
Interactive k-D Tree GPU Raytracing

Daniel Reiter Horn Jeremy Sugerman Mike Houston Pat Hanrahan

Stanford University �

Abstract

Over the past few years, the powerful computation rates and
high memory bandwidth of GPUs have attracted e�orts to
run raytracing on GPUs. Our work extends Foley et al.'s
GPU k-d tree research. We port their kd-r estar t algorithm
from multi-pass, using CPU load balancing, to single pass,
using current GPUs' branching and looping abilities. We
intro duce three optimizations: a packetized formulation, a
technique for restarting partially down the tree instead of at
the root, and a small, �xed-size stack that is checked before
resorting to restart. Our optimized implementation achieves
15 - 18 million primary rays per secondand 16 - 27 million
shadow rays per secondon our test scenes.

Our system also takes advantage of GPUs' strengths at
rasterization and shading to o�er a mode where rasterization
replaceseye ray sceneintersection, and primary hits and lo-
cal shading are produced with standard Direct3D code. For
1024x1024renderings of our sceneswith shadows and Phong
shading, we achieve 12-18 frames per second. Finally , we in-
vestigate the e�ciency of our implementation relativ e to the
computational resourcesof our GPUs and also compare it
against conventional CPUs and the Cell processor, which
both have been shown to raytrace well.

CR Categories: I.3.1 [Computer Graphics]: Hardware
Architecture|Graphics processorsI.2.2 [Computer Graph-
ics]: Raytracing|Systems

Keyw ords: Programmable Graphics Hardware, Data
Parallel Computing, Stream Computing, GPU Computing,
Brook

1 Intro duction

Raytracing is a workload with heavy computational require-
ments, but abundant parallelism. As a result, researchers
have explored many novel custom and emerging architec-
tures in pursuit of interactivit y [Purcell et al. 2002; Woop
et al. 2005; Benthin et al. 2006]. Our work extends the work
of Foley et al. [2005] with algorithmic improvements and
modi�cations for the new capabilities of current GPUs.

In their work, Foley et al. adopted k-d tree acceleration
structures for GPU raytracing by intro ducing two stack-free
traversal algorithms, but identify their performance as un-
competitiv e with optimized CPU implementations. Our im-
plementation improves theirs by replacing their multi-pass
approach with a single pass approach relying on the recent
addition of looping and branching functionalit y to GPUs.

� f danielrh, yoel, mhouston, hanrahang@graphics.stanford.edu

We add three major enhancements to their kd-r estar t algo-
rithm: packetization, push-down, and shor t-stack. Packe-
tization combines CPU ray packet ideas [Wald et al. 2001]
with restart, and takes advantage of the GPU's higher e�-
ciency running four-wide SIMD code. push-down localizes
rays to the sub-tree they overlap instead of always restarting
from the tree root. shor t-stack adds a small, �xed-size stack
to maintain the last N pushes,and falls back to restarting on
under
o w. The net impact is more than an order of mag-
nitude performance improvement over Foley et al. and a
traversal algorithm that in our scenesvisits fewer than 3%
more nodes as compared with the conventional stack-based
approach.

Our system also seeks to exploit the GPU's natural
strengths by generating primary hits via rasterization and
computing local shading using standard programmable frag-
ment shading, and traces rays for secondary e�ects such as
shadows and specular bounces. For comparison with prior
work and other architectures, we will also present results
from casting primary rays with our system. Our system
is implemented with a combination of Brook [Buck et al.
2004] for the computational kernels and Direct3D 9 [Mi-
crosoft 2003] for rasterization, shading, and display. We use
ATI's CTM [ATI 2006b] toolkit to work around driv er com-
piler bugs and gather statistics, but all of our GPU shader
code is standard pixel-shader 3.0. On an ATI X1900 XTX
[ATI 2006a],our 1024x1024sceneswith shadows and Phong
shading render at 12-18 frames per second.

Finally , we analyze the performance of our imple-
mentation and compare it with work on x86 CPUs
and the Sony/T oshiba/IBM Cell Broadband Engine
ProcessorTM (Cell) [Benthin et al. 2006]. We identify the
primary bottlenecks and structural ine�ciencies of our envi-
ronment aswell ashow architectural di�erences changesome
of the algorithmic options.

