
Deep Shadow Maps

Tom Lokovic Eric Veach

Pixar Animation Studios�

Abstract

We introducedeep shadow maps, a technique that produces fast,
high-quality shadows for primitives such as hair, fur, and smoke.
Unlike traditional shadow maps, which store a single depth at each
pixel, deep shadow maps store a representation of the fractional
visibility through a pixel at all possible depths. Deep shadow maps
have several advantages. First, they are prefiltered, which allows
faster shadow lookups and much smaller memory footprints than
regular shadow maps of similar quality. Second, they support shad-
ows from partially transparent surfaces and volumetric objects such
as fog. Third, they handle important cases of motion blur at no extra
cost. The algorithm is simple to implement and can be added easily
to existing renderers as an alternative to ordinary shadow maps.

1 Introduction

Rendering hair, fur, and smoke is difficult because accurate self-
shadowing is so important to their appearance [2]. To demonstrate
this, Figure 1 shows a small patch of curly hair rendered both with
and without shadows. Notice that the shadows cast by portions of
the hair onto itself have a great influence on the overall illumination
and apparent realism of the rendering.

Traditional shadow maps [11] need very high resolutions to cap-
ture this type of self-shadowing accurately. Many more depth sam-
ples must also be accessed during shadow lookups to compensate
for the higher frequencies in the shadow map. This is especially ob-
vious in animations, where inadequate sampling results insparkling
(a distracting artifact caused by rapidly changing noise patterns).

Furthermore, shadow maps cannot handle volumetric effects
such as clouds or smoke. Traditional approaches such as integrating
the atmospheric density along each shadow ray are very inefficient,
simply because there can be a large number of shadow tests along
each primary ray.

We propose a new type of shadow map to solve these problems,
the deep shadow map. Rather than storing a single depth at each
pixel, a deep shadow map stores afractional visibility function(or
simply visibility function) that records the approximate amount of
light that passes through the pixel and penetrates to each depth. The
visibility function takes into account not only the opacities of the
surfaces and volume elements encountered, but also their coverage
of the pixel’s filter region. This allows deep shadow maps to ac-
curately represent the partial attenuation that occurs as light passes
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Figure 1: Hair rendered with and without self-shadowing.

through dense hair and fog.
Compared to ordinary shadow maps, deep shadows have the fol-

lowing advantages:

� They support semitransparent surfaces and volumetric primi-
tives such as smoke.

� For high-quality shadows, they are smaller than equivalent
shadow maps by an order of magnitude and are significantly
faster to access.

� Unlike ordinary shadow maps, they support mip-mapping.
This can dramatically reduce lookup costs when objects are
viewed over a wide range of scales.

In addition, deep shadow maps can efficiently support high-
quality motion blurred shadows. While this effect is also possible
with ordinary shadow maps, the large filter widths required have
made this technique quite expensive in the past.

In the following section, we discuss previous work and explain
why traditional shadow maps are not appropriate for fine geome-
try such as hair and fur. Section 3 defines deep shadow maps and
presents algorithms for creating and using them, while Section 4
describes their advantages and limitations. We then discuss some
of the more practical implementation issues, and present the results
from several experiments.

2 Background and Related Work

Traditional shadow maps [11] are generated by placing a camera
(the shadow camera) at the light source origin such that the ob-
jects casting shadows are within the field of view. The result is a
rectangular array of pixels where each pixel stores the depth of the
closest visible surface. To determine whether a given pointP is in
shadow, it is transformed into the coordinate system of the shadow
camera and its depth is compared to the corresponding value from
the shadow map. Higher-quality antialiased shadows are possible
with percentage closer filtering[9], which examines depth sam-
ples within a given filter region and computes the fraction that are
closer than a given depthz. This process relies heavily on stratified
sampling [7], both in generating the original shadow map and in
selecting a random subset of the depth samples for filtering.
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Figure 2: Variance contributions to stratified sampling.(a) When a
single silhouette edge passes through the filter region,O(N1=2) sam-
ples contribute to the variance.(b) When the filter region is covered
with fine geometry, allN samples contribute to the variance, resulting
in a much larger expected error.

While shadow maps are very good for rendering shadows of
large objects, they do not work as well for finely detailed geom-
etry such as hair. This is because stratified sampling does not work
very well when there are many discontinuities crossing the filter re-
gion [7]. As a result, many more samples are required in order to
reduce noise artifacts such as sparkling to an acceptable level.

To understand why this is so, consider Figure 2a. Here we show
an isolated silhouette edge crossing the filter region for a shadow
lookup, evaluated usingN samples jittered over a

p
N�

p
N grid.

