFH97] JamesD. Foley, Andries van Dam, StevenK. Feiner,and JohnF. Hughes.

Computer Graphics: Principles and Practice. Addison-Wesley, 1997. 6

[GGH03] MichaelGoesele,Xavier Granier, WolfgangHeidrich, andHans-Peter Sei-

del 1. Accurate light sourceacquisition and rendering. In Proceedingsof

Transactionson Graphics(SIGGRAPH), pages621{630,2003. 1

[GGSC96] Steven J. Gortler, Radek Grzeszczuk,Richard Szeliski, and Michael F.

Cohen. The lumigraph. In Proceedings of SIGGRAPH, pages43{54,

1996. 5, 10, 47

[GLL+ 04] Michael Goesele,Hendrik P. A. Lensch, Jochen Lang, Christian Fuchs,

and Hans-Peter Seidel. Disco { acquisition of translucent objects. In

Proceedings of Transactionson Graphics(SIGGRAPH), pages835{844,

2004. 17

[GZN+ 06] Todor Georgiev,Colin Zheng,ShreeK. Nayar, David Salesin,Brian Cur-

less,and Chintan Intwala. Spatio-angularresolutiontrade-o�s in integral

photography. In Proceedings of EurographicsSymposium on Rendering,

pages263{272,2006. 11

[HLCS99] Wolfgang Heidrich, Hendrik Lensch, Michael F. Cohen,and Hans-Peter

Seidel. Light �eld techniquesfor re
ections and refractions. In Proceed-

ings of EurographicsRenderingWorkshop, pages187{196,1999. 91

[Hor06] Daniel Horn. Vegastrike. http://ve gastrike.sourceforge.net, 2006. 63

[HZ00] Richard Hartley and Andrew Zisserman. Multiple View Geometry in

computer vision. PressSyndicateof the University of Cambridge, 2000.

28, 105

116 BIBLIOGRAPHY

[HZ03] Richard Hartley and Andrew Zisserman. Multiple View Geometry in

Computer Vision (Second Edition) . PressSyndicateof the University of

Cambridge, 2003. 33

[IMG00] Aaron Isaksen,Leonard McMillan, and Steven J. Gortler. Dynamically

reparameterizedlight �elds. In Proceedings of SIGGRAPH, pages297{

306,2000. 47, 49

[INH99] Konstantine Iourcha, Krishna Nayak, and Zhou Hong. System and

method for �xed-rate block-basedimagecompressionwith inferred pixel

values. US Patent 5,956,431, 1999. 53

[Kaj86] JamesT. Kajiya. The renderingequation. In Proceedingsof SIGGRAPH,

pages143{150.ACM Press/ ACM SIGGRAPH, 1986. 6

[KS96] Sing Bing Kang and Rick Szeliski. 3-d scenedata recovery using omni-

directional multibaseline stereo. In Proceedings of Computer Vision and

Pattern Recognition (CVPR) , pages167{183,1996. 15

[LCV+ 04] Marc Levoy, Billy Chen, Vaibhav Vaish, Mark Horowitz, Ian McDowall,

and Mark Bolas. Synthetic aperture confocal imaging. In Proceedingsof

Transactionson Graphics(SIGGRAPH), pages825{834,2004. 49

[Lev04a] Marc Levoy. The stanford large statue scanner.

http://gr aphics.stanford.edu/projects/mich/mgantry-in-lab/mgantry-

in-lab.html, 2004. 10

[Lev04b] Marc Levoy. Stanford spherical gantry.