2 Related Work

There has been a signi�can t interest in studying raytrac-
ing on parallel architectures. Benthin et al. [2006] designed
a bounding volume hierarchy (BVH) raytracer on the Cell
architecture using a software-managed cache to save band-
width and software threads to hide the latency on a cache
miss. Their raytracer performs nearly as well per core and
per clock as a commodit y x86, resulting in 60 million pri-
mary rays per second and 21 million primary plus shadow
rays per second on the conference scene. This gives them
clock-for-clock a 6.5x performance advantage over a single
core x86. Sugerman et al. [2006] implemented a k-d tree
raytracer on the Cell with a software managed cache, but
without frustum culling or software threads. This version
achieves17.4 million primary rays per secondon the Robots
test scene,the same performance as the GPU raytracer we
present here.

There also has been research on custom raytracing ar-
chitectures. A recent example is the SaarCOR processor
[Schmittler et al. 2002]. This chip features dedicated k-d tree

traversal and triangle intersection units and a �xed func-
tion shading unit. The RPU [Woop et al. 2005] improved
upon the SaarCOR by enabling programmable shading and
demonstrating an FPGA implementation. The initial RPU
protot ype operating at 66MHz provides comparable perfor-
mance to an Intel P4 running at 2.66GHz. Unfortunately ,
this is not a commodit y processor,nor is a full speed ASIC
version available.

Raytracing on graphics hardware has already drawn sig-
ni�can t research interest. Purcell et al. [2002] designed the
�rst raytracer on a GPU to utilize an acceleration structure,
in their casea uniform grid. Foley et al. [2005]applied a k-d
tree acceleration structure to GPU raytracing and showed,
that on graphics hardware, there are scenesfor which a k-
d tree yields far better performance than a uniform grid.
Given the lack of addressable temporary storage within a
fragment shader, the fastest programmable unit available on
the GPU, Foley et al. had to develop two stackless k-d tree
traversalmethods. Lik ewiseThrane and Simonsen[2005]de-
veloped a �xed-order bounding-volume traversal method for
ray intersection on the GPU to obviate the needsfor a stack,
and Carr et al. [2006]useda similar BVH structure to create
a raytracer suited to dynamic geometry. However, none of
the previous GPU raytracing e�orts have beenable to signif-
icantly outperform, ray for ray, the performance of compara-
ble single-threaded CPU implementations for arbitrary test
scenes.This has beendue to short instruction limits forcing
segmentation of program code, expensive memory transfers
between those segments and lack of �ne-grained conditional
execution. As the architectures contin ue to mature, these
limitations have slowly becomeless severe, which allows us
to exploit new algorithmic changes.

3 Algorithm

A typical k-d tree traversal algorithm takes a k-d tree, a
binary tree of axis aligned splitting planes that partition
space,and a ray as input and returns the �rst triangle the
ray intersects. Traversal walks the ray through the tree so
that it visits leaf nodes,and hencetriangles, in front to back
order. Rather than run recursively, optimized implementa-
tions maintain a stack data structure. When a ray passes
through both sides of a splitting plane, the \far" subtree is
pushed onto the stack and the algorithm �rst traversesthe
\close" subtree. Wald's thesis [Wald 2004]has a detailed de-
scription of the process,summarized in psuedocode below:

stack.push(root,sceneMin,sceneMax)
tHit=infinity
while (not stack.empty()):

(node,tMin,tMax)=stack.pop()
while (not node.isLeaf()):

a = node.axis
tSplit = (node.value - ray.origin[a]) / ray.direction[a]
(first, sec) = order(ray.direction[a], node.left, node.right)
if(tSplit � tMax or tSplit < 0)

node=first
else if(tSplit � tMin)

node=second
else

stack.push(sec, tSplit, tMax)
node=first
tMax=tSplit

for tri in node.triangles():
tHit=min(tHit,tri.Intersect(ray))
if tHit < tMax:

return tHit //early exit
return tHit

As explained in previous work by Foley et al. [2005], the
stack requirement of the standard k-d tree algorithm adapts
poorly to GPUs. The recently added abilit y for GPU's
to perform discontin uous writes to memory bypassesany
caching and is vastly slower than cached writes on a CPU.
Even if a stack were fast enough, its resource requirements
would be impractical: enough memory for the deepest ray's
needs multiplied by the total number of rays traversing in
parallel. It is possible to render a subset of the rays at a
time and reusea stack bu�er, but GPUs only run e�cien tly
with thousands of rays traversing at once.