The depth of each sample is obtained from the shadow map (whose
resolution may be much finer than the sample grid). Using per-
centage closer filtering, each sample contributes either 0 or 1 to
the average shadow value depending on the relativez values of the
shadow map and the test pointP .

In this situation, observe that the only samples that contribute to
the variance are the ones whose cells are crossed by the silhouette
edge. There are onlyO(N1=2) of these, and further analysis [7]
shows that the expected error in this case isO(N�3=4). Thus strat-
ification yields much better results near large silhouette edges than
unstratified Monte Carlo sampling, which has an expected error of
O(N�1=2).

In the case of hair or fur, however, the filter region is crossed by
many silhouette edges (see Figure 2b). In this case, every one of the
N cells is crossed by an edge, and the corresponding expected error
is O(N�1=2). Thus in the case of very fine geometry, stratified
sampling is no better than unstratified sampling.

These error bounds have a dramatic effect on the number of sam-
ples required to reduce noise below a given threshold. For example,
to achieve an expected error of 1%, approximatelyN = 140 sam-
ples are needed near an isolated silhouette, whileN = 2500 sam-
ples are required near a point that is 50% obscured by dense fur.1

Furthermore, if the same amount of shadow detail is desired in both
cases (i.e. the same filter size in world space), then the underlying
shadow map resolution must be increased by the same factor. To
gain any benefit from stratification, the shadow map would need
to be fine enough to resolve the silhouettes of individual hairs, and
the filter region small enough that only a few edges cross it. Since
these conditions are rarely satisfied in practice, shadow maps for
high-quality hair rendering are typically large and slow.

We briefly mention some other possible shadow techniques (the

1These estimates assume that the silhouette edge is horizontal and has a
random vertical position, in which case the constant factors for the expected
error are1=

p
6 and1=2 respectively.

classic survey is [13]). Ray casting can generate accurate shadows,
but on furry objects with millions of hairs it is too expensive in
terms of time and memory. This is particularly true when hair re-
ceives shadows from fog or smoke, since ray marching is performed
once for every hair sample. It is also difficult, other than by using
an expensive area light source, to “soften” shadows for artistic pur-
poses. In the case of standard shadow maps this can be achieved
by simply increasing the filter width. Kajiya and Kay used ray-cast
shadows on a volumetric hair representation [2], but their rendering
times were relatively long.

Another possible approach to hair self-shadowing is to precom-
pute the shadow density as a 3D texture. This technique has been
used with some success for clouds (e.g. [3]) and for hybrid volume
and surface rendering of medical datasets [5]. The main drawback
of this approach is that 3D textures have a relatively coarse resolu-
tion, and in particular they have limited range and low accuracy in
z (which creates bias problems). A 3D texture with sufficient detail
to capture accurate surface shadows of complex geometry would be
prohibitively large.

Multi-layer Z-buffers[6] and layered depth images[10] store in-
formation at multiple depths per pixel, but are geared toward ren-
dering opaque surfaces from new viewpoints rather than shadow
evaluation. Keating and Max [4] apply multi-layer depth images to
the problem of shadow penumbras, but their technique otherwise
has the same limitations as ordinary shadow maps.

3 Deep Shadow Maps

3.1 Definition

A deep shadow map is a rectangular array of pixels in which every
pixel stores avisibility function. Intuitively, a visibility function is
defined by considering a beam of light that starts at the shadow cam-
era origin and passes through the given pixel. The function value
at a given depth is simply the fraction of the beam’s initial power
that penetrates to that depth. Note that the beam is not necessar-
ily square; it can be shaped and weighted according to any desired
pixel filter. Figure 3 gives several examples, showing how visibility
functions can account for semitransparent surfaces, pixel coverage,
and smoke. Each visibility function starts off with a value of 1, and
decreases with depth as various types of blockers are encountered.
If all light is blocked, the function drops off to a value of 0.

To make this definition more precise, consider a ray that starts
at the shadow camera origin and passes through the point(x; y) on
the image plane. Some fraction of the light emitted along this ray
will be attenuated by surfaces or by volumetric scattering and ab-
sorption. The fraction of light that penetrates to a given depthz is
known as thetransmittance� (x; y; z). We refer to� as atrans-
mittance functionwhen we wish to consider the transmittance at a
fixed image point(x; y) as a function ofz.

