

Introduction

Many sound synthesis examples in animation model moving objects impacting the ground. During object-ground collisions, three types of sound are emitted:

- Object emits ringing sound from resonant modes
- Object emits a transient acceleration noise upon impact
- Ground emits a transient sound upon impact

Previous works [3][4][5] model the first two sounds and omit the third. Through physical simulation, we study the relative importance of the ground sound. Our work:

- Studies how material properties affect ground sound relevance
- Proposes an interactive method to synthesize ground sound
- Proposes an "acoustic shader" for finite-difference time-domain (FDTD) simulations to incorporate ground sound

Background: Ground Vibration Model

We model the ground surface vibration by solving Lamb's problem, and then we use it to drive sound propagation into the air.

Lamb's problem statement: Given an elastic halfspace (the ground), find the surface displacement (un(r,t)) in response to an instantaneous point load (f(t)).

air
$$f(t)$$
 $u_n(r,t)$

ground Pekeris[12] derived an analytical expression for the displacement. Unfortunately, it has a singularity at each wavefront. In this figure, the solution at 1 m away is in blue, while our temporal regularization is labeled in the other colors.

References

[3] Changxi Zheng and Doug L James, "Rigid-body fracture sound with precomputed soundbanks," in ACM Transactions on Graphics. ACM, 2010, vol. 29, p. 69. [4] Changxi Zheng and Doug L James, "Toward high-quality modal contact sound," in ACM Transactions on Graphics. ACM, 2011, vol. 30, p.

On the Impact of Ground Sound

Ante Qu and Doug L. James Stanford University

Method

Temporal Regularization: To smooth the singularities, we convolve the solution in time with a fourth-order smoothed delta (f_c) :

$$g_{\epsilon}(t) = \frac{c_s \epsilon}{\pi (c_s^2 t^2 + \epsilon^2)};$$

$$f_{\epsilon}(t) = 2g_{\epsilon}(t) - g_{2\epsilon}(t).$$

We chose f_s so that:

- It approximates a delta as $\varepsilon \rightarrow 0$,
- It approximates the Hertzian half-sine contact force profile,
- It is smooth enough to eliminate the singularities, and
- The final result is a closed-form expression, for quick evaluation.

Impulse Profile: Our smoothed delta approximates the Hertz half-sine contact force, setting epsilon based on the contact timescale: $4\epsilon = c_s t_c = 2.87 c_s \left(\frac{m^2}{a_0 E^{*2} v_n}\right)^{1/5},$

> where a_0, m, E^*, J, v_n are the object's local radius of curvature, mass, effective stiffness, impulse, and normal impact velocity.

Ground Sound Synthesis: We use the Rayleigh Integral (Eq 12) for direct sound synthesis in our material properties studies, and we add our acoustic shader to the FDTD wavesolver in [9] for animation scenarios.

$$p(\mathbf{r}, z, t) = \rho_0 \int_{\mathbb{R}^2} \frac{a_\epsilon(\mathbf{r}', t - R'/c_0)}{2\pi R'} d\mathbf{r}', \qquad (12)$$

Results: Validation and Sound Synthesis

Model Validation: The regularized solution converges to the ideal as $\varepsilon \rightarrow 0$.

Acknowledgements

We acknowledge support from the National Science Foundation (DGE-1656518), the Toyota Research Institute, and Google Cloud Platform compute resources.

(8)	

(9)

- ---- $\varepsilon = 0.02 \text{ m}$ ---- $\varepsilon = 0.10 \text{ m}$ ---- $\varepsilon = 0.25 \text{ m}$

 - **0.2** time (s) (11)

Results: Material and Listening Angle Dependance

Consider a ball dropped from a fixed height onto the ground. • Listening Angle (θ): Observe in this plot that overhead listening angles receive more ball sound, while lower elevation angles receive more ground sound.