Instead, Foley et al. intro duce two stackless traversal al-
gorithms: kd-r estar t and kd-backtr ack. Backtracking has
tigh ter asymptotic bounds, but requires large auxiliary data
structures (a six word bounding box per node in addition to
the single word splitting plane) and correspondingly band-
width hungry backtrack logic during traversal. Additionally
there is no known method to add packets to the backtracking
algorithm. On the other hand, kd-r estar t actually requires
less code and no extra data structures. As shown in Ap-
pendix A.2, whenever a ray emergesfrom a leaf having hit
nothing, the algorithm just steps the current ray forward by
updating tMin, the variable marking the origin of the ray,
to its previous endpoint, tMax. Then it sets the endpoint,
tMax, to the boundary of the sceneand restarts traversal
from the top of the tree. Becauseof its simplicit y and the po-
tential to packetize it, we focused on improving kd-r estar t .
Our improvements avoid visiting most of the extra nodes
that restart would visit when compared to a standard k-d
tree algorithm.

3.1 Packets

One of the most signi�can t innovations in interactiv e ray-
tracing was the intro duction of packets [Wald et al. 2001].
In their simplest form, packets trace four rays at a time to
take advantage of the four-wide SIMD instructions on mod-
ern CPUs. Beyond that, however, adjusting the packet size
allows the programmer to trade-o� amortizing the control
and bookkeeping of traversal against the extra nodesvisited
by forcing all the rays in each packet to travel together. Ad-
ditionally , further optimizations such asfrustum culling even
save ray-triangle intersections and becomepossiblewhen us-
ing packets [Reshetov et al. 2005].

Our �rst kd-r estar t modi�cation is the intro duction of
packets. The signi�can t complication beyond standard pack-
etization is that restart requirements constrain us from freely
modifying tMax when individual rays go inactiv e. To step
the ray forward at the restart point, we set the new tMin to
the previous step's tMax. With packets, we add a liv eness
mask to each ray so that the mask is always re�ned basedon
whether that ray should traverse a given child. Only upon
restarting is the liv enessmask reinitialized from tMin and
tMax. Thus it is straightforw ard to add packetization to the
standard kd-r estar t algorithm. Just lik e conventional im-
plementations, packets naturally increase our utilization of
math units and dilute the per-ray impact of the conditional
logic.

3.2 Push-Down

Often the intersection of a ray with the scenevolume only
passesthrough a subtree of the entire k-d tree. Instead of
restarting at the root, such rays only need to back up to the
node that is the root of the lowest subtree enclosing them.
Thus, as a ray descendsfrom the root, so long as it only

Figure 1: Our test scenes:Cornell Box, Robots, Kitc hen, ConferenceRoom.

encounters nodes whose splitting planes it does not cross
(i.e. it remains strictly in the near subtree or strictly in the
far subtree), it is safeto contin ue moving the restart location
down. Becausethe traversal algorithm already has separate
casesto handle rays strictly in one child and rays that span
both children, implementing this optimization, which we call
push-down, is straightforw ard.

The major limitation of this optimization is that it is no
longer bene�cial as soon as traversal encounters the �rst
node a ray could conceivably span, regardlessof how unlik ely
the ray is to make it to the far side before terminating. That
makes the bene�ts of push-down somewhat fragile. Rays
from a camera or light whose frustum happens to cross one
of the early splitting planes will get no bene�t and pay a
slight penalty for the extra bookkeeping. Additionally , it
only eliminates traversal stepsnear the top of the tree, which
are the ones most shared and coherent across neighboring
rays.

3.3 Short-Stack

Foley et al. [2005] assert that a stack requires storage pro-
portional to the maximum stack depth times the number of
rays. However, we observe that it is possible to use a stack
of bounded size, and fall back to a stackless algorithm if
that stack should under
o w. Thus, shor t-stack intro duces
a small, �xed-size stack whose manipulation is modi�ed in
two ways. Pushing a new node when the stack is full is ac-
ceptable, and discards the bottom-most entry . Popping from
an empty stack no longer terminates traversal, but instead
triggers a restart. E�ectiv ely, the stack serves as a cache
that can be used to trade-o� the amount of per-ray state
versus frequency of restarts.

shor t-stack is complementary to push-down, but it is
more robust and useful. The stack only degrades once it
�lls without the sensitivit y to ray directions that plagues
push-down. Also, restarting has the most overhead when a
ray is near the bottom of the tree and must restart to access
a neighbor node. shor t-stack eliminates the overhead of any
restarts that would have happened within N pushes of the
bottom of the tree. push-down advancesthe restart point to
the node that would have been the �rst entry on a complete
stack. So, by the time a restart occurs with push-down,
the number of extra nodes traversed is relativ ely small. Fi-
nally, converting traversal from single rays to ray packets
often prompts a few extra traversals near the leaves as the
packet spreads out relativ e to node size. The small stack
captures these extra traversals well, whereas the standard
restart algorithm would visit many extra nodes.