The visibility function for each pixel is now obtained by filter-
ing the nearby transmittance functions and resampling at the pixel
center. This is easier to understand if we restrict our attention to a
particular depthz. The transmittance at every point in thisz-plane
is given by�(x; y; z), and the visibility functionVi;j for each pixel
is obtained by filtering these values:

Vi;j(z) =

Z r

�r

Z r

�r

f(s; t) �(i+ 1

2
� s; j + 1

2
� t; z) ds dt ;

where(i+ 1

2
; j+ 1

2
) is the pixel center,f is the desired bandlimiting

pixel filter (centered around the origin), andr is the filter radius.
This definition is similar to ordinary image filtering, except that it
applies to everyz value separately.

Notice that visibility functions are closely related to thealpha
channelsused for image compositing. The alpha channel of an im-
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Figure 3: Visibility functions in flatland. Each diagram shows a beam of light that starts at the shadow camera origin (i.e. the light source) and passes
through a single pixel of the deep shadow map, accompanied by that pixel’s visibility function.(a) The beam’s power is reduced as it passes through
consecutive semitransparent surfaces.(b) The blockers are opaque, but each covers only part of the pixel’s area; the emphasized segments of the function
correspond to visible portions of the blockers.(c) Passage through smoke reduces the beam’s power in a more continuous manner.

age accounts for attenuation due to both semitransparent surfaces
and partial coverage of pixels, but is equal to the fraction of light
blocked rather than the fraction of light transmitted. The alpha
channel also stores just a single value per pixel, corresponding to
the light blocked at the planez = 1. Thus the relationship be-
tween visibility functions and alpha channels can be expressed as:

�i;j = 1� Vi;j(1) :

A deep shadow map is equivalent to computing the approximate
value of1 � � at all depths, and storing the result as a function of
z. In this way each pixel contains the combined attenuation and
coverage information for every depth.

3.2 Sampling

In this section we describe how deep shadow maps can be generated
using the facilities of any standard renderer. Our strategy is simi-
lar to ordinary image sampling. To generate a deep shadow map,
we select a set of sample points across the shadow camera’s image
plane (for example, 16 samples per pixel on a jittered grid). For
each sample point we determine the corresponding transmittance
function, which describes the light falloff along a particular pri-
mary ray. Finally, the visibility function for each pixel is computed
by taking a weighted combination of the transmittance functions at
nearby sample points.

We first describe how to compute a single transmittance func-
tion. Given an image point(x; y), we compute the surfaces and
volume elements intersected by the corresponding primary ray. The
surface intersections can be found using either a ray tracer or an or-
dinary scan conversion renderer, and we assume that the properties
of volumetric objects can be evaluated at any points desired. The
transmittance function at the point(x; y) can then be expressed as
the product of asurface transmittance function� s and avolume
transmittance function�v, as described below.

Surface transmittance is estimated using all of the surface in-
tersections along the primary ray at(x; y). Eachsurface hithas a
depth valuezsi and an opacityOi. These are composited in the usual
way, starting with a transparency of 1 and multiplying by1 � Oi

at each surface hit, to yield a piecewise constant function� s (see
Figure 4a). Notice that each surface hit generates two vertices with
the samez value, in order to represent the discontinuous steps as a
piecewise linear curve.2 The “vertices” atz = 0 andz = 1 are
represented implicitly and are not part of the output.

2The wasted space in this representation is removed during the compres-
sion phase, which approximates the average of many discrete steps with
a single linear segment. A true “step” in the compressed output function
would occur only for a surface exactly parallel to thexy-plane.
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Figure 4: Constructing a transmittance function.(a) The object in-
tersections along a given ray yield the surface transmittance function
�s, which has a discontinuity at the depth of each surface.(b) The ex-
tinction function� is obtained by sampling the atmospheric density at
regular intervals along the ray.(c) The extinction function is integrated
and exponentiated to yield the volume transmittance�v . (d) The sur-
face transmittance and volume transmittance are multiplied to obtain
the final transmittance function� for each ray.

To estimate the volume transmittance, we sample the atmo-
spheric density at regular intervals along the ray. Eachvolume sam-
ple has a depth valuezvi and anextinction coefficient�i that mea-
sures the light falloff per unit distance along the ray. We linearly
interpolate between these samples to yield theextinction function
� (see Figure 4b). The fraction of light that penetrates to a given
depthz is then given by the formula3

�v(z) = exp(�
R z
0
�(z0)dz0) :

Since this function is not piecewise linear, we approximate it by
evaluating the transmittance at each vertex of the extinction func-
tion and linearly interpolating. We do this by computing the trans-
mittance of each linear segment as

Ti = exp(�(zvi+1 � zvi )(�i+1 + �i)=2)

and compositing as we did for the surface transparencies, except
that we interpolate between vertices rather than forcing discrete

3If the shadow camera is not orthographic, a correction factor is needed
for each ray to account for the relationship between depth and distance.



steps. This yields the volume transmittance function�v (see Fig-
ure 4c). We then merge the surface and volume components by
multiplying them:

�(z) = � s(z) �v(z)

(see Figure 4d). Since this function is again not piecewise linear,
we evaluate it at the combined vertices of� s and�v and interpolate
linearly between them.

