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We introduce a practical framework for synthesizing bubble-based water
sounds that captures the rich inter-bubble coupling effects responsible for
low-frequency acoustic emissions from bubble clouds. We propose coupled-
bubble oscillator models with regularized singularities, and techniques to re-
duce the computational cost of time stepping with dense, time-varying mass
matrices. Airborne acoustic emissions are estimated using finite-difference
time-domain (FDTD) methods. We propose a simple, analytical surface-
acceleration model, and a sample-and-hold GPU wavesolver that is simple
and faster than prior CPU wavesolvers.

Sound synthesis results are demonstrated using bubbly flows from in-
compressible, two-phase simulations, as well as procedurally generated
examples using single-phase FLIP fluid animations. Our results demonstrate
sound simulations with hundreds of thousands of bubbles, and perceptually
significant frequency transformations with fuller low-frequency content.
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1 INTRODUCTION
Water is ubiquitous in our daily lives. Whether pouring a cup of
tea, taking a bath, or sitting near a stream or ocean, we see, and
hear water daily. Much research has gone into the realistic visual
simulation and rendering of fluids. However, it is only within the
last decade or so that efficient methods for the simulation of water
sound have been explored.

The majority of water sound is the result of volumetric oscillation
of bubbles. Once excited, bubbles vibrate (harmonically, in the case
of a spherical, isolated bubble), giving off pressure waves that prop-
agate through the fluid and cause the water surface to vibrate (as if
it is a shape-changing loudspeaker). Previous simulation methods
have explored this phenomenon and some of its complexities: the
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oscillation frequency is affected by bubble size, shape, and position
relative to interfaces; several different mechanisms are responsi-
ble for exciting the bubble vibrations; the radiation of pressure
fields between the liquid and air is a complex problem that requires
time domain methods for realism (transient effects are strong even
though ideal bubbles vibrate harmonically). All these mechanisms
combine to produce the familiar “bloooop” sound of a dripping
faucet, and so much more.
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Fig. 1. Better with Coupled Bubbles: (Left) By simulating the collective
oscillations of entrained bubble clouds, richer fluid sounds can be achieved
with fuller, low-frequency acoustic emissions. (Right/Top) Spectrograms of
the fluid sound before bubble coupling lack low-frequency content, whereas
(Right/Bottom) those after bubble coupling exhibit a lower and wider range
of frequencies. (Procedural bubbles added to a Houdini FLIP simulation.)

One fluid sound effect that has not yet been synthesized for fluid
animations is an emergent phenomenon wherein clouds of tiny
bubbles coordinate to produce low-frequency acoustic emissions.
While the “bloop” of a single bubble and the low-frequency roar of
the ocean sound quite different, they are both produced by bubble
vibrations. Previous simulation methods have modeled bubbles as
independent, but in reality, the pressure radiated from one bubble
has a forcing effect on other bubbles. With small numbers of bubbles,
this coupling effect is weak. But as the number of bubbles increases,
the effect strengthens, so that even clouds of tiny bubbles can col-
lectively oscillate to produce dramatic high- and low-frequency
sounds such as the ocean roar. We present a method to efficiently
simulate these collective oscillations for bubble clouds arising in
fluid animation.

Our main contribution is a regularized coupled-oscillator model
based on a dynamic dense mass matrix, along with methods for
efficiently time-stepping the system at audio rates. The coupling
forces are modeled assuming spherical bubbles; unfortunately, this
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can lead to singularities when applied to realistic bubble data, as
nonspherical bubbles can become closer to each other than would
otherwise be possible with their spherical equivalents. We introduce
a method to regularize these singularities, allowing spherical cou-
pling to be applied robustly to realistic bubble shapes as well as ad
hoc procedural bubble animations. Furthermore, our regularization
method ensures the positive-definiteness of the mass matrix for
numerical stability, which we exploit to speed up numerical integra-
tion by interpolating inverses of the mass matrix. For large problems
(thousands of bubbles or more per timestep), we also propose an
approximate scheme based on low-rank updates to the Cholesky fac-
torization. Finally, we explore both monopole- and dipole-coupling
models, where the latter helps reduce over-coupling of bubbles near
the fluid-air interface to those deep in the fluid. We demonstrate
that our coupled-bubble framework can enhance the sound quality
of both (1) expensive two-phase bubbly flows from previous works,
and (2) low-cost procedural bubble animations more easily gener-
ated using single-phase liquid animation solvers commonly used in
the computer animation community.
Finally, the airborne acoustic emissions of the bubbly flows are

estimated using a GPU finite-difference time-domain (FDTD) wave-
solver, building on prior CPU-based sound-source rendering ap-
proaches [Wang et al. 2018]. Such approaches can produce high-
quality fluid sounds, but (a) they can require specialized fluid-boundary
acceleration data, (b) the cut-cell FDTD CPU computations are slow,
and (c) the higher-order cut-cell computations, while capable of
low-noise sound synthesis, require the rasterized interfaces to be
well-resolved spatiotemporally to avoid numerical artifacts – a chal-
lenge for many audio-rate fluid animation examples. To address the
first point (a), we introduce a simple analytical surface acceleration
shader that can be rapidly computed on the CPU or GPU for ar-
bitrary bubbly flows. Second, we propose an approximate FDTD
scheme with sample-and-hold geometry that is (i) simple, fast, and
easy to GPU accelerate; (ii) low noise due to piecewise constant
geometry; and (iii) robust to rapidly changing and complex, (po-
tentially) under-resolved fluid-air interfaces expected in computer
animation workflows. We synthesize compelling fluid sounds at a
fraction of the cost, with improved robustness.

2 RELATED WORK
There are multiple ways that fluids can make sound, but the most
prominent in common scenarios is through bubble vibrations. In-
vestigations into bubble sound date back over a century [Bragg
1920; Rayleigh 1917]. Minnaert [1933] calculated the frequency of
an isolated, spherical bubble, which vibrates harmonically at a spe-
cific frequency dependent on its size. Strasberg [1953] extended the
frequency calculation to account for bubble shape and surround-
ing geometry. Coupled oscillations have long been of interest in
oceanography and military studies since the frequencies of indepen-
dent/isolated bubbles are insufficient to describe the characteristic,
low-frequency sound (roar) of ocean waves despite being produced,
predominantly, by collections of small bubbles [Bolin and Åbom
2010; Etter 2018; Knudsen et al. 1948; Leighton 2012; Medwin and
Beaky 1989]. In their pioneering work, Lu et al. [1990] used nor-
mal mode analysis of coupled bubbles to show that significantly

lower frequencies could be produced by bubble clouds than by the
bubbles in isolation, and these frequencies could account for wind-
dependent noise observed in the ocean; later works also analyzed
and modeled collective bubble oscillations to explain low-frequency
acoustic radiation of breaking waves [Deane and Stokes 2010; Means
and Heitmeyer 2001; Oguz 1994]. Many subsequent mathematical
models of multiple scattering and self-consistent coupled-bubble
dynamics have been studied to understand time-domain bubble
phenomena important for sound synthesis, and Feuillade [2001]
concluded that so-called self-consistent models, as used herein, are
effective for coupled air bubble vibrations in water.
In a fascinating paper by Leroy et al. [2005], both theoretical

models and experimental measurements were combined to analyze
the vibration properties of instrumented “bubble clouds,” including
cases where 𝑁 bubbles were held at fixed locations by an under-
water net (see Figure 2 for one such example, with 𝑁 = 53). They
concluded that the dynamics of the bubble cloud are found to be well
approximated by an𝑁 -DoF (degrees of freedom) harmonic oscillator
with incompressible inter-bubble coupling forces similar to those
used herein, and analyzed the eigenmodes and eigenfrequencies
of the coupled system. Interestingly, they show clear evidence of
emergent low-frequency phenomena, e.g., the lowest fundamental
frequency of a 3D bubble cloud scaled as 𝑓0/ 3√

𝑁 where 𝑓0 is the un-
coupled Minnaert frequency of the identical bubbles, and 𝑁 is the
number of bubbles in the cloud. Therefore, perceptually significant
frequency changes can be produced by coupled bubbles, and large
𝑁 can produce strong low-frequency modal contributions, e.g., a
thousandfold increase in bubbles can produce a tenfold decrease
in frequency. We later show (in §4.2) that our regularized coupling
model’s computed eigenfrequencies approximately matches those
computed and measured by Leroy et al. [2005].
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Fig. 2. Leroy bubble cloud: (Left) The original photograph of the 53-bubble
cloud from Leroy et al. [2005] is shown. (Right) Using image analysis, we
estimate bubble position and radii from the photograph and recompute the
eigenmodes of the coupled system. Colors indicate signed volume pulsations
and show strong collective oscillations.