App endix A shows the step by step modi�cations begin-

ning with the original k-d tree code (A.1) and progressing
to the version with all our optimizations applied (A.5).

4 Implementation

We implemented the optimizations from Section 3 in a ren-
derer for an ATI X1900XTX GPU. While the renderer can
trace rays, it can also rasterize and shade lik e a traditional
3D GPU application. Our implementation uses the Brook
[2004] runtime and stock Direct3D 9.0c, and the GPU frag-
ment programs for raytracing are written in Brook or pixel-
shader 3.0 assembly and run with version 6.7 of the ATI
Catalyst driv ers. For the non-packetized ray-sceneintersec-
tion, each GPU fragment traces a single ray through the
scene. For the packetized case, each fragment traces four
rays at once. Unfortunately , every driv er version tried mis-
compiles some of our raytracing fragment programs when
translating them to the board's nativ e assembly, and no ver-
sion produced a working shor t-stack program for this GPU.
As a workaround, we used ATI's CTM toolkit to compile
o�ine and hand-patched the assembly and implemented our
system with an option to pass the altered shaders directly
to the GPU.

We selectedthe parameters of our implementation to best
suit our hardware. The k-d tree is built using a surface area
heuristic [Havran and Bittner 2002], but with an estimated
cost of triangle intersection equal to the estimated cost of
traversing one node. This is becausethe estimated cost of
intersection is equal to the cost of traversal based on in-
struction counts and timing numbers of our implementation.
Direct3D 9.0c limits the numbers of available resourcesper
fragment to 32 four-wide
oating point registers, so we can
only �t four rays per packet with a three entry stack.

Our system renders as follows: we construct a vertex
bu�er and texture containing the scenegeometry, and tex-
tures with the k-d tree nodes and material properties of the
primitiv es. We rasterize the sceneand produce a bu�er of
hits using a shader that pulls the (x, y, z) location from
the rasterizer and depth bu�er and computes the incom-
ing direction from the camera parameters. Alternativ ely, we
can rasterize a single rectangle the size of the requested im-
agewith programs bound to generateand intersect eye rays
to produce raytraced initial hits for comparison. From this
point, the renderer generatesand traces shadow or specular
rays as appropriate. For shadow rays, it loops through each
light and runs multiple passesthat generatesa shadow ray
for each hit, intersect that ray against the k-d tree, and com-
putes local Phong shading for the hits not in shadow. For
specular rays, it runs passeswhich generatebounce rays, in-

Shadow Shadow 1 Bounce 1 Bounce
Single Packet Single Packet

Cornell Box 18.7 28.1 19.6 27.5
Kitc hen 14.3 18.3 8.3 8.6
Robots 10.0 12.1 5.2 6.6
Conference 12.1 14.2 6.0 6.1

Table 1: Frame rates (fps) rendering our sceneswith shadows
or with a specular bounce at 1024x1024. Primary hits are
generated via rasterization of triangles.

tersects them against the k-d tree, and producesa new bu�er
of hits. These hits can be Phong shaded and accumulated,
with weights, into the frame bu�er location that generated
the initial bounce, and they can be fed back into the same
sequenceof shadersto generate further rays.

Currently , our implementation is built to favor pluggabil-
it y and simplicit y over end to end performance, and could
be optimized in a number of ways that we addressin Section
6. However, it is important to emphasizethat local shading
is intentionally kept distinct from ray generation or intersec-
tion. This allows local shadersto be written very similarly to
existing GPU shadersand run correspondingly e�cien tly .

5 Performance

We evaluated our system with an ATI Radeon X1900 XTX
512MB [ATI 2006a]running with a 2.4 GHz Core2 Duo [In-
tel 2006]. We con�gured the board to run with Catalyst 6.7
driv ers and the full 650 MHz ALU clock and 750 MHz mem-
ory clock it usesfor fullscreen applications. We tested with
1024x1024 images of the four scenesshown in Figure 1: a
trivial Cornell Box with 32 triangles, the robots and kitc hen
scenesfrom Foley et al. [2005]with 71,708and 110,561trian-
glesrespectively, and the conferenceroom scenewith 282,801
triangles from Benthin et al. [2006].