http://gr aphics.stanford.edu/projects/gantry, 2004. 10, 74

[LH96] Marc Levoy and Pat Hanrahan. Light �eld rendering. In Proceedings of

SIGGRAPH, pages31{42, 1996. 1, 2, 5, 7, 9, 10, 17, 47, 49, 53, 82, 89

[LPC+ 00] Marc Levoy, Kari Pulli, Brian Curless, Szymon Rusinkiewicz, David

Koller, Lucas Pereira, Matt Ginzton, Sean Anderson, James Davis,

BIBLIOGRAPHY 117

Jeremy Ginsberg, Jonathan Shade, and Duane Fulk. The digital

michelangeloproject: 3D scanning of large statues. In Kurt Akeley,

editor, Proceedings of SIGGRAPH, pages131{144.ACM Press/ ACM

SIGGRAPH / Addison WesleyLongman,2000. 10

[Mag05] Marcus A. Magnor. Video-based Rendering. A K Peters,2005. 7

[MB95a] Leonard McMillan and Gary Bishop. Plenoptic modeling: An image-

basedrendering system. Proceedings of Computer Graphics, 29(Annual

ConferenceSeries):39{46,1995. 6

[MB95b] Eric N. Mortensen and William A. Barrett. Intelligent scissorsfor im-

age composition. In Proceedings of Computer graphics and Interactive

Techniques, pages191{198,1995. 103

[MBGN98] Tom McReynolds, David Blythe, Brad Grantham, and Scott Nelson.

Programming with opengl: Advancedtechniques. In Course17 notesat

SIGGRAPH 98, 1998. 63

[MG00] Marcus Magnor and Bernd Girod. Data compressionfor light �eld ren-

dering. In Proceedingsof Transactionson Circuits and Systemsfor Video

Technology, number 3, pages338{343,2000. 53

[MPDW03] Vincent Masselus,Pieter Peers,Philip Dutre, and YvesD. Willems. Re-

lighting with 4d incident light �elds. In Proceedings of Transactionson

Graphics(SIGGRAPH), pages613{620,2003. 1

[MPN+ 02] Wojciech Matusik, Hanspeter P�ster, Addy Ngan, Paul Beardsley, Remo

Ziegler,and LeonardMcMillan. Image-based3d photography usingopac-

it y hulls. In Proceedings of Transactions on Graphics (SIGGRAPH),

pages427{437,2002. 1

[MRG03] Marcus Magnor, Prashant Ramanathan, and Bernd Girod. Multi-view

coding for image-basedrendering using 3-d scenegeometry. In IEEE

118 BIBLIOGRAPHY

Transactionson Circuits and Systemsfor Video Technology, pages1092{

1106,2003. 53

[MSF02] D. Meneveaux, G. Subrenat, and A. Fournier. Reshading light�elds.

Technical report, IRCOM/SIC, March 2002. No 2002-01. 15

[NLB+ 05] Ren Ng, Marc Levoy, Mathieu Br�edif, GeneDuval, Mark Horowitz, and

Pat Hanrahan. Light �eld photography with a hand-heldplenoptic cam-

era. Technical report, Stanford University, 2005. 11, 56

[Oko76] Takanori Okoshi. Three-Dimensional Imaging Techniques. Academic

Press,1976. 11

[PD84] Thomas Porter and Tom Du�. Compositing digital images. In Proceed-

ings of Computer Graphics, number 3, pages253{259,1984. 90

[Pe01] Ingmar Peter and Wolfgang Stra�er. The wavelet stream: Interactive

multi resolution light �eld rendering. In Proceedings of Eurographics

RenderingWorkshop, pages262{273,2001. 53

[Per85] Ken Perlin. An imagesynthesizer. In Proceedingsof SIGGRAPH, pages

287{296.ACM Press/ ACM SIGGRAPH, 1985. 49, 86

[RNK97] Peter Rander, PJ Narayanan, and Takeo Kanade. Virtualized reality:

Constructing time-varying virtual worlds from real world events. In IEEE

Visualization 1997, pages277{284,1997. 11

[Ros04] Randi J. Rost. OpenGL ShadingLanguage. Addison-Wesley, 2004. 53,

55, 86, 87

[SB96] Alvy Ray Smith and JamesF. Blinn. Blue screenmatting. In Proceedings

of Computer Graphicsand Interactive Techniques, pages259{268,1996.

56, 109

[SCG+ 05] Pradeep Sen, Billy Chen, Gaurav Garg, StephenR. Marschner, Mark

Horowitz, Marc Levoy, and Hendrik P. A. Lensch. Dual photography. In

BIBLIOGRAPHY 119

Proceedings of Transactionson Graphics(SIGGRAPH), pages745{755,

2005. 1

[SH99] Heung-YeungShum and Li-Wei He. Renderingwith concentric mosaics.

In Proceedings of SIGGRAPH, pages299{306,1999. 89

[SK98] Steve Seitz and Kiriak os N. Kutulakos. Plenoptic image editing. In

Proceedings of International Conference on Computer Vision (ICCV) ,

pages17{24, 1998. 15

[SP86] ThomasW. Sederbergand Scott R. Parry. Free-formdeformationof solid

geometry models. In Proceedings of SIGGRAPH, pages151{160, 1986.

2, 23, 24

[SS04] Heung-Yeung Shum and Jian Sun. Pop-up light �eld: An interactive

image-basedmodeling and renderingsystem. In Proceedingsof Transac-

tions on Graphics, pages143{162,2004. 47, 105

[Ups92] Steve Upstill. The RenderMan Companion: A Programmer's Guide to

Realistic Computer Graphics. Addison-Wesley, 1992. 3, 47

[VWJL04] Vaibhav Vaish, Bennett Wilburn, Neel Joshi, and Marc Levoy. Using

plane + parallax for calibrating densecameraarrays. In Proceedings of

Computer Vision and Pattern Recognition (CVPR) , pages2{9, 2004. 2,

8, 47, 49, 53

[WAA + 00] Daniel N. Wood, Daniel I. Azuma, Ken Aldinger, Brian Curless, Tom

Duchamp, David H. Salesin,and WernerStuetzle. Surfacelight �elds for

3d photography. In Proceedingsof SIGGRAPH, pages287{296,2000. 7

[WFZ02] Yoni Wexler, Andrew Fitzgibbon, and Andrew Zisserman. Bayesianes-

timation of layers from multiple images.In Proc. ECCV, pages487{501,

2002. 106

[WJV + 05] Bennett Wilburn, Neel Joshi, Vaibhav Vaish, Eino-Ville Talvala, Emilio

Antunez,Adam Barth, Andrew Adams,Mark Horowitz, andMarc Levoy.

120 BIBLIOGRAPHY

High performanceimaging using large cameraarrays. In Proceedings of

Transactionson Graphics(SIGGRAPH), pages765{776,2005. 11, 49

[WL01] Li-Yi Wei and Marc Levoy. Texture synthesis over arbitrary manifold

surfaces.In Proceedings of SIGGRAPH, pages355{360,2001. 41

[WPG04] Tim Weyrich, Hanspeter P�ster, and Markus Gross. Rendering de-

formable surface re
ectance �elds. In Proceedings of Transactions on

Computer Graphicsand Visualization, pages48{58, 2004. 15

[WSLH02] Bennett Wilburn, Michael Smulski, Hsiao-HengKelin Lee, and Mark

Horowitz. The light �eld video camera. In Proceedings of Media Proces-

sors 2002, SPIE Electronic Imaging, 2002. 11

[yaf05] yafray. yafray. http://www.yafr ay.org/ , 2005. 94

[YEBM02] JasonC. Yang,Matthew Everett, Chris Buehler,and LeonardMcMillan.

A real-time distributed light �eld camera.In Proceedingsof Eurographics

RenderingWorkshop, pages77{86, 2002. 11

[YM04] Jingyi Yu and Leonard McMillan. General linear cameras. In Proceed-

ings of European Conference on ComputerVision (ECCV) , pages14{27,

2004. 60

[YYM05] Jingyi Yu, Jason Yang, and Leonard McMillan. Real-time re
ection

mapping with parallax. In Proceedings of Symposium on Interactive 3D

Graphicsand Games(I3D) , pages133{138,2005. 91

[ZC04] Cha Zhang and Tsuhan Chen. A self-recon�gurablecameraarray. In

Proceedings of Eurographics Symposium on Rendering, pages243{254,

2004. 11

[ZKU+ 04] C. Lawrence Zitnick, Sing Bing Kang, Matthew Uyttendaele, Simon

Winder, and Richard Szeliski. High-quality video view interpolation us-

ing a layeredrepresentation. In Proceedingsof Transactionson Graphics

(SIGGRAPH), pages600{608,2004. 103

BIBLIOGRAPHY 121

[ZWGS02] Zhunping Zhang, Lifeng Wang, Baining Guo, and Heung-Yeung Shum.

Feature-basedlight �eld morphing. In Proceedings of Transactionson

Graphics(SIGGRAPH), pages457{464,2002. 2, 15, 41, 47