Fluids are important in graphics, and as such there has been much
work on their simulation and visual rendering. Early work focused
on free surface methods [Bridson 2008; Enright et al. 2002; Osher
and Fedkiw 2006; Stam 1999], which only simulate the fluid vol-
ume (treating air as a massless void) and therefore cannot simulate
bubbles directly. Single-phase PIC/FLIP methods [Jiang et al. 2015;
Zhu and Bridson 2005] are the most common commercial mod-
els used in graphics. Efficient, practical, and ad hoc methods have
been explored for adding bubbles to fluid simulation [Goldade et al.
2020; Greenwood and House 2004; Kim 2010; Thürey et al. 2007],
although they fail to capture the full range of multiphase effects.
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Several techniques have been applied to multiphase flows, using
SPH [Solenthaler and Pajarola 2008], FLIP [Boyd and Bridson 2012],
power particles [de Goes et al. 2015], and level-sets [Kim 2010].
However, the accuracy of these methods has been restricted for
multiple reasons: trouble handling large density ratios, blobbiness,
and the need for explicit modeling of thin film dynamics. Only very
recently have multi-phase Lattice-Boltzmannmethods becomemore
efficient [Li et al. 2022]. The Computational Fluid Dynamics (CFD)
community has relied on two-phase, variable-density volume-of-
fluid (VOF) methods to capture bubble shape, surface tension effects,
and high density ratios [Popinet 2003]. We produce results with
two methods: accurate two-phase VOF flows by rerunning several
examples from Langlois et al. [2016], and buoyant bubble particles
in a commercial FLIP solver (Houdini), generated using a stochastic
method akin to [Zheng and James 2009].
Despite being the primary source of fluid sound, relatively little

work has been done on simulating bubble sounds. Due to the com-
plexity of simulating bubbles accurately, statistical methods have
been proposed by [van den Doel 2005], which are fast but lack audio-
visual coherency as they do not actually simulate bubble movement.
More recent statistical methods [Bolsée and Bolsée 2018] incorpo-
rate more detailed models, but still hallucinate bubble movement
and size. Database lookup methods [Saito et al. 2021; Wang and Liu
2018] are fast, but their quality depends on how accurately database
samples match a given simulation.
To improve quality and audiovisual alignment over statistical

methods, more physically based methods have been explored. To
avoid the expense of a two-phase fluid simulation, several earlier
works [Moss et al. 2010; Zheng and James 2009] augmented single-
phase fluid simulations with ad hoc stochastic bubble models. How-
ever, this required laborious hand-tuning [Zheng and James 2009]
or resulted in unrealistic bubble creation rates [Moss et al. 2010].
Zheng and James [2009] used an acoustic transfer model which
could not capture scattering effects of surrounding containers, and
Moss et al. [2010] ignored acoustic radiation. While it is possible for
bubbles to vibrate at multiple frequencies by considering higher vi-
bration modes (c.f. [Moss et al. 2010]) these modes do not radiate as
efficiently, and Moss et al. [2010] only predict higher frequency con-
tributions (whereas coupling accounts for lower-frequency acoustic
emissions). However, dipole modes may be important for close
bubble-bubble coupling [Leroy et al. 2018]. Langlois et al. [2016]
used a two-phase VOF simulator [Popinet 2003] to compute accurate
bubble shapes and motion, expanded on Strasberg’s [1953] model
to compute non-spherical bubble frequencies, and solved the full
frequency-domain acoustic radiation problem to account for tank
geometry. This came at a cost though, requiring days of simula-
tion time even for small (0.08 × 0.08 m) scenes. Wang et al. [2018]
demonstrated the importance of time-domain acoustic radiation by
recomputing examples from [Langlois et al. 2016] using an FDTD
(finite-difference time-domain) acoustic wavesolver. We introduce a
model to capture coupling effects between bubbles, a strong effect
that all previous methods ignore.

Oscillator coupling is also observed inmodal soundmodels, where
it can be introduced by contact [Zheng and James 2011] or material
nonlinearities [Chadwick et al. 2009]. In the latter case of noisy thin
shells, modal coupling can alter frequency responses noticeably.

3 MODELS OF COUPLED-BUBBLE DYNAMICS

3.1 Single-Bubble Dynamics
In the case of an isolated spherical bubble, models for its pulsating
volumetric oscillations are well understood. Following [Langlois
et al. 2016; Leighton 2012], let the average bubble volume be 𝑉0,
while 𝑉 (𝑡) is the instantaneous volume. The infinitesimal volume
pulsations, 𝑣 (𝑡) = 𝑉 (𝑡) −𝑉0, are governed by

𝑚 ¥𝑣 + 𝛼 ¤𝑣 + ^ 𝑣 = 𝑝 (𝑡) (1)

where 𝑝 (𝑡) is a pressure-based forcing term. An equivalent, but
more standard, form of the above equation is

¥𝑣 + 2𝛽 ¤𝑣 + 𝜔2
0 𝑣 =

𝑝 (𝑡)
𝑚

(2)

where we have divided though by the bubble’s effective mass 𝑚
(in the volume-pressure frame) and denoted the undamped angular
frequency as 𝜔0 =

√
^/𝑚. For a spherical bubble of radius 𝑟 in the

volume-pressure frame, the effective mass is well approximated by
𝑚 =

𝜌
4𝜋𝑟 , and the stiffness is ^ =

𝛾𝑝0
𝑉0

(assuming adiabatic oscilla-
tions, and ignoring surface tension as is suitable for large bubbles
[Leighton 2012]); 𝑝0 is the background pressure in the fluid, and we
use 𝛾 = 1.4 in air.

The damping coefficient 𝛽 can be approximated as

𝛽 =
𝜔0 𝛿√
𝛿2 + 4

𝛿≪1≈ 𝜔0 𝛿

2
(3)

(typically 𝛿 < 0.10 for bubbles of interest) and involves radiation,
viscosity and thermal contributions, 𝛿 = 𝛿𝑟𝑎𝑑 + 𝛿𝑣𝑖𝑠 + 𝛿𝑡ℎ , whose
formulae are evaluated at the resonant bubble frequency,

𝛿𝑟𝑎𝑑 =
𝜔0𝑟

𝑐
, 𝛿𝑣𝑖𝑠 =

4`
𝜌𝜔0𝑟2 , 𝛿𝑡ℎ = 2

√
𝜓 − 3 − 3𝛾−1

3(𝛾−1)
𝜓 − 4

, (4)

with

𝜓 =
16

9(𝛾 − 1)2
𝐺𝑡ℎ

𝑓0
, 𝐺𝑡ℎ =

3𝛾 𝑝 𝑓
4𝜋𝜌𝐷𝑔

, (5)

and 𝑐 is the speed of sound in the fluid; 𝜌 is the fluid density; 𝛾 is the
heat capacity ratio of the air;𝐺𝑡ℎ is the thermal damping constant at
resonance; 𝐷𝑔 is the thermal diffusivity of the gas; 𝑓0 = 𝜔0/2𝜋 is the
bubble’s natural frequency; and 𝑝 𝑓 is the hydrostatic pressure of the
fluid. In our implementation, for water at STP, we use the following
values (in MKS units): 𝛾 =1.4, 𝜌 =1000, 𝑝 𝑓 =101325, 𝐷𝑔 =2.12× 10−5,
𝐺𝑡ℎ =1.6 × 106 and 𝑐 =1497.

Finally, the computation of pressure forcing, 𝑝 (𝑡), is handled as
in [Langlois et al. 2016], which was based on models developed in
[Czerski 2011; Czerski and Deane 2010, 2011; Deane and Czerski
2008]. In short, these forcing models are able to account for bubble
entrainment, merging, and splitting events where surface tension
effects are the primary drivers of bubble vibration.