5.1 End-to-End Performance

Table 1 lists the speed of our implementation at render-
ing complete images including either shadows or specular
bounces. While our shaders for copying rasterizer output
into ray tracing and shading ray hits are unoptimized and
designedfor
exibilit y, ray-sceneintersection still dominates
rendering time. The packet tracer does signi�can tly better
for the shadow images, but packets are nearly performance
neutral for one specular bounce.

5.1.1 Primary and Shadow Rays

In order to evaluate our improvements separately and com-
pare against prior work, we rendered using primary rays in-
stead of rasterization and measuredthe raw ray-sceneinter-
section rate as we applied our optimizations. The results are
laid out in Table 2 and follow roughly the samebehavior for
primary and shadow rays.

As predicted in Foley et al. [2005], replacing the multi-
pass implementation with a single pass looping implemen-
tation provided a large increase in performance. Our GPU
has 3.75x the computational resourcesof theirs, but our un-
optimized, single-passrestart implementation is more than
25 times as fast for the same scenes.Our algorithmic opti-
mizations do not deliver comparable improvements, but still
improve our performance by a combined 65 - 130 percent.

Four-wide ray packets per fragment are as relevant on this
GPU ason CPUs, asboth architectures provide 4-way SIMD

0 2 4 6 8 10

of bounces

0

5

10

M
ra

ys
/s

ec

Kitchen Packet
Conference Packet
Robots Packet

Kitchen Single
Conference Single
Robots Single

Figure 2: Performance of specular bounces,with and with-
out packets. As the number of bounces increases,the rays
divergein execution and performance decreases.Eventually ,
maximal divergence causesperformance to become nearly
constant.

instructions. While the X1900 can pair two scalar operations
per pipe per clock, it is still only half as e�cien t as having
a complete four-wide instruction.

push-down o�ers a small boost to three of the scenes,but
not for the kitc hen. In the kitc hen, the camera is nearly
lined up with one of the early splits in the k-d tree. That
prevents any appreciably smaller subtree from bounding the
portion of the scenethat overlaps most of the viewing frus-
tum. shor t-stack, on the other hand, helps all of our scenes.
We instrumented the code to count the number of nodes
visited with each setup. For the three complex scenespush-
down visited 3 - 22% fewer nodes than kd-r estar t while
shor t-stack reduced counts an additional 48 - 52% demon-
strating its superior robustness and e�ectiv eness. We ran
a simulation of shor t-stack that ignored register limits and
used a deep enough stack to capture all activit y. The ac-
tual shor t-stack traversalsvisited fewer than 3% more nodes
than the unlimited stack for our test scenes.

5.1.2 Specular Rays

Figure 2 shows a graph of the performance of specular rays
as a function of the number of bounces. Their performance
is signi�can tly worse than shadow and primary rays. The
most important di�erence is that with bounces, no logical
frustum rooted at camera or light sources enclosesall the
rays. Thus, the rays diverge more across the scene. This
a�ects both the localit y of their accessto scenedata and
the divergence of execution among fragments representing
nearby image pixels.

CPUs su�er from similar e�ects with secondary rays, but
the impacts are ampli�ed on GPUs. While GPUs do sup-
port conditional branching, they only support it e�cien tly
when neighboring fragments branch in large groups [Buck
2005; Stanford Univ ersity 2006]. So, while divergencelowers
the number of active rays per packet on CPUs, it also lowers
the number of active fragments acrossa much wider group
on GPUs. That leads to the non-packet performance near-

Cornell Kitc hen Robots Conference
Primary Shadow Primary Shadow Primary Shadow Primary Shadow

Plain Restart 38.3 34.8 8.6 17.1 7.7 9.5 9.1 15.2
Packets 17.5 35.3 13.3 21.1 14.0 13.5 13.6 15.9
Push-Down 88.8 74.7 12.5 21.4 14.7 12.8 13.9 16.1
Short-Stack 91.3 121.3 16.3 27.3 17.9 16.2 15.2 18.8

Table 2: Rates for rays, in millions per second,rendering our test scenesat 1024x1024with successive optimizations enabled.
Each line includes the optimizations above it.

ing packet performance for the �rst bounce and overtaking
it for subsequent bounces. When each fragment represents
four rays, the divergenceacross the fragments to be sched-
uled at any given time covers four times asmany rays, and is
correspondingly more divergent. Additionally , the GPU per-
forms many times better with coherent than with random
texture access[Stanford Univ ersity 2006], and as the rays
bounce their memory referencesbecomemore incoherent.