Finally, we describe how the transmittance functions are com-
bined to yield the visibility functionVi;j for an entire pixel. At
each depthz the nearby transmittance functions are filtered just like
ordinary image samples:

Vi;j(z) =

nX
k=1

wk �k(z) ; (1)

wheren is the number of transmittance functions within the fil-
ter radius around(i + 1

2
; j + 1

2
), andwk is the normalized filter

weight for each corresponding sample point(xk; yk). The result is
a piecewise linear function that has approximatelyn times as many
vertices as the transmittance functions do. This function takes into
account not only the light attenuation due to semitransparent sur-
faces and fog, but also the fractional coverage of these features.

3.3 Compression

Visibility functions sampled in this way may have a large number of
vertices, depending on the filter radius and the number of samples
per shadow pixel. Fortunately these functions are generally quite
smooth, making them easily compressed. The compressed func-
tions are stored as an array of floating-point pairs, each containing
az value and a fractional visibilityV .

It is very important that the compression method preserve thez
values of important features, since even small errors inz can lead
to undesirable self-shadowing artifacts. The method must also be
appropriate for the unbounded domainz 2 [0;1). These facts
preclude the use of compression methods based on a fixed or hier-
archical set of basis functions (e.g.a wavelet basis). It also implies
that theL1 andL2 error metrics are unsuitable, since visibility er-
rors are important even if they occur over a very small range ofz
values. Instead we use theL1 error metric (maximum error), and
compress functions using the simple greedy algorithm described
below.

Given a visibility functionV and an error tolerance� (see Fig-
ure 5a), our algorithm outputs a new visibility functionV 0 such that

��V 0(z)� V (z)
�� � � for all z

and whereV 0 typically has a much smaller number of control points
(Figure 5d). The main feature of the algorithm is that it is incremen-
tal: It reads and writes control points one at a time in increasingz
order, and requires only a constant amount of state information.

The basic idea is that at each step, the algorithm draws the
longest possible line segment that stays within the error bounds
(similar to hitting a ball through as many wickets as possible in
a game of croquet). The origin of the current segment is fixed, and
we only need to choose the direction and length of the segment. To
simplify the implementation, we restrict the outputz values to be a
subset of the inputz values.

Let the origin of the current output segment be(z0i; V
0

i ). At every
step we maintain the range of permissible slopes[mlo;mhi] for the
segment. Each new control point(zj ; Vj) of the input functionV
imposes a constraint on the current slope range by forcing the seg-
ment to pass through thetarget windowdefined by the wedge from
the segment origin to the two points(zj ; Vj � �) (see Figure 5b).
The current slope range is initialized to[�1;1], and is intersected
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Figure 5: Our compression algorithm.(a) A piecewise linear curve
and an illustration of its error bound.(b) Each input vertex defines a
target windowthat constrains the slope of the next output segment.(c)
The current slope range is intersected with each target window until it
would become empty.(d) The output segment is extended to the current
z value with a slope equal to the midpoint of the current slope range,
and this process is repeated.

with each target window in succession until further progress would
make it empty (see Figure 5c). We then output the line segment
with slope(mlo + mhi)=2 terminating at thez value of the last
control point visited. The endpoint of this segment becomes the
origin of the next segment, and the entire process is repeated. Note
that the midpoint slope rule attempts to center each segment within
the allowable error bounds.

This algorithm is fast, simple to implement, and requires con-
stant storage. Slightly better approximations could be obtained by
doing a least-squares fit once thez values of the control points have
been chosen. However, the basic algorithm satisfies the given error
criteria and generates very good approximations in practice.

3.4 Lookups

Like textures, deep shadows are accessed by applying a reconstruc-
tion and resampling filter to a rectangular array of pixel values. In
our case the pixel values are obtained by evaluating the visibility
functions at a constant depthz. Given a point(x; y; z) at which
to perform the lookup and a two-dimensional filter kernelf , the
filtered shadow value is given by

V (x; y; z) =

P
i;j

wi;jVi;j(z)P
i;j

wi;j

wherewi;j = f(i+ 1

2
� x; j + 1

2
� y) is the filter weight for pixel

(i; j), and the sum is over all pixels within the filter radius.