3.2 A Simple Model of Coupled-Bubble Dynamics
Up to this point, however, the bubble oscillations have been consid-
ered to be independent. That is to say that the oscillations from one
bubble within a bubble cloud do not affect any others. But intuitively,
the pressure waves radiating from one bubble should have a forcing
effect on the vibrations of any other bubble. When this is allowed
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Fig. 3. Bubble cloud vibration modes: Through modal analysis, we can decompose collective bubble vibrations into instantaneous eigenfrequencies and
volume velocity oscillation modes. Here, we consider the Glass Pour example at 𝑡 = 2.54 seconds. Colors indicate signed volume pulsations (i.e., red for volume
expansion, blue for volume contraction). At low eigenfrequencies, the entire bubble cloud tends to oscillate in-phase to produce a low rumble, while at higher
eigenfrequencies, oscillation patterns become more localized, and individual bubbles dominate.

to happen, the bubble vibrations can couple together and produce
collective volumetric oscillations which can change drastically from
the independent, uncoupled case (as illustrated in Figure 3).

Coupling pressures. Consider the vibrations of 𝑁 bubbles in a
cloud to be described by a set of 𝑁 coupled harmonic oscillators,
each similar in form to (2). To couple the equations together, the
pressure from the 𝑗𝑡ℎ bubble affects every other bubble through a
coupling pressure added to the right-hand side of the equations:

¥𝑣𝑖 + 2𝛽𝑖 ¤𝑣𝑖 + 𝜔2
𝑖 𝑣𝑖 =

𝑝 (𝑡)
𝑚𝑖

−
∑
𝑗≠𝑖

𝑝 𝑗 (𝒙𝑖 , 𝑡)
𝑚𝑖

(6)

where 𝑝 𝑗 (𝒙𝑖 , 𝑡) is the pressure produced by the 𝑗𝑡ℎ bubble at the
centroid of the 𝑖𝑡ℎ bubble, and the minus sign implies that a positive
coupling pressure acts to compress bubble 𝑖 , as expected.

Monopole pressure field approximation. For spherical bubbles in
isolation, the radiated pressure of bubble 𝑗 is given by

𝑝 𝑗 (𝒙, 𝑡) =
𝜌 ¥𝑣 𝑗 (𝑡)

4𝜋 ∥𝒙 − 𝒙 𝑗 ∥
(7)

where ¥𝑣 𝑗 (𝑡) is the instantaneous volume acceleration of bubble
𝑗 (ignoring time delays). While exact for spherical bubbles, this
pressure formula also provides a far-field monopole pressure field
approximation for well-separated bubbles.

Spherical-bubble coupling model. For spherical bubbles, it is stan-
dard to substitute the (volume-pressure frame) mass,𝑚𝑖 =

𝜌
4𝜋𝑟𝑖 , into

the coupling term to obtain the coupled-bubble vibration equations
[Feuillade 2001; Manasseh and Ooi 2009]:

¥𝑣𝑖 + 2𝛽𝑖 ¤𝑣𝑖 + 𝜔2
𝑖 𝑣𝑖 =

𝑝 (𝑡)
𝑚𝑖

−
∑
𝑗≠𝑖

𝑟𝑖

𝑑𝑖 𝑗
¥𝑣 𝑗 (8)

where 𝑑𝑖 𝑗 = ∥𝒙𝑖 (𝑡) − 𝒙 𝑗 (𝑡)∥ is the distance between bubbles 𝑖 and 𝑗

at time 𝑡 . Numerically approximating the solutions to this coupled
system of ordinary differential equations is the main task of §4.

Discussion. In utilizing these representations of the coupled sys-
tem, we are making some important assumptions. First, the coupling
term assumes incompressible flow, so that any bubble feels the dis-
turbances from other bubbles instantaneously, which is a standard
assumption in bubble cloud models where time-delays are small

[Feuillade 2001; Leroy et al. 2005]. Second, the model is defined by
assuming that each bubble is forced by a 1/𝑑 pressure field created
by an isolated spherical monopole source, thus implying that these
equations are only valid when the bubbles are well separated from
one another (𝑑𝑖 𝑗 ≫ 𝑟𝑖 ) [Feuillade 2001]. As we shall see, the bubbles
in our simulation do not always satisfy this requirement, and the
model must be altered in practice for stability (as described later in
§4.2) or high-accuracy applications [Leroy et al. 2018].
Furthermore, we note that we have adopted the so-called self-

consistent approach. In essence this means that the dependent vari-
able 𝑣𝑖 (the volume oscillation of bubble 𝑖) is defined to be the result
once all of the infinitely many acoustic scattering processes have
been accounted for. This contrasts with the multiple scattering ap-
proach, in which the effect of pressure waves that have been reflected
back at a bubble are more explicitly accounted for. We found the
self-consistent approach to be easier to implement for large bubble
clouds, and it has been shown that, in some cases, the self-consistent
approach is more robust at capturing strong coupling effects [Feuil-
lade 2001]. We also believe the self-consistent approach is more
practical for computer animation, where it is important to avoid
instabilities and difficulties associated with integrating time-delay
differential equations on dynamically changing oscillator banks.

3.3 A Dipole Coupling Extension for Surface Effects
Coupling bubbles together with a pressure model proportional to 1/𝑑
works for an infinite fluid domain, but it can “over couple” bubbles
and be a poor approximation when one bubble is much nearer to

d

d'

x

x'

y h
H

H

the surface than the other. For planar fluid in-
terfaces, we can use an image-source approx-
imation to produce a dipole coupling model
(see geometry inset) with a desired zero pres-
sure boundary condition on the planar inter-
face (in blue). Mathematically, we replace 1/𝑑
by 1/𝑑 − 1/𝑑′ where 𝑑 = ∥𝒙 −𝒚∥ is the distance
between the bubbles, and 𝑑 ′ = ∥𝒙 ′ −𝒚∥ is the
distance from the receiver at 𝒚 to the image
source bubble at 𝒙 ′. It follows that the dipole
0 ≤ 1/𝑑 − 1/𝑑′ ≤ 1/𝑑, and so it reduces the cou-
pling between two bubbles in cases where the
distances 𝑑 and 𝑑 ′ are comparable, i.e., when one bubble is near the
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interface. Conversely, the dipole is like the monopole when 𝑑 ≪ 𝑑 ′.
In other words, shallow bubbles are decoupled from deep bubbles
thereby allowing them to vibrate freely at the surface, and deep
bubbles can still couple strongly when nearby (“deep coupling with
shallow sparkling”).

Unfortunately, while fluids do try to form planar interfaces, most
fluid animations are nonplanar, and so this model would appear less
practical. Analogous to the use of the planar dipole light scattering
model used to render nonplanar subsurface scattering effects [Jensen
et al. 2001], we use our dipole model with nonplanar fluid geometry
by performing a change of variables. By Pythagoras we can write
𝑑 ′ =

√
𝑑2 + (𝐻 + ℎ)2 − (𝐻 − ℎ)2, then we simply replace𝐻 and ℎ by

the distance to the fluid-air interface, which is exact for planar ge-
ometry and a useful generalization for other fluid interfaces. Please
see our supplemental video for comparisons and evaluation.

4 PRACTICAL SIMULATION OF COUPLED BUBBLES
Now we turn to the details of how we developed practical methods
for time stepping the coupled-bubble oscillators at audio rates. We
address the formulation of an ODE system with symmetric mass
matrix (§4.1) and the regularization of mass-matrix singularities
(§4.2); the tracking of bubble creation and deletion events which
change the oscillator bank size (§4.3); the approximation of mass-
matrix factorizations for audio-rate integration (§4.4), and low-rank
Cholesky updates for approximating the dynamics of very large
systems (§4.5).