5.2 Hardware Performance

5.2.1 GPU E�ciency

We also analyzed how e�cien tly our raytracer used the
GPU's resources.While the rates in Section 5.1.1 are many
times faster than prior results, we are below peak rates avail-
able on the hardware. The X1900 XTX has16 pixel pipelines
clocked at 650MHz, each with 3 four-wide ALUs, giving it an
execution rate of 31.2 GInstructions/second (4-wide SIMD)
when fully utilized. When we instrumented our code and
determined its instruction issue rate, we found that for the
robots and conferencescenesthe non-packet tracer achieves
66 - 75%of the board's instruction rate and the packet tracer
achieves 35 - 42%. Note that when packet tracing each in-
struction performs four operations, sopacket tracing can still
trace rays in less time, even with a lower instruction issue
rate.

Our code is clearly stalling and bottlenecked on something
other than compute power. We identi�ed four possibilities
for why our code doesnot obtain peak instruction issuerate:

� Insu�cien t fragments / independent instructions to
cover dependent math

� Insu�cien t fragments to cover the latency of fetching
values from textures / texture caches

� Insu�cien t bandwidth to fetch all the texture data for
all the fragments

� Insu�cien t fragments executing the sameinstruction to
�ll the board

There are enough fragments (rays or packets) and inde-
pendent instructions that we believe stalls due to depen-
dent math are highly unlik ely. We eliminated both band-
width and latency e�ects by repeating our rendering with the
memory clock reduced from 750 MHz to 500 MHz. Despite
the 1/3 reduction in memory speed, system performance
dropped by only a few percent, so the board is successfully
hiding memory latencies and is not sensitive to bandwidth.

That left divergent execution as the remaining candi-
date performance bottleneck. Recall from Section 5.1.2 that
GPUs only support branchese�cien tly when large groups of
fragments run with identical instruction pointers. That is,
they branch the sameway at the sametime. We know that

while nearby rays follow similar paths, they are not iden-
tical and divergenceis fairly common. This motiv ated the
z-bu�er based culling in both Foley et al.[2005] and Purcell
et al.[2002]. Also recall that toggling from single rays to
packets widens the bounding frustum of a �xed size group
of fragments and therefore increasesthe probabilit y of diver-
gence.

To test this hypothesis, we modi�ed our original fragment
shader assembly via CTM, and replaced the body of the
intersection and traversal loops, including ALU operations
and memory fetches, with an equivalent number of \MO V"
instructions. We then fed the kernel the same sequenceof
control logic so the modi�ed shader would execute the same
number of instructions and take the samebranching pattern
as the original, without the e�ects of memory read patterns.
The execution rate of this test very closely matched the ex-
ecution rate of the operational raytracing kernel. This leads
us to conclude that incoherent branching is therefore our
current performance bottleneck.

5.2.2 CPU & Cell Comparison

Raytracing hasbeenshown to run e�cien tly on conventional
CPUs [Wald 2004] and on the Cell processor[Benthin et al.
2006]. The Cell system from [Benthin et al. 2006] can issue
19.2 four-wide GInstr/s, about 62% the rate of our X1900
XTX, but casts 57.2 million primary rays per second com-
pared to our 15.2 for similar renderings of the conference
room scene. Their single 2.4 GHz Opteron reaches 8.7 mil-
lion primary rays per second. Rasterizing primary hits and
using GPU shading increasesour end-to-end performance,
and our render rates for full images with only shadows are
60% of the Cell and four times the speed of the Opteron,
but there are clearly opportunities for making the central
raytracing more competitiv e on GPUs.

There are two potential avenues for improvement: en-
abling better implementations of our current algorithms and
enabling better algorithms. Direct3D 10 capable GPUs will
deliver one straightforw ard improvement: integer types and
instructions [Blythe 2006]. The control logic and bit op-
erations manipulating our k-d tree nodes are bulky, imple-
mented as
oating point operations, and increasethe cost of
our inner loop. Of course, the biggest boost to the current
algorithm would be a GPU lessa�ected by execution diver-
gence, but this would potentially require a large change in
architecture design. Nevertheless, on both CPUs and Cell,
each hardware thread executes independently of the others
whereas our GPU requires every fragment that executes in
a given clock to have the same instruction pointer.