Theoretical Relative Intensities (dB)

) = = = =			-)		
ground ball	Steel	Ceramics	Granite	Concrete	Wood	Plastic	Soil	Wax
Steel	-30.25	-21.30	-18.94	-11.83	-6.12	4.15	19.06	19.58
Ceramics	-39.63	-30.69	-28.33	-21.22	-15.51	-5.23	9.68	10.19
Granite	-39.73	-30.78	-28.43	-21.32	-15.60	-5.33	9.58	10.10
Concrete	-41.21	-32.27	-29.91	-22.80	-17.09	-6.81	8.09	8.61
Wood	-50.76	-41.81	-39.46	-32.34	-26.63	-16.36	-1.45	-0.93
Plastic	-47.67	-38.73	-36.37	-29.26	-23.55	-13.27	1.64	2.15
Soil	-45.65	-36.71	-34.35	-27.24	-21.53	-11.25	3.65	4.17
Wax	-50.35	-41.41	-39.05	-31.94	-26.22	-15.95	-1.04	-0.53

Positive values indicate the ground was louder than the ball (teal). Other values above the most sensitive JND level of -13 dB [19] are in light orange.

(1D)

Theoretical Relative Intensities (dB) of Ground to Ball Sound, 5° above Ground								
ground ball	Steel	Ceramics	Granite	Concrete	Wood	Plastic	Soil	Wax
Steel	-17.43	-8.48	-6.13	0.99	6.70	16.97	31.88	32.40
Ceramics	-26.81	-17.87	-15.51	-8.40	-2.69	7.59	22.49	23.01
Granite	-26.91	-17.97	-15.61	-8.50	-2.78	7.49	22.40	22.91
Concrete	-28.40	-19.45	-17.10	-9.98	-4.27	6.00	20.91	21.43
Wood	-37.94	-29.00	-26.64	-19.53	-13.81	-3.54	11.37	11.88
Plastic	-34.85	-25.91	-23.55	-16.44	-10.73	-0.45	14.45	14.97
Soil	-32.83	-23.89	-21.53	-14.42	-8.71	1.57	16.47	16.99
Wax	-37.53	-28.59	-26.23	-19.12	-13.41	-3.13	11.77	12.29

Discussion and Conclusion

We found the following three properties affect ground sound importance: • Object density (denser objects \rightarrow louder ground) • Ground stiffness (softer grounds \rightarrow louder ground sound) • Listening angle (lower elevation angles \rightarrow louder ground) This is only important when the object's modal ringing noise, which is louder in

- large objects, is not audible.

Future work directions:

- Model resonant modes in floors with finite depth and buildings

Paper and examples online at graphics.stanford.edu/papers/ground/

• Ball density (ρ_h), ground stiffness (E_f): For fixed initial drop height, the ground sound amplitude is proportional to ρ_{μ}/E_{ρ} , while the ball sound is unaffected. See • Ground speed of shear waves (c_{c}): The ball sound does not depend on c_{c} , while the ground amplitude increases linearly with c_{i} until a knee threshold c_{i} .

• Regularize the response to tangential forces incurred by contact friction • Derive an analytical approximation for the final sound based on listening angle

^[5] Sota Nishiguchi and Katunobu Itou, "Modeling and rendering for virtual dropping sound based on physical model of rigid body," Proc. of

the 21st Int. Conf. on Digital Audio Effects (DAFx-18), 2018. [9] Jui-Hsien Wang, Ante Qu, Timothy R Langlois, and Doug L James, "Toward wave-based sound synthesis for computer animation," ACM Transactions on Graphics. ACM, 2018, vol. 37, no. 4, pp. 109.

^[12] CL Pekeris, "The seismic surface pulse," *Proc. of the natl. academy of sciences of the United States of America*, vol. 41, no. 7, pp. 469, 1955. [19] Marshall Long, "3 - human perception and reaction to sound," in Architectural Acoustics (Second Edition), pp. 81 – 127. Academic Press, Boston, 2014.