Evaluating each visibility function requires a search through its
data points to determine which segment contains the givenz value.
This can be done using a linear or binary search, depending on the
number of data points. In our implementation, we take advantage
of the fact that many shadow lookups are often done at nearbyz
values by storing a pointer with each pixel to the most recently ac-
cessed segment. On each lookup we search linearly either forward
or backward from this position in order to reduce the average cost
of visibility function evaluations.

4 Discussion

One of the main advantages of deep shadows over regular shadow
maps is that they support prefiltering. Each deep shadow map pixel
summarizes many individual depth samples in such a way that eval-
uating the visibility function at a givenz value is equivalent to per-
centage closer filtering all of the depth samples within the pixel’s
filter radius (to within the tolerance used for compression). Pre-
filtering is important because accurate shadows require large num-
bers of depth samples, as we saw in Section 2. This is equally true
for both ordinary shadow maps and deep shadow maps.

Although deep shadows do not reduce the number of depth sam-
ples that must be taken from the scene, they greatly reduce the
amount of data that must be accessed during filtering. For example,
recall that in order to compute a shadow of dense hair with an ex-
pected error of 1%, approximatelyN = 2500 samples are needed.
Using a deep shadow map with 250 samples per pixel, we would
need to filter onlyN = 10 pixels to achieve the required accuracy.
Furthermore deep shadows can be mip-mapped (see Section 5.3),
and thus accurate shadows require only a constant number of pixel
accesses even when filter widths are very large.

Prefiltering not only makes shadow lookups faster, but also al-
lows deep shadows to be much smaller than the equivalent high-
resolution depth map. This is an advantage when deep shadow
maps are written, stored, and cached in memory. Note that the ad-
vantages of prefiltering are completely dependent on compression.
If we did not compress the visibility functions at all, then each pixel
would contain the data from all the underlying samples and would
not be any smaller.

Fortunately, at any sampling rate there is an error tolerance
that allows significant compression without compromising shadow
quality. Specifically, recall from Section 2 that shadows of detailed
geometry have an expected error ofO(N�1=2), whereN is the
number of samples per deep shadow pixel. This error is a measure
of the noise inherent in the sampled visibility function. Since there
is no point in preserving noise, this suggests thatO(N�1=2) is a
suitable tolerance for compression. The tolerance we actually use
is 0:25=

p
N , which is about half of the maximum expected noise

magnitude of0:5=
p
N .4

Using this tolerance, we can show that deep shadows are asymp-
totically much smaller than regular shadow maps. Since each visi-
bility function decreases monotonically from 1 to 0 (assuming that
the filter function has no negative lobes), and the function decreases
by at least the compression tolerance at each vertex, the compressed
function can have at mostO(N1=2) vertices. The corresponding
regular shadow map usesO(N) storage for the depth values in each
pixel, and so the deep shadow map must be smaller by at least a fac-
tor of 
(N1=2).

4Recall that the expected error is onlyO(N�3=4) when the shadow
geometry is simple, which suggests that a compression tolerance of
O(N�1=2) is too large in this case. But sinceN must be chosen large
enough to control the noise artifacts in the worst-case pixels, there is little
benefit to compressing more accurately than this.

The compression ratios are even better when the visibility func-
tions are asymptotically piecewise smooth (which is the usual case).
A simple Taylor series argument shows that in this case the com-
pression error decreases quadratically in the number of output ver-
tices, so that functions can be compressed with a tolerance of
O(N�1=2) using onlyO(N1=4) vertices. Thus deep shadow maps
are typically smaller than their regular counterparts by at least a fac-
tor of
(N3=4). This is a substantial advantage when many samples
per pixel are used (sayN = 250).

The main disadvantage of deep shadow maps is that they are sig-
nificantly more expensive to compute than a regular shadow map of
the same pixel resolution (because many more samples per pixel are
taken). This contradicts the conventional assumption that shadow
map generation is cheap [9]. On the other hand, they are typi-
cally no more expensive to compute than a shadow map with the
same number of depth samples, and they are considerably cheaper
to store and access. Note that generating more depth samples is rel-
atively inexpensive in a scanline renderer, since it does not increase
the shading cost.

Another potential issue with deep shadows is bias. Because fil-
tering is performed at a constantz depth, large objects may suffer
from incorrect self-shadowing. Although this artifact also occurs
with normal shadow maps, deep shadows exacerbate the problem
because they encourage the use of large filter widths.