One signi�can t algorithmic improvement used on other
architectures is larger packets. Cell, the x86, and the X1900
XTX all have four-wide math units, but as described in Sec-
tion 3, the advantages of packets extend beyond occupying
each SIMD lane. As a result, [Benthin et al. 2006] oper-
ated on 64 ray packets on Cell and [Sugerman et al. 2006]

employed 16 ray packets on both an x86 and Cell. How-
ever, larger packets are problematic on the GPU for two
reasons. We are already near the Direct3D 9 limit on regis-
ters per fragment program. Becausethe GPU hides latency
by running large numbers of fragments, increasing register
availabilit y for fragment programs either requires a large in-
creasein the on-board register �le or reducesthe number of
fragments that can be executed at once for covering laten-
cies. And, while we might be able to grow the packet size
by shrinking the stack, not only would is impair the e�ec-
tiv enessof shor t-stack, it would most lik ely make the code
more divergent branch limited just as current packets are
more limited than single rays.

6 Discussion

Our implementation obtains a major speedup over previ-
ous work when tracing rays on a GPU, sustaining over 15
million rays per second on our test scenes. We were able
to demonstrate interactiv e performance at high resolutions
with complex sceneson a GPU. We intro duce optimizations
to the kd-r estar t algorithm that limit it to nearly the same
number of traversal steps as the conventional stack imple-
mentation, while still keeping the per-fragment state small
enough to �t in registers. We combine a looping single pass
implementation with packets to remove the bandwidth re-
circulation problems of [Foley and Sugerman 2005], exploit
the four-wide math units of our GPU, and produce a GPU
raytracer that is no longer memory bound.

In addition to these algorithmic improvements, which
makesour implementation competitiv e to other highly tuned
raytracers, we believe signi�can t performance speedupscan
be realized with improved software engineering. For ex-
ample, the rasterization pass uses a single monolithic ver-
tex bu�er and depth test without any sorting, culling, or
other strategies often employed in interactiv e 3D applica-
tions. Also, all of the ray generation runs in separate passes
from intersection. Shadow rays use the full intersection ker-
nel instead of terminating after the �rst hit and a set of
passesper light rather than a loop that handlesall the lights.
Without packets, and with a statically predetermined con-
�guration of shadow and specular rays, all the hits for local
shading and weighted accumulation could be produced with
a single (long) shader bound during rasterization. Packets
always needone intermediate passto combine independently
rasterized pixels into packet-sized chunks.

For ray-scene intersection, our current limiting perfor-
mance constraint is execution coherence. There is an e�ec-
tiv e `SIMD width' across fragments that leaves functional
units idle unless there are enough fragments (48 on the
X1900XTX) whose execution is at the same point. While
raytracing is coherent among nearby rays, there is still di-
vergencebetween fragments, especially with secondary rays
or when each fragment is working on a packet of rays at a
time. We can compensateby building a k-d tree whosecost
metric encourageslarger leaves (tra versal and intersection
are closer to the same cost on GPUs than CPUs already),
but execution divergencestill limits performance to around
40% of the board's issue rate.

We have identi�ed two architectural obstacles that limit
the e�ciency of raytracing on current GPUs. As described
above, GPUs only realize their computation potential when
their workloads are not only parallel, but signi�can tly SIMD.
Both the x86 and Cell processorrequire four-wide instruc-
tions for peak utilization, but the X1900 XTX is not only
four-wide SIMD per execution unit, but also 48 wide across

execution units per clock, and other GPUs have similar large
branching coherencerequirements. Also, where CPUs hide
memory latency with cachesand Cell with an explicit DMA
engine, GPUs employ parallelism that keeps hundreds of
fragments in
igh t at a time. This restricts each fragment
to a small footprin t for all state. Our restart optimizations
compensate for the resulting unsuitabilit y of per-fragment
stacks, but we have not found a way to �t the 16 - 64 rays per
packet that e�ectiv ely amortize intersection costs on other
architectures. Even if larger packets �t, they would exacer-
bate the execution divergenceproblem.

The most signi�can t upcoming change to GPU program-
ming is the transition to Direct3D 10 [Blythe 2006] and cor-
respondingly capable hardware. A few of its new features
o�er potential for minor enhancements. As mentioned in
Section 5.2.2, integer support saves a few frequently exe-
cuted instructions needed to handle control logic and bit
manipulation in
oating point. The larger indexable con-
stant banks could potentially cache the top of the k-d tree
or a small portion of scenedata and might prove faster than
texture memory. The larger register limits, in theory ease
the restrictions on stack depth and packet size, but in prac-
tice their implementation is virtual and causesshadersthat
consumemore registers to be proportionally limited in paral-
lelism and therefore performance. Overall, these changesdo
not enable any obvious major improvements nor any easing
of our most signi�can t barrier: the divergencepenalty.