4.1 Matrix Symmetrization
When the equilibrium volume of the bubbles is constant (implied by
the incompressibility assumption) we can symmetrize the oscillator
matrix model (8) for numerical efficiency. Substituting 𝑣𝑖 =

√
𝑟𝑖𝑦𝑖

into (8), we obtain
√
𝑟𝑖 ¥𝑦𝑖 + 2𝛽𝑖

√
𝑟𝑖 ¤𝑦𝑖 +

√
𝑟𝑖 𝜔

2
𝑖 𝑦𝑖 =

𝑝 (𝑡)
𝑚𝑖

−
∑
𝑗≠𝑖

𝑟𝑖

𝑑𝑖 𝑗

√
𝑟 𝑗 ¥𝑦 𝑗 . (9)

Dividing by the factor √𝑟𝑖 and moving the coupling term to the left
side of the equation, we get

¥𝑦𝑖 +
∑
𝑗≠𝑖

√
𝑟𝑖𝑟 𝑗

𝑑𝑖 𝑗
¥𝑦 𝑗 + 2𝛽𝑖 ¤𝑦𝑖 + 𝜔2

𝑖 𝑦𝑖 =
𝑝 (𝑡)
√
𝑟𝑖𝑚𝑖

. (10)

Thus, written in matrix form the coupled system of equations is

M ¥y + C ¤y + Ky = F (11)

where K is the diagonal stiffness matrix, C is the diagonal damping
matrix, andM is the dense, symmetric mass matrix with

𝑀𝑖 𝑗 = 𝛿𝑖 𝑗 + (1 − 𝛿𝑖 𝑗 )
√
𝑟𝑖𝑟 𝑗

𝑑𝑖 𝑗
(12)

where 𝛿𝑖 𝑗 indicates the Kronecker delta function.

4.2 Regularized Coupling
While the model described above has many advantages (e.g. sim-
plicity, tested on small examples), it does have a major shortcoming
that must be resolved before it can be used effectively in graphics
applications. In the literature, this model was derived for bubbles
that are spherical and well separated. However, as seen in [Langlois

et al. 2016], accurate tracking of bubbles, including their deviations
from spherical shapes, can be important in determining the pro-
duced sound. In addition, non-spherical bubbles can move closer
together without touching or merging than spherical bubbles (dis-
tance measured between their centers of mass). Since this simple
coupling model has no knowledge of actual bubble shape, the results
produced with data sets such as the ones in [Langlois et al. 2016]
can be nonphysical and unstable. Furthermore, we should expect
that artist-generated procedural bubble models may generate over-
lapping or densely packed spherical bubbles, and we would still like
the solver to tolerate imperfect bubble positions.

4.2.1 Coupling instability for non-spherical bubbles. To illustrate
this problemmore clearly, consider an artificial system of two ellipti-
cal bubbles (see Figure 4 (Left)) which can move very close together
without merging. Such slender bubble shapes can occur, for example,
as bubbles pass by one another or rise to the surface. Under the
spherical bubble assumption, the coupling model interprets these as
spherical bubbles with the same volume and centroid (see Figure 4
(Right)). Unfortunately the well-separated-bubble assumption of the
coupling model is certainly violated, as the bubbles are overlapping,
which manifests itself as a loss of positive definiteness of the mass
matrix. The latter means that there are unstable modes within the
dynamical system, which can lead to inaccurate and unstable results
when integrating bubble dynamics. Specifically, since the eigenval-
ues of the 2x2M are _ = 1 ±𝑀12 = 1 ± √

𝑟1𝑟2/𝑑12, the dynamics are
unstable when _ ≤ 0, or 𝑑12 ≤ √

𝑟1𝑟2. While this does not affect
non-overlapping spherical bubbles (since 𝑟1 + 𝑟2 >

√
𝑟1𝑟2), it does

affect non-spherical bubbles, as described.
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Fig. 4. Non-spherical bubble interactions: (Left) Two elliptical bubbles
remain separated, but (Right) can overlap when interpreted as spherical
bubbles of equal volumes and centroids, and can result in numerically
unstable coupled-bubble dynamics.

4.2.2 Regularizing the singularity. Rather than attempt to define a
fully general coupling model that works for arbitrary bubble shapes
despite increased costs, we can stabilize the simple spherical-bubble
coupling model to tolerate non-spherical bubbles in close proximity.
The problem terms are the coefficients

√
𝑟𝑖𝑟 𝑗

𝑑𝑖 𝑗
which appear in the

off-diagonal elements of the mass matrix M. As bubbles move close
together, these terms can become large, possibly even greater than
one as in the above example. To regularize this instability, we replace
these off-diagonal terms with

M̃𝑖 𝑗 =
1√

1
𝑀2

𝑖 𝑗

+ Y2
=

1√
𝑑2
𝑖 𝑗

𝑟𝑖𝑟 𝑗
+ Y2

, 𝑖 ≠ 𝑗, (13)
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Table 1. Effect of regularization on coupling frequencies: Using the 53-bubble cloud example from Figure 2, we compute the eigenfrequencies of
the coupled system for varying 𝜖 and compare them with the four experimentally measured frequencies reported by Leroy et al. [2005]. Using 𝜖 = 0 (no
regularization), our estimated bubble configuration and coupling model is able to closely match the measured and computed frequencies of Leroy et al. [2005].
Using 𝜖 = 2 (default regularization value), the four eigenfrequencies increase but still remain within 1.8% error on average.

Measured Computed

Peak Frequency (kHz) Mode Frequency (kHz)
[Leroy et al. 2005] [Leroy et al. 2005] Ours (𝜖 = 0) Ours (𝜖 = 2) Ours (𝜖 = 4)

1 1.31 ± 0.01 1 1.25 1.25 1.26 1.31
2 1.93 ± 0.01 3 1.93 1.93 1.98 2.08
3 2.32 ± 0.01 6 2.30 2.31 2.36 2.46
4 2.80 ± 0.01 14 2.77 2.78 2.80 2.79

where Y ≥ 0 is a regularization parameter.

4.2.3 Modal analysis of collective bubble oscillations. Given an in-
stantaneous configuration of bubbles, we can perform modal analy-
sis to estimate modal frequencies and the associated volume veloci-
ties of the bubble cloud. Consider the unforced, undamped, coupled
oscillator system, M̃ ¥y + Ky=0. Assuming y(𝑡)=𝑒𝑖𝜔𝑡 ȳ, the general-
ized eigenvalue problem is Kȳ = 𝜔2M̃ȳ where 𝜔2 is the eigenvalue
and ȳ is the corresponding eigenvector. Please see Figure 3 for
an illustration of the modal analysis from the Glass Pour example
showing strong collective oscillations at lower frequencies.

We can also assess the effects of mass-matrix regularization on the
cloud’s modal frequencies and validate this approximation. When
Y = 0 the regularized mass matrix reverts to the original coupling
model, whereas as Y is increased, the effect of the coupling terms are
weakened. Moreover, notice that this construction will have a larger
effect on the coupling between close pairs of bubbles, which are
strongly coupled, while having less of an effect on far-field coupling.
Please see Table 1 for a comparison to numerical and experimental
results from [Leroy et al. 2005]. Conditions on Y to guarantee the
positive definiteness of the regularized mass matrix are given in
Appendix B. In our examples we use Y=2 (unless stated otherwise).

4.3 Bubble Tracking
From [Langlois et al. 2016], we have a method and dataset for track-
ing individual bubble events such as entrain, split, merge, and col-
lapse – along with bubble radii, position, natural frequency, and
pressure data at regular time intervals.
At each timestep, we track active bubbles (defined as bubbles

that have been added through entrain, split, or merge events and
have not yet been removed through collapse, splitting, or merging
into other bubbles). All active bubbles are coupled together. For
bubbles that are removed while they are still oscillating, care must
be taken to avoid discontinuities. In our implementation, we let
bubbles “ring out” upon removal, i.e., we uncouple them from other
bubbles, freeze their position, radii, and other data, and continue
timestepping their oscillations until they decay sufficiently.

We note that when bubbles move, the mass matrix changes, and
when the number of bubbles active at any given time changes, the
matrix must be resized. Moreover, when bubbles are simultaneously
created and destroyed, it is possible that the system has the same
size but is representing different bubbles. The dynamic nature of

the dense mass matrix makes simulating these coupled ODEs unlike
many of the discrete mechanical systems simulated in computer
animation, where the mass matrix is often constant in time and
sparse (or approximated by a diagonal lumped system).

Naïvely, the coupled-bubble mass matrix would need to be formed
and inverted multiple times at each time step, which becomes pro-
hibitively costly when integration is performed at (or near) audio
rates. However, we note that the animation timescales of bubble
movement are much slower than acoustic time scales for bubble
vibration and audio time stepping. Consequently, the mass matrix
changes very slowly, so we can devise methods to timestep the
coupled-bubble dynamics at fast timescales while only periodically
forming and factoring mass matrices.
Once we have the approximate inverse mass matrix M̃−1, the

coupled oscillator equation can be solved in time using any standard
numerical time integration scheme; we utilize Runge-Kutta (RK4)
like prior work [Langlois et al. 2016; Wang et al. 2018] which aids
comparisons.