However, it is important to realize that the bias problems are no
worse than they would be for an ordinary shadow map at the same
filter width. The main limitation of deep shadow maps compared
to high-resolution ordinary shadow maps is that the minimum filter
width is larger (because each deep shadow pixel summarizes many
depth samples). However, this can be considered an advantage: It
provides deep shadows with an extra degree of freedom to control
the tradeoff between shadow detail and noise. The deep shadow
resolution should be chosen according to the minimum filter width
desired (i.e. shadow detail), while the number of samples per pixel
should be determined by the maximum acceptable noise. This strat-
egy allows the depth samples that are required only for accuracy
purposes to be represented very compactly, with bias problems that
are no worse than they would be for a regular shadow map of the
same pixel resolution.

5 Implementation Issues

5.1 Incremental Updates

Recall that each visibility function is defined as the weighted av-
erage ofn piecewise linear transmittance functions, according to
equation (1). The na¨ıve way to generate this function is to sort all
of the input vertices and process them inz order, evaluating then
contributing functions at each vertex. Unfortunately this approach
hasO(n2) complexity: there areO(n) input vertices, andO(n)
work is needed to compute the weighted average at each one. This
is quite inefficient when large numbers of samples per pixel are
used.

Instead, we describe anO(n log n) sweep algorithm that has a
constant update cost per vertex. The algorithm is easier to under-
stand if we first suppose that the transmittance functions are piece-
wise constant. In this case, we can efficiently compute the output
function as follows. Atz = 0, the weighted average is easily com-
puted asV (0) = 1. We then process all of the input vertices in
increasingz order, which can be done inO(log n) time per vertex
by storing the next vertex of each transmittance function in a heap.
For every vertex, we update the current sumV by simply subtract-
ing out this transmittance function’s old contribution and adding in
its new contribution. That is,

V 0 = V + wj(�
0

j � �j)



wherewj is the filter weight for the chosen transmittance function,
�j is the old value of this function and� 0j is its new value.

This method can be extended to piecewise linear functions by
using a similar technique to keep track of the output function’s cur-
rent value and slope. The update for each vertex consists of two
steps: First, we extend the output function (using its current posi-
tion and slope) to thez value of the next input vertex, and then we
update the current output slope using the method described above.
(Vertical steps are handled as a special case, by updating the current
position rather than the current slope.)

This technique is much more efficient than computing the
weighted averages directly, and makes the algorithm practical even
when very large numbers of samples per pixel are used. Note that
all of the transmittance functions do not need to be stored simul-
taneously as the deep shadow map is rendered; it is sufficient to
store only the previous several scanlines, as determined by the filter
radius.

5.2 Colored Shadows

Colored shadows are supported by simply encoding a different vis-
ibility function for each color channel (one each for red, green, and
blue). The compression algorithm processes all the channels simul-
taneously, and starts a new segment whenever any of the three func-
tions would exceed its error threshold. The output is a sequence of
tuples(z; VR; VG; VB). Notice that with this representation, three-
channel maps are only twice as large as one-channel maps.

To reduce storage even further, our format allows each pixel
to encode either one or three visibility functions depending on its
needs. If all three channels happen to be the same, we store only
one channel and set a flag indicating that this pixel is monochrome.

5.3 Mip-mapping

Since deep shadow maps are filtered like textures, it is straight-
forward to apply mip-mapping [12]. Starting with the highest-
resolution deep shadow map, each new mip-map level is obtained
by averaging and downsampling the previous level by a factor of
two. Each pixel is defined by taking the average of four visibility
functions, and recompressing the result.

To avoid the accumulation of too much error, the compression
tolerance can be reduced on each successive level. For exam-
ple, if the error threshold is cut if half each time, the total error
will be at most twice that permitted for the highest-resolution map.
This method corresponds to the analysis of Section 4, which sug-
gests that the compression tolerance should beO(N�1=2) in the
number of contributing depth samplesN . The storage per sample
increases somewhat at coarser levels, but since the functions be-
ing compressed are asymptotically piecewise smooth, their com-
pressed size isO(N1=4) (see Section 2). This implies that the
number of vertices per visibility function doubles once for every
two mip-map levels, and that the full mip-map is approximately
1=(1 �p2=4) � 1:55 times as large as the base level (rather than
the4=3 ratio for an ordinary mip-map).

Mip-mapped deep shadows are filtered just like mip-mapped tex-
tures, including anisotropic filters, lerping between levels, etc. [1].

5.4 Tiling and Caching

We store deep shadow maps in a tiled format, similar to those for
textures [8]. This lets us load and cache only the deep shadow map
tiles that are actually accessed.

One important difference is that unlike textures, deep shadow
map tiles and pixels require varying amounts of storage in memory.
To deal with this, our file format includes atile directorythat speci-
fies the starting offset and size of every tile. Similarly, each tile has

a table indicating the starting position and size of every pixel. Tile
caching is handled by providing a fixed number of tile slots; when
a tile fault occurs, the slot chosen for replacement is resized if nec-
essary to hold the incoming tile. In this way, each tile slot grows
to accommodate the largest tile it has seen. (Optionally the tile
slots could also be resized when the incoming tile is significantly
smaller.)

5.5 Motion Blur

It is easy to support motion blur in deep shadow maps by simply
associating a random time with every shadow image sample (and
its corresponding transmittance function). When these samples are
averaged together into visibility functions, they account for the av-
erage coverage over time as well as over the image plane.

While motion blur is also possible with ordinary shadow maps,
it is very expensive because of the large filter widths needed for
adequate anti-aliasing. Deep shadow maps do much of this filtering
in advance, and thus reduce the number of pixels that need to be
accessed for each lookup.

Motion-blurred shadows produced in this way are strictly cor-
rect only when the receiving object is stationary with respect to the
shadow camera. In particular, moving objects cast incorrect shad-
ows onto other moving objects (and onto themselves). This happens
because the deep shadow map effectively blurs an object’s shadow
over the entire shutter interval, allowing one object to cast shadows
onto other objects at a different times. However, even the ability to
cast shadows onto stationary objects is useful, and the results are
often acceptable even when the receiving object is moving.

6 Results

We have implemented deep shadow maps in a highly optimized
scanline renderer that also supports traditional shadow maps. We
present experiments comparing these two techniques in terms of
time and storage space. We also illustrate two additional capabili-
ties of deep shadows: volumetric shadows and inexpensive motion
blur.

Figure 6a shows a ball covered with 50,000 hairs. The individual
hairs are significantly narrower than a pixel, and combine to form
tufts and curls of various densities. The scene is illuminated by
three spotlights, each of which casts shadows.

We have rendered this scene under various conditions to com-
pare the performance of deep shadow maps with traditional shadow
maps. Figure 6b shows a magnified view of the shadow cast by the
hairball, rendered using a512�512 normal shadow map. Shadow
filtering was done using 16 samples per lookup on a jittered grid;
using more samples does not increase the shadow quality due to the
coarse resolution of the underlying shadow map. This image has
obvious noise artifacts that would be unacceptable if animated. In
order to eliminate these artifacts, Figure 6c was rendered using a
4k�4k shadow map with 400 samples per lookup for percentage
closer filtering. The noise artifacts are much improved, but shadow
filtering times were much longer (559 secondsvs.19 seconds). Fig-
ure 6d was rendered using a512�512 deep shadow map with 256
samples per pixel (the same number of depth samples as the pre-
vious case). Even though the deep shadows were much faster (37
seconds) and required only one-sixth the storage space, the shadow
quality is actually slightly better than the4k�4k shadow map im-
age (because deep shadows consider every depth sample rather than
randomly selecting a subset of them for filtering).

Figure 7 summarizes the results of similar tests at various max-
imum noise levels. Each row compares a deep shadow map to a
normal shadow map with the same number of depth samples; in the
deep shadow this was achieved by holding the resolution constant at
256�256 and adjusting the number of samples per pixel (as shown



(a) Ball with 50,000 hairs (b) 512�512 Normal shadow map (c) 4k�4k Normal shadow map (d) 512�512 Deep shadow map

Figure 6: Hair ball and magnified shadows demonstrating noise from various methods.

Time (sec) Space (MB)
Samples Error Normal Deep Normal Deep

2�2 25.00 % 34 45 0.34 0.49
4�4 12.50 % 39 46 1.34 0.79
8�8 6.25 % 60 45 5.34 1.18

16�16 3.12 % 145 46 21.34 1.53
32�32 1.56 % 554 46 85.34 1.84
64�64 0.78 % 2414 45 341.34 2.20

Figure 7: Comparison of deep shadows and normal shadows for the
scene in Figure 6. The error column shows the expected error0:5=

p
N

associated with the given sampling density.

in the first column). This column also represents the number of
samples used for normal shadow map filtering, chosen to achieve
the same accuracy as the deep shadow map at its minimum filter
size. The second column shows the corresponding worst-case ex-
pected error level of0:5=

p
N ; the deep shadows were compressed

using an error tolerance of half this amount. All tests used the same
absolute filter width, equal to the pixel size of a256�256 shadow
map. The shadow evaluation times were measured by rendering an
image using each technique and subtracting the time for an image
without shadows.

Observe that normal shadow maps become much more expen-
sive as the error threshold decreases, while the deep shadow map
filtering times are virtually constant. Normal shadow maps are only
faster at4�4 and fewer samples, sampling rates that are much too
low for use in animations. In our implementation deep shadows
have not been as extensively optimized as normal shadow maps, and
it is likely that further speed improvements will be found. Shadow
generation time was similar for both methods and is not shown; the
compression overhead for deep shadows was negligible.

Notice that deep shadow maps grow very slowly in size as the er-
ror threshold decreases. The deep shadow sizes do not include mip-
map overhead, which would make them approximately 1.5 times
larger (see Section 5.3). Figure 8 plots the growth of the deep
shadow map size with respect to the number of depth samples per
pixel. About 40% of the pixels in this deep shadow map contain
hair, while the rest contain simple geometry. Notice that the aver-
age number of vertices per compressed visibility function closely
matches theO(N1=4) behavior predicted in Section 4.

Figure 9 shows how both methods perform when a fixed accu-
racy is desired, but progressively larger filter widths are applied. In
this case the number of filter samples for normal shadow maps can
be held fixed. A single shadow map of each type was rendered to
support the smallest desired filter size, and the same shadow maps
were used to render progressively larger blurs. The filtering time
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Figure 8: Theoretical and observed growth rates of deep shadow maps.
(The theoretical growth rate ofO(N1=4) is taken from Section 4.)
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Figure 9: Filtering time as a function of filter width (expressed as a
fraction of the shadow map size). While both methods access a constant
number of pixels per lookup, larger filter widths result in worse cache
coherence for normal shadow maps and slightly better cache coherence
for deep shadow maps.

for the normal shadow map grows rapidly with the amount of blur,
even though the number of filter samples was held constant at8�8.
This can be attributed to worse cache performance as the filter re-
gion spans larger and larger portions of the shadow map. With the
deep shadow map, on the other hand, mip-mapping allows the filter-
ing times to be virtually constant. (In theory the cache performance
of deep shadows is actually better at very large filter widths, since
the lower-resolution mip-map levels contain fewer pixels.)

Figure 10 illustrates the importance of self-shadowing to the ap-
pearance of volumetric objects, while Figure 11 demonstrates that
a single deep shadow map can be used for both volumetric and sur-
face shadows. Finally, Figure 12 demonstrates the artifacts that oc-
cur when shadows are not motion blurred; this effect appears as
strobing when animated. Unlike normal shadow maps, deep shad-
ows allow motion blur to be added without incurring an extra filter-
ing cost.



Figure 10: Cloud with and without self-shadowing.

Figure 11: A cloud with pipes. Notice the shadows cast from surfaces
onto volumetric objects and vice versa. A single deep shadow map
contains the shadow information for the cloud as well as the pipes.

7 Conclusion and Future Work

A nice feature of deep shadow maps is their generality: they support
ordinary surfaces, volumetric objects, dense fur, and even motion
blur, effects that would normally be handled using different tech-
niques. With deep shadows they can all be combined in a single
compact data structure, and rendered efficiently under a wide range
of viewing and filtering conditions.

Carrying this idea further, deep shadow maps are an attractive
representation for arbitrary volumetric data: fog densities, approx-
imate illumination information, and so on. In this context, a deep
shadow map can be viewed as a two-dimensionalfunction imageof
piecewise linear one-dimensional functions. This representation is
sparse inz, which allows it to take advantage of any smoothness
in the raw data, while it is discrete inx andy (and allows binary
search inz) in order to facilitate fast lookups. The domain can
easily be mapped to a frustum or an orthographic space, and has
the advantage of having an arbitrary extent and resolution in one of
its dimensions. Three-dimensional filtering would be an easy ex-
tension, since the adjacent data values inz can be found without
searching and the representation is sparse in this direction.

Although the function image representation may not achieve
quite as much compression as a three-dimensional octree or wavelet
expansion, and it is not quite as fast to index as a three-dimensional
grid, it is an excellent compromise that retains most of the benefits
of both of these extremes. We expect that deep shadow maps and
their underlying representation will find other interesting applica-
tions in the future.

Figure 12: Rapidly moving sphere with and without motion blur.
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