A key next step in our system is to incorporate realis-
tic surface shading. Shading is a dominant component of
modern rendering, be it rasterized or raytraced. By design,
GPUs excel at texturing, bump mapping, and other shad-
ing e�ects pervasive in modern 3D applications. As shad-
ing becomesmore complex, GPUs become compelling ar-
chitectures for complete raytracing systemsbecauseof their
abilit y to use rasterization for primary rays, raytracing for
secondary e�ects, and the shading horsepower of modern
GPUs.

7 Acknowledgments

We would lik e to thank Tim Foley for his ideasand previous
GPU raytracing work. Additionally we would lik e to thank
Ian Buck, Mark Segaland Derek Gerstmann for developing
and supporting the GPU abstractions underneath our imple-
mentation. This research was supported by the US Depart-
ment of Energy (contract B554874-2), the Rambus Stanford
Graduate Fellowship, the ATI Fellowship Program, and the
Intel PhD Fellowship Program.

References
ATI , 2006. Radeon X1900 product site.

http://ati.amd.com/pro ducts/radeonx1900/index.h tml .

ATI , 2006. Researcher CTM documentation.
http://ati.amd.com/compan yinfo/researc her/do cumen ts.h tml .

Benthin, C., Wald, I., Scherba um, M., and
Friedrich, H. 2006. Ray Tracing on the CELL
Processor. In Proceedings of the 2006 IEEE Symposium
on Inter active Ray Tracing.

Bl ythe, D. 2006. The Direct3D 10 system. ACM Trans.
Graph. 25, 3, 724{734.

Buck, I., Foley, T., Horn, D., Sugerman, J.,
Fat ahalian, K., Houston, M., and Hanrahan, P.
2004. Brook for GPUs: Stream computing on graphics
hardware. In Proceedings of ACM SIGGRAPH 2004.

Buck, I. 2005. GPU computation strategies. In GPGPU
Course Notes - SIGGRAPH 2005.

Carr, N. A., Hober ock, J., Crane, K., and Har t,
J. C. 2006. Fast gpu ray tracing of dynamic meshesusing
geometry images. In Proceedings of Graphics Interface
2006, Canadian Information ProcessingSociety.

Foley, T., and Sugerman, J. 2005. Kd-tree acceleration
structures for a gpu raytracer. In HWWS '05: Proceedings
of the ACM SIGGRAPH/EUR OGRAPHICS conference
on Graphics hardware, ACM Press, New York, NY, USA,
15{22.

Havran, V., and Bittner, J. 2002. On improving
kd-trees for ray shooting. In Proceedings of WSCG'2002
conference, 209{217.

Intel , 2006. Intel Core2 Duo Processor.
http://www.in tel.com/pro ducts/pro cessor/core2duo .

Micr osoft , 2003. Directx home page.
http://www.microsoft.com/windo ws/directx/default.asp .

Pur cell, T. J., Buck, I., Mark, W. R., and
Hanrahan, P. 2002. Ray tracing on programmable
graphics hardware. ACM Trans. Graph., 703{712.

Resheto v, A., Soupik ov, A., and Hurley, J. 2005.
Multi-lev el ray tracing algorithm. ACM Trans. Graph. 24,
3, 1176{1185.

Schmittler, J., Wald, I., and Slusallek, P. 2002.
Saarcor: a hardware architecture for ray tracing. In
HWWS '02: Proceedings of the ACM
SIGGRAPH/EUR OGRAPHICS conference on Graphics
hardware, Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, 27{36.

St anf ord University , 2006. GPUBench.
http://graphics.stanford.edu/pro jects/gpub ench .

Sugerman, J., Foley, T., Yoshioka, S., and
Hanrahan, P. , 2006. Ray tracing on a cell processor
with software caching. Poster at The 2006 IEEE
Symposium on Interactiv e Ray Tracing.
http://www.sci.utah.edu/R T06/full comp endium.p df .

Thrane, N., and Simonsen, L. O. 2005. A comparison
of acceleration structur es for GPU assisted ray tracing.
M.S. thesis, Univ ersity of Aarhus, Aarhus, Denmark.

Wald, I., Slusallek, P., Benthin, C., and Wagner,
M. 2001. Interactiv e rendering with coherent ray tracing.
Computer Graphics Forum 20, 3, 153{164.

Wald, I. 2004. Realtime Ