Introduction

Many sound synthesis examples in animation model moving objects
impacting the ground. During object-ground collisions, three types of
sound are emitted:

e Object emits ringing sound from resonant modes
« Object emits a transient acceleration noise upon impact
e Ground emits a transient sound upon impact

Previous works [3][4][5] model the first two sounds and omit the
third. Through physical simulation, we study the relative importance of
the ground sound. Our work:

o Studies how material properties affect ground sound relevance

« Proposes an interactive method to synthesize ground sound

e Proposes an “acoustic shader” for finite-difference time-domain
(FDTD) simulations to incorporate ground sound

Background: Ground Vibration Model

We model the ground surface vibration by solving Lamb’s problem, and then we
use it to drive sound propagation into the air.

Lamb’s problem statement: Given an elastic halfspace (the ground), find the sur-
face displacement (un(r,t)) in response to an instantaneous point load (f(t)).
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Pekeris[12] derived an analytical expression for the displacement. Unfortunate-
ly, it has a singularity at each wavefront. In this figure, the solution at 1 m away
is in blue, while our temporal regularization is labeled in the other colors.

The final vertical displacement response u (7, t) is the following: . .
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Method

Temporal Regularization: To smooth the singularities, we convolve the solution
in time with a fourth-order smoothed delta (f ):

Cs€

Tt (8)
fe(t) = 2ge(t) — g2(1). 9)

QE(t) — 7_‘_(

We chose f_so that:

o It approximates a delta as € > 0,

o It approximates the Hertzian half-sine contact force profile,

o It is smooth enough to eliminate the singularities, and

o The final result is a closed-form expression, for quick evaluation.
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Impulse Profile: Our smoothed delta approximates the Hertz half-sine contact

force, setting epsilon based on the contact timescale:
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where ag, m, £, J, v, are the object’s local radius of curvature,
mass, effective stiffness, impulse, and normal impact velocity.

(11)

Ground Sound Synthesis: We use the Rayleigh Integral (Eq 12) for direct sound
synthesis in our material properties studies, and we add our acoustic shader to
the FDTD wavesolver in [9] for animation scenarios.
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Results: Validation and Sound Synthesis
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Model Validation: The regularized solution converges to the ideal as ¢ > 0.
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Ideal ball expression: (16)

Sound Synthesis:

Steel Ball (Ideal), Wood Floor (Rayleigh) Steel Ball, Concrete Ground (FDTD)
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Results: Material and Listening Angle Dependance

Consider a ball dropped from a fixed height onto the ground.
o Listening Angle (0): Observe in this plot that overhead listening angles receive
more ball sound, while lower elevation angles receive more ground sound.
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» Ball density (p,), ground stiffness (E): For fixed initial drop height, the ground
sound amplitude is proportional to p /E, while the ball sound is unaffected. See

e Ground speed of shear waves (c): The ball sound does not depend on ¢, while
the ground amplitude increases linearly with ¢_until a knee threshold c..

Theoretical Relative Intensities (dB) of Ground to Ball Sound, Measured Overhead
ball ground Steel Ceramics | Granite | Concrete | Wood | Plastic Soil Wax
Steel -30.25 -21.30 -18.94 -11.83 -6.12 4.15 19.06 19.58
Ceramics -39.63 -30.69 -28.33 -21.22 -15.51 -5.23 9.68 10.19
Granite -39.73 -30.78 -28.43 -21.32 -15.60 -5.33 9.58 10.10
Concrete -41.21 -32.27 -29.91 -22.80 -17.09 -6.81 8.09 8.61
Wood -50.76 -41.81 -39.46 -32.34 -26.63 | -16.36 -1.45 -0.93
Plastic -47.67 -38.73 -36.37 -29.26 -23.55 | -13.27 1.64 2.15
Soil -45.65 -36.71 -34.35 -27.24 -21.53 | -11.25 3.65 4.17
Wax -50.35 -41.41 -39.05 -31.94 -26.22 | -15.95 -1.04 -0.53

Positive values indicate the ground was louder than the ball (teal). Other values above the most sensitive
JND level of -13 dB [19] are in light orange.

Theoretical Relative Intensities (dB) of Ground to Ball Sound, 5° above Ground

ball ground Steel Ceramics | Granite | Concrete | Wood | Plastic Soil Wax
Steel -17.43 -8.48 -6.13 0.99 6.70 16.97 31.88 | 32.40
Ceramics -26.81 -17.87 -15.51 -8.40 -2.69 7.59 22.49 | 23.01
Granite -26.91 -17.97 -15.61 -8.50 -2.78 7.49 22.40 | 2291
Concrete -28.40 -19.45 -17.10 -9.98 -4.27 6.00 | 20.91 21.43
Wood -37.94 -29.00 -26.64 -19.53 -13.81 -3.54 11.37 11.88
Plastic -34.85 -25.91 -23.55 -16.44 -10.73 -0.45 14.45 14.97

Soil -32.83 -23.89 -21.53 -14.42 -8.71 1.57 16.47 16.99

Wax -37.53 -28.59 -26.23 -19.12 -13.41 -3.13 11.77 12.29

Discussion and Conclusion

We found the following three properties affect ground sound importance:

o Object density (denser objects > louder ground)

« Ground stiffness (softer grounds > louder ground sound)

o Listening angle (lower elevation angles > louder ground )

This is only important when the object’s modal ringing noise, which is louder in
large objects, is not audible.

Future work directions:

« Model resonant modes in floors with finite depth and buildings

 Regularize the response to tangential forces incurred by contact friction

o Derive an analytical approximation for the final sound based on listening angle