4.4 Inverse Interpolation for M̃−1

Our first scheme for computing M̃−1 is to exploit temporal coherence
by linearly interpolating the inverse mass matrix between endpoints.
Consider a temporal splitting of the entire simulation time into short
time segments with endpoints given by 𝑡0, 𝑡1, ..., 𝑡𝑛 . Within each
interval, [𝑡𝑘 , 𝑡𝑘+1], we form the mass matrix at the endpoints, and
can then invert (or factor) both matrices. At any intermediate time
within a segment we create an approximation to M̃−1 by linearly
interpolating the inverses:

M̃−1 (𝑡) ≈ (1 − 𝛼)M̃−1 (𝑡𝑘 ) + 𝛼M̃−1 (𝑡𝑘+1) (14)

where 𝛼 =
𝑡−𝑡𝑘

𝑡𝑘+1−𝑡𝑘 and 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1]. This approximation is then
used to step the bubble system forward in time. The main advantage
of this method (outside of its simplicity) comes from the convexity
of symmetric, positive definite matrices. If we assume that the mass
matrices formed at the endpoints of the intervals are positive definite
(as guaranteed by regularized coupling in §4.2), then we know that
the corresponding inverses are positive definite as well, and thus
any approximate inverse formed using (14) will not contain any
spurious, unstable modes.

At minimum, the mass matrix must be updated whenever bubbles
are added or removed, since it doesn’t make sense to interpolate
between disjoint bubble clouds. For our many-bubble examples, this
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requirement already implies fast updates. For instance, the 2016
Pour and 2016 Step examples from [Langlois et al. 2016] have mean
segment times of 0.16 ms and 0.10 ms, or 7.8 and 4.8 timesteps
(at 48 kHz), respectively. Nevertheless, interpolation does reduce
occasional popping artifacts, e.g., arising with longer segments.
Thus, in all our examples, we define endpoints as times when

bubbles are added or removed (which we compute beforehand).
Concretely, we form and interpolate the Cholesky factorization of
the mass matrices at each endpoint rather than the full inverse.

4.5 Low-Rank Updates
As the size of our bubble system increases, individual bubble details
become increasingly difficult to resolve. If bubbles are added or
removed at every timestep, even the above linear interpolation
scheme would require refactoring the mass matrix each time. Here,
we describe an approximate scheme based on stationary bubble
positions that avoids full re-factorization of the mass matrix by
leveraging low-rank updates to the Cholesky decomposition.
Consider the symmetric mass matrix M̃ and its Cholesky factor-

ization (in block matrix form) [𝑀11] = [𝐿11] [𝐿𝑇11], where 𝐿11 is
lower-triangular. Upon adding bubbles to the system, we append
rows and columns to the end of the matrix, so our updated factor-
ization is given by:[

𝑀11 𝑀12
𝑀21 𝑀22

]
=

[
𝐿11
𝐿21 𝐿22

] [
𝐿𝑇11 𝐿𝑇21

𝐿𝑇22

]
. (15)

The Cholesky updates are thus given by 𝐿21 = (𝐿−1
11 𝑀12)𝑇 and

𝐿22𝐿𝑇22 = 𝑀22−𝐿21𝐿𝑇21. Note that𝐿21 can be obtained by performing a
back-solve with lower-triangular matrix 𝐿11, and 𝐿22 can be obtained
from the Cholesky factorization of𝑀22 − 𝐿21𝐿𝑇21. In computing the
𝑀12 and𝑀22 blocks, we fix all bubbles at their initial positions.

When removing bubbles from the system, there is no guarantee
that the bubbles lie on consecutive rows and columns of the ma-
trix. This means that instead of performing a single block matrix
operation, we must perform a series of incremental updates. Fur-
thermore, the bubbles we wish to remove often correspond to rows
and columns in the center of the matrix. In the most general case,
consider the block matrix factorization of M̃ given by:

𝑀11 𝑀12 𝑀13
𝑀21 𝑀22 𝑀23
𝑀31 𝑀32 𝑀33

 =

𝐿11
𝐿21 𝐿22
𝐿31 𝐿32 𝐿33



𝐿𝑇11 𝐿𝑇21 𝐿𝑇31

𝐿𝑇22 𝐿𝑇32
𝐿𝑇33

 . (16)

Removing the middle row and column of M̃, we get:[
𝑀11 𝑀13
𝑀31 𝑀33

]
=

[
𝐿11
𝐿31 𝑆33

] [
𝐿𝑇11 𝐿𝑇31

𝑆𝑇33

]
(17)

where we have defined lower-triangular matrix 𝑆33 to indicate that
the entries change upon removing preceding rows and columns. 𝑆33
is given by 𝑆33𝑆𝑇33 = 𝐿33𝐿𝑇33+𝐿32𝐿𝑇32. Note that since we are removing
only one bubble, 𝐿32 is a column vector. Thus, the expression is of
the form �̃� = 𝐴 + 𝑥𝑥𝑇 (where 𝐴 = 𝑆33𝑆𝑇33 and 𝑥 = 𝐿32) and can be
solved efficiently using rank-1 updates to 𝐿33𝐿𝑇33 (as opposed to a
full Cholesky factorization of 𝐿33𝐿𝑇33 + 𝐿32𝐿𝑇32).

By default, bubbles are taken to remain stationary after being
added. Periodically, we may update a bubble’s position by modifying
the corresponding row and column of the mass matrix as M̃ :=
M̃ + 1/2(𝑥 +𝑦)𝑇 + 1/2(𝑥 −𝑦)𝑇 . Concretely, when bubble 𝑖 is updated,
we set 𝑥 as the unit basis vector 𝑒𝑖 and 𝑦 as the difference between
the updated 𝑖-th column M̃ and its previous value. However, this
comes at the cost of two additional rank-1 updates per bubble. The
approximation error of M̃ is directly correlated to the rate at which
bubble positions are updated.
In practice, using low-rank updates with stationary bubbles can

exploit the temporal coherence in large mass matrices (see Figure 5).
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Fig. 5. Low-rank update statistics: The large Wave Crash example in
Figure 12 has hundreds of thousands of bubbles, whereas the number of
active bubbles at any given time is much less and plotted above (in red).
Furthermore, the number of bubble changes at each solve is far lower (plotted
in blue), which makes low-rank Cholesky updates efficient.

5 PRACTICAL SYNTHESIS OF AIRBORNE SOUNDS
Fluid animations can produce complex, dynamic fluid-air interfaces,
posing unique challenges for bubble-based fluid sound synthesis
methods that rely on expensive air-domain acoustic wave simu-
lation. On the other hand, Wang et al. [2018] demonstrated that
capturing air-domain waves is critical to the quality of the final fluid
sound. To improve the speed and the robustness of finite-difference
time-domain wavesolvers for airborne synthesis of coupled-bubble
sounds, we make two practical contributions in this section: (1) an
analytical approximation of normal-acceleration fluid-air boundary
data for animation-quality fluid simulations, and (2) a sample-and-
hold FDTD GPU wavesolver that enables faster sound generation
than the prior high-quality CPU-based method [Wang et al. 2018]
with some quality trade-offs but significant improvements in robust-
ness and speed.

5.1 Surface-Acceleration Shader
To compute the wave equation’s Neumann boundary condition,
we need the normal acceleration of the fluid-air interface, which is
computed using a surface-acceleration shader [Wang et al. 2018].
Examples in that paper used a time-harmonic surface vibration
model based on prevailing mono-frequency harmonic bubble ap-
proximations [Langlois et al. 2016; Wang et al. 2018; Zheng and
James 2009] which provide an estimate of the harmonic surface
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acceleration function, e.g., from an interior Laplace or Helmholtz
bubble-to-surface transfer approximation. These are relatively ex-
pensive computations which must be done for each bubble. In our
case the bubble is not a harmonic source, but fortunately, the FDTD
framework supports general time-varying bubble oscillations. Given
the limited size of our fluid domains, and the fact that we already
use incompressible fluid approximations for bubble-bubble coupling,
we use a simpler approximation for surface accelerations.

Given the large number of bubbles we expect in fluid animation
workflows, we use an approximate analytical point source for each
bubble, and estimate the surface acceleration at any point using a
superposition of spherical sources. Specifically, the velocity poten-
tial, velocity, and acceleration equations corresponding to the 𝑗𝑡ℎ

spherical bubble’s pressure (7) are

𝜙 (𝒙, 𝑡) = − ¤𝑣 (𝑡)
4𝜋 ∥𝒙 − 𝒙 𝑗 ∥

(18)

𝒖 (𝒙, 𝑡) = ∇𝜙 =
¤𝑣 (𝑡)

4𝜋 ∥𝒙 − 𝒙 𝑗 ∥3 (𝒙 − 𝒙 𝑗 ) (19)

𝒂(𝒙, 𝑡) = 𝜕

𝜕𝑡
𝒖 (𝒙, 𝑡) = ¥𝑣 (𝑡)

4𝜋 ∥𝒙 − 𝒙 𝑗 ∥3 (𝒙 − 𝒙 𝑗 ) (20)

𝑎𝑛 (𝒙, 𝑡) = 𝒂 · 𝒏 =
¥𝑣 (𝑡)

4𝜋 ∥𝒙 − 𝒙 𝑗 ∥3 (𝒙 − 𝒙 𝑗 ) · 𝒏 = 𝐹 𝑗 (𝒙) ¥𝑣 (𝑡) . (21)

The acceleration shader then accumulates 𝑎𝑛 (𝒙, 𝑡) contributions at
each surface point by summing over all currently active bubbles. In
practice, the spatial form factor, 𝐹 𝑗 (𝒙), for each bubble need only
be updated at a temporal rate lower than the time-stepping rate; in
our implementation we use update rates of at most one millisecond.
Finally, for each bubble, we normalize its surface acceleration con-
tribution 𝑎𝑛 (𝒙, 𝑡) at each point by dividing by the bubble’s net flux
through the surface Φ𝐹 , given by Φ𝑗 =

∑
𝑘 𝐴𝑘𝐹 𝑗 (𝒄𝑘 ) where the sum-

mation is over all surface points, and𝐴𝑘 denotes the area of the 𝑘-th
surface element, and 𝒄𝑘 its centroid. This normalization is important
for non-spherical domains, as it ensures the bubble’s acceleration
contribution is directed entirely through the water surface.
To validate our approximation, we compared sounds generated

from prior work using the BEM-based acceleration shader for the
2016 Pour and 2016 Step example to our simple analytical mono-
pole shader. The results are qualitatively similar (please see the
supplemental video).

-1.0 1.0

Mode 1 Mode 3 Mode 6

(a) BEM (b) Monopole (c) BEM (d) Monopole

1.0

-1.0

Mode 2: 589 Hz Mode 3: 732 Hz Mode 10: 1121 Hz Mode 10: 1579 HzMode 1: 386 Hz

Fig. 6. BEMvs.monopole shader comparisons:Normalized acceleration
shader values are plotted on meshes from the 2016 Pour example at different
times. Darker shades of red indicate larger amplitudes. For the few bubble
case, the monopole shader (b) is able to capture the spatial variations of the
BEM solution (a). Furthermore, for under-resolved meshes, the monopole
shader (d) is spatially smoother than the BEM shader (c).

5.2 Sample-and-Hold GPU Wavesolver
We improve upon the general-purpose CPU wavesolver introduced
in [Wang et al. 2018] for our application. The solver in [Wang
et al. 2018] generates low-noise rendering of vibrating fluid sur-
faces by use of a second-order boundary handling scheme. However,
we found that this scheme, along with the point-based rasterizer
in [Wang et al. 2018], results in a finicky solver that requires suffi-
ciently high spatiotemporal resolution to work robustly, especially
for our application where the fluid interface can be highly dynamic
(see Figure 7). Moreover, the constantly changing fluid interface and
the resulting rasterizations can cause a large performance penalty.

We improve both the robustness and speed of the solver by slightly
sacrificing the quality using a simple sample-and-hold principle. In-
spired by the parallel-in-time algorithm introduced in [Wang et al.
2018], we first segment the animation data (i.e., mesh and bound-
ary conditions) temporally into wavesolve "chunks". We run each
chunk on our GPU wavesolver with a fixed water interface (thus
the name sample-and-hold). The bubble positions are still varying
in time in each chunk and acceleration shaders are resampled ac-
cordingly (§5.1). Like [Wang et al. 2018], we continue running the
simulation for a short window of time after each chunk boundary
("post-window") to ensure the resonating waves have decayed suf-
ficiently. The solution for each chunk is then superimposed at the
listening location to recover the full solution [Wang et al. 2018].

Considerations for selecting chunk sizes. Both the chunk size (10
ms) and the post-window size (10 ms) are chosen to be small. This
has two benefits: 1) this ensures all animation data can fit comfort-
ably in the GPU memory, and memory fetch strides will be kept
minimal, and 2) the piecewise constant fluid interface change at the
chunk boundary might result in frequency distortion; by keeping
the chunks small, we minimize this artifact. In most of our exam-
ples, fluid interfaces can form intricate cavities which have strong
resonance, and therefore the 10 ms post-window size is almost
certainly not enough to capture energy decay in a naive implemen-
tation. On the other hand, extending the post-window duration so
we can capture the full resonance is impractical as this is often on
the order of several hundred milliseconds (more than 10 times our
original chunk size!). Fortunately, the signal in the post-window is
much more structured, consisting mostly of unforced oscillations
of resonance (another benefit of the sample-and-hold approach).
We leveraged this insight to build an audio-domain spectral decay
extension model for each chunk to make the 10 ms post-window
choice less noticeable, but the change was barely perceptible for our
examples, so we simply play the chunk audio directly.

Stability. The simplicity of the sample-and-hold approach, com-
bined with our use of a more conservative rasterizer, removed any
observed instability in the previous solver [Wang et al. 2018]. We
also use the first-order boundary handling scheme (i.e., staircasing)
because the second-order scheme requires finer spatial resolution.
See Table 2 for comparisons on stability and performance.

6 RESULTS
We integrate our coupled-bubble equations on a 13𝑡ℎ Gen Intel
i9 CPU using a single-threaded implementation. FLIP simulations

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.



Improved Water Sound Synthesis using Coupled Bubbles • 9

Fig. 7. Overview of sample-and-hold GPU wavesolver: The Paddle Splash animation demonstrates (Top) complex, dynamic fluid surfaces with detailed
features which make robust, low-noise simulation of acoustic waves challenging. (Bottom) By freezing fluid and rigid scene geometry within short temporal
chunks, we can use fast GPU-accelerated FDTD wavesolvers for static geometry, then combine the resulting audio waveforms for each chunk using linear
superposition. The approach is approximate, but it is fast and robust for practical fluid animation workflows.

were run in Houdini FX v19.5, with our stochastic bubble model
implemented as a Solver node on output FLIP fluid simulation data.
The CPU wavesolver was run on a 2.3 GHz Intel Xeon CPU (with 36
cores), while the GPU wavesolver was run on an NVIDIA GeForce
RTX 4090. Please see our supplemental video for animation sound
results. For oscillator integration, all results use inverse interpolation
for M̃−1 (§ 4.4) except for the Wave Crash example, where we use
low-rank updates (§ 4.5) due to the enormous number of bubbles.

6.1 Two-Phase Simulation
We run our coupled-bubble model on prior examples from Langlois
et al. [2016]. The datasets for these examples were generated using
offline two-phase incompressible fluid simulators (and are included
in the dataset of [Wang et al. 2018]). As a result, they exhibit reason-
able bubble distributions along with plausible sounds even without
coupling. However, we show how our coupled-bubble model can
enhance these sounds.
In performing our comparison, we found that the water/air sur-

face acoustic velocity data provided in that dataset was normal-
ized incorrectly. In [Langlois et al. 2016; Wang et al. 2018], it is
stated that it should be normalized for unit vibration, i.e., ¤𝑣 (𝑡) =∫
𝐵𝑢𝑏𝑏𝑙𝑒

𝜕𝑛𝜙 𝑑𝑆 = 1. However, it appears that after the data was ini-
tially computed with a unit potential 𝜙 = 1 for each bubble, it was
not renormalized. To correct this, we use the fact that, due to incom-
pressibility, the dataset velocity simply needs to be normalized by
its integral over the surface:

∫
𝐵𝑢𝑏𝑏𝑙𝑒

𝜕𝑛𝜙 𝑑𝑆 =
∫
𝐹𝑙𝑢𝑖𝑑 𝑆𝑢𝑟 𝑓 𝑎𝑐𝑒

𝜕𝑛𝜙 𝑑𝑆 .
Unfortunately, this implies that previous results from those papers
were missing an 𝜔 proportional factor (causing higher frequencies to
be suppressed), since for a harmonic spherical bubble with radius 𝑟 ,
we have 𝜙 (𝑟, 𝑡) = ¤𝑣 (𝑡 )

4𝜋𝑟 =
¤𝑣0𝑒

𝑖𝜔𝑡

4𝜋𝑟 =⇒ |¤𝑣0 | = 4𝜋𝑟 when 𝜙 = 1, and
the Minnaert frequency is 𝜔0 ≈ 3

2𝜋𝑟 .

2016 Pour: For smaller domains, our coupling model produces
subtle but perceptually significant frequency transformations. The

coupled audio exhibits the characteristic bimodal spectra of a pour-
ing glass: a falling pitch from bubbles coupling as they move deeper
into the fluid, along with a rising pitch from the amplification of
frequencies (due to the container cavity resonance) that go up as
the water level rises.
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Fig. 8. 2016 Pour

2016 Step: The 2016 Step example features a denser bubble distri-
bution and steadier bubble generation rates compared to the 2016
Pour. We use a stronger regularization value of 𝜖 = 2

√
2 (instead of

the default 𝜖 = 2) to achieve smoother audio results. The coupled
audio is less shrill and livelier (with more frequency variations).

6.2 FLIP Simulation
In addition to enhancing the sound of high-fidelity bubble simula-
tions, we test our method on procedurally-generated FLIP anima-
tions from Houdini, with ad hoc bubble generation processes and
spherical bubbles. Except for the Glass Pour example, which takes
minutes for the fluid and bubble solvers to run, our larger examples
can be simulated overnight. Here, the effect of coupling itself can
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Table 2. Results: We provide timings, domain/grid sizes, and oscillator statistics. Oscillator integration and wavesolver time-stepping are performed at the
same rate. The CPU wavesolver corresponds to [Wang et al. 2018], whereas the GPU wavesolver is our novel implementation. Wavesolver domains are cubic.
The Paddle Splash example fails on the CPU due to rapid, noisy fluid interface movement causing the simulation to crash. Likewise, the Forest Creek and
Wave Crash examples run to completion on the CPU but exhibit popping artifacts (from under-resolved geometry) larger than the audio signal of interest.

Wavesolver

Oscillators Time (hr)

Example Length (s) Dimensions (m) Rate (kHz) Total Per Sec Time (hr) h (mm) # cells CPU GPU

VO
F 2016 Pour 8.3 0.08 × 0.08 × 0.24 192 51598 6216 0.05 5.0 803 29.7 0.42

2016 Step 4.2 0.08 × 0.24 × 0.24 192 53357 12704 0.09 5.0 803 30.7 0.34

FL
IP

Glass Pour 5.3 0.08 × 0.08 × 0.2 48 22591 4262 0.01 12.5 403 1.4 0.22
Paddle Splash 1.9 0.45 × 0.66 × 0.5 96 11967 6283 0.20 10.0 803 – 0.61
Forest Creek 6.0 1.0 × 0.5 × 0.4 48 133014 22169 1.78 12.5 1203 42.4 3.12
Wave Crash 4.5 1.5 × 0.75 × 0.25 48 306713 68158 0.91 12.5 1203 31.6 1.54
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Fig. 9. 2016 Step

account for diverse pitch variations, producing rich sounds without
needing to resolve non-spherical bubble natural frequencies.

Glass Pour: Shown previously in Figure 1, this example emulates
the dimensions and setup of the 2016 Pour example while only tak-
ing 1.4 hours to run on the CPU wavesolver (compared to 29.7 hours
for the 2016 Pour). We include a comparison with a real recording
of a pouring glass in Figure 13 and show that our simulated audio
exhibits matching spectral features – namely, the aforementioned
bimodal spectra.

Forest Creek: Like the 2016 Step example, the Forest Creek ex-
ample (shown in Figure 10) features relatively constant bubble gen-
eration rates. Key differences include a larger domain (1.0 m × 0.5
m for the Forest Creek, compared to 0.24 m × 0.08 m for the 2016
Step), as well as the most drastic deviation from planar water surface
geometry among all of our examples.

Paddle Splash: Shown in Figure 11 (as well as previously in Fig-
ure 7), the Paddle Splash example features dynamic and abrupt
geometry changes. Our GPU wavesolver can handle these without
artifacts. Another benefit of FLIP simulators is the ease of handling
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Fig. 10. Forest Creek

dynamic geometry, which was difficult with the higher quality CFD
VOF method [Popinet 2003].
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Fig. 11. Paddle Splash

Wave Crash: Shown in Figure 12, the largest of our examples is a
breaking wave in a 1.5 m × 0.5 m domain. It generates over 300,000
bubbles in 4.5 seconds of simulation and produces the low-frequency
(200 Hz) "roar" expected of a crashing wave.
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Fig. 12. Wave Crash
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Fig. 13. Glass Pour recording: (Left) we use a Canon EOS 6D camera and
Shure SM57 microphone to capture audiovisual footage of a pouring glass.
(Right/Top) The simulated coupled audio for the Glass Pour example exhibits
similar spectral features as the (Right/Bottom) recorded audio. Matching
annotations for both spectrograms are provided which show (a) the falling
pitch of bubbles coupling together, (b) the rising pitch accompanied by the
rising water level, and (c) fixed container resonances.

7 CONCLUSION
We have shown several practical extensions of bubble-based sound
synthesis models to capture richer low-frequency sound effects as-
sociated with coupled-bubble vibrations. Even the simple 1/𝑑 bubble
coupling forces can produce perceptible sound effects which reduce
the high-frequency character of uncoupled harmonic bubbles, which
some have referred to as “harsh” or “digital sounding.” Simulating
many coupled bubbles is computationally expensive for both oscil-
lator dynamics and time-domain radiation analysis, and we have
proposed a number of numerical optimizations and details to make
them possible for modern fluid animation techniques.

7.1 Limitations and Future Work
Despite these advances, there are many limitations and opportu-
nities for future work. We achieve clearly audible transformations
of frequency spectra even on simulation domains of modest size
(roughly ≤ 1 𝑚3). However, for larger environments, our method
may over-couple bubbles by not accounting for time delays, and
because scene geometry is not accounted for by the monopole and
dipole coupling models. Damping is also more complex for coupled
systems, and may not be accurately predicted by damping models

derived under the assumption of spherical mono-frequency bub-
bles and time delays. Few-bubble systems coupled together with
time-delays have been studied, and analytical solutions for the two-
bubble case are known (in which time delays are shown to increase
damping), however, work remains to be done on investigating the
effects of time delays on bubble sounds, and whether they can be
accounted for in a stable and efficient manner.

Our coupling formulation assumes spherical bubbles. Non-spherical
bubble coupling requires solving more complex equations for bubble
frequencies and coupling pressures. Our procedural fluid examples
do not include spatially varying single-bubble frequency effects, in
part because they are expensive to compute, and they are percep-
tually masked by the emissions in the many-bubble examples, but
they can be important in scenarios with low bubble counts.

Fast GPU FDTDmethods for fluid sounds that use sequential time-
stepping instead of sample-and-hold could provide faster sound syn-
thesis and should be investigated (c.f. [Allen and Raghuvanshi 2015]).
Achieving low-noise renderings in the presence of under-resolved
interfaces with rapid shape and topology changes is a challenging
problem. Our sample-and-hold GPU renderer is approximate, and it
benefits from the noisy nature of bubbly flows which may not be
suitable for other sound synthesis applications. Furthermore, while
inspired by the parallel-in-time algorithm [Wang et al. 2018], the
sample-and-hold solution no longer converges to the true solution
due to the piecewise constant geometry. In addition, the sample-
and-hold strategy sometimes creates small, static resonant cavities
that trap the waves for too long, resulting in frequency artifacts.
However, in practice, we find that the speed and robustness boost
significantly outweigh the decay in quality.

Our initial renderings are monophonic, but stereo and spatialized
sound should be explored and are important for appreciating noisy
water sources [Verron et al. 2009]. Finally, we estimate airborne
acoustic emissions, but renderings of underwater sounds are im-
portant to some applications. These will require further work on
waterborne sound and compelling listening models.
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A WORST-CASE ANALYSIS OF EIGEN-FREQUENCIES
To ensure stable time-stepping for close-proximity bubbles, it is
useful to understand the highest frequencies the coupled system
can produce in the worst case of overlap. Consider 𝑁 bubbles, and
let them have equal radii for simplicity so that K = 𝜔2

0I. In that case,
the generalized eigenvalue problem (assuming y = 𝑒𝑖𝜔𝑡 ȳ) for their
undamped frequencies is:

Kȳ = 𝜔2M̃ȳ → ȳ =
𝜔2

𝜔2
0
M̃ȳ → ȳ = _M̃ȳ, (22)

where _ = 𝜔2/𝜔2
0 is the normalized eigenvalue of K relative to M̃. To

better understand regularization, consider the worst-case scenario
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eigenvalues can be computed analytically (in Mathematica):

_1...(𝑁−1) =
Y

Y − 1
and _𝑁 =

Y

Y − 1 + 𝑁
. (23)

Since the normalized frequency multiplier is 𝜔
𝜔0

=
√
_, the largest

frequency that can be observed for a positive-mass regularized
system (Y > 1) is

𝜔𝑚𝑎𝑥 = 𝜔0

√
Y

Y − 1
, (24)

which is independent of 𝑁 , whereas the minimum is

𝜔𝑚𝑖𝑛 = 𝜔0

√
Y

Y − 1 + 𝑁
(25)

and shows lower frequencies for higher 𝑁 in this fully overlapping
case (𝜔𝑚𝑖𝑛 ∼ 1/√𝑁 ). Therefore, to limit the frequency increase factor
𝜔𝑚𝑎𝑥/𝜔0 to 𝑓 , we can use Y= 𝑓 2

𝑓 2−1 , e.g., for 𝑓 =
√

2 we get Y=2.

B POSITIVITY OF REGULARIZED MASS MATRICES
We show that the regularized mass matrix M̃ (13) can be made posi-
tive definite and sufficiently positive. Specifically, consider values of
the regularization parameter Y such that v̂𝑇 M̃v̂ > 𝑚0 > 0, ∀v̂ ∈ R𝑛
with ∥v̂∥2 = 1, where 𝑚0 > 0 is a small parameter that bounds
the smallest eigenvalues of M̃ away from zero. Unfortunately, the
position dependence of M̃makes analysis difficult, and therefore we
again consider the worst case where all bubbles overlap perfectly,
so that 𝑑𝑖 𝑗 = 0. In that case, the regularized mass matrix is

M̃𝑖 𝑗 =𝛿𝑖 𝑗 + (1 − 𝛿𝑖 𝑗 )/Y ⇔ M̃ = Y−111𝑇 + (1 − Y−1)I, (26)

where 1 is the vector of all ones, and

v̂𝑇 M̃v̂ = Y−1 (1 · v̂)2 + (1 − Y−1). (27)

Substituting (27) into v̂𝑇 M̃v̂ > 𝑚0, and solving for Y we obtain

Y >
1 − (1 · v̂)2

1 −𝑚0
, 𝑚0 ∈ (0, 1), (28)

then, since minv̂ (1 · v̂)2 = 0, we conclude that

Y >
1

1 −𝑚0
> 0, 𝑚0 ∈ (0, 1). (29)

C FLIP STOCHASTIC BUBBLE MODEL
To augment FLIP simulations with bubble generation processes
suitable for sound synthesis, we implement a modified version of
the stochastic bubble seeding model originally presented in [Zheng
and James 2009]. Our model also accounts for splitting and merging
events.

Entrainment. We track mixing at the liquid-air interface by mon-
itoring surface FLIP particles for rapid changes in depth. Given
isosurface values 𝜙 for FLIP particles above a certain depth 𝜙𝑚𝑎𝑥 ,
we compute the difference at each timestep 𝑖 as Δ𝜙𝑖 = 𝜙𝑖 − 𝜙𝑖−1. If
Δ𝜙𝑖 exceeds some critical threshold 𝜖 , the particle becomes a seed
and thus has some chance of entraining a bubble. Each seed has a
time-to-live and entrainment strength parameter ^𝑒 that determine
the number of bubble creation attempts per timestep; we defer the
reader to [Zheng and James 2009] for further details.

In order to entrain bubbles closer to the surface despite a coarse
timestep resolution, we interpolate the isosurface values 𝜙 , such
that the bubbles are created exactly where the difference in 𝜙 equals
𝜖 . We opt for linear interpolation and assume constant velocity over
each timestep, so the entrainment positions 𝑥𝑒 are given by

𝑥𝑒 = (1 − 𝛼)𝑥𝑖−1 + 𝛼𝑥𝑖 , 𝛼 =
𝜖

𝜙𝑖 − 𝜙𝑖−1
(30)

At creation time, bubble radii are sampled from a statistical distribu-
tion. In our examples, we use statistics from the two-phase volume
of fluid simulations from [Langlois et al. 2016] (Faucet Pour and
Water Step), as well as the empirical power law distribution ([Deane
and Stokes 2002]). Finally, if a bubble is to be entrained on top of
existing surface bubbles, we collapse them to avoid intersections.

Splitting. A bubble is likely to fragment if turbulent forces across
the bubble exceed the restoring force of surface tension. The Weber
number provides a measure of the ratio between these two forces
and can be expressed as

𝑊𝑒 = 𝜌 𝛿𝑢2 (𝑑) 𝑑/𝜎 (31)

where 𝛿𝑢2 (𝑑) denotes the mean-square velocity difference over the
bubble’s diameter [Risso and Fabre 1998], and 𝜎 (≈ 0.0726) is the
surface tension. Splitting occurs when𝑊𝑒 exceeds some critical
threshold. Unfortunately, in practice, the FLIP velocity field can be
noisy and under-resolved, which can lead to excessive splitting in
only a select few locations. Instead, we adopt a probabilistic model,
where the probability of splitting is directly proportional to the
bubble diameter 𝑑 and is given by

𝑃 (𝑠𝑝𝑙𝑖𝑡) = ^𝑚 (𝑑 − 2𝑟𝑚𝑖𝑛) (32)

where ^𝑚 is the split strength parameter, and 𝑟𝑚𝑖𝑛 is the minimum
splitting radius. We use the 𝛿𝑢2 (𝑑) term to set a threshold, so that
bubbles only split if they are in sufficiently turbulent flows (but
we do not let this term dominate the splitting mechanism). After
splitting, the new bubble volumes are divided randomly such that
overall volume is conserved, and each individual bubble’s volume is
greater than (2/3)𝜋𝑟3

𝑚𝑖𝑛
.

Merging. We merge bubbles if they are sufficiently close. Given
two bubbles with positions 𝑥𝑖 and 𝑥 𝑗 , radii 𝑟𝑖 and 𝑟 𝑗 , as well as
merge strength parameter ^𝑚 , we merge if |𝑥𝑖 − 𝑥 𝑗 | < ^𝑚 (𝑟𝑖 + 𝑟 𝑗 ).
To prevent the creation of nonphysically large bubbles, we clamp
the merged bubble volume at (4/3)𝜋𝑟3

𝑚𝑎𝑥 . For bubble pairs where
^𝑚 (𝑟𝑖 + 𝑟 𝑗 ) < |𝑥𝑖 − 𝑥 𝑗 | < (𝑟𝑖 + 𝑟 𝑗 ), we resolve collisions separately.

We simulate bubbles at timestep rates comparable to our FLIP
simulations. To avoid discretization artifacts in the audio, we ran-
domly offset the bubble start and end times, ensuring that split and
merge events remain coherent. Without robust collision detection,
bubbles may intersect in between frames, so regularizing the mass
matrix is important when synthesizing sounds for FLIP examples
as well (despite all bubbles being spherical).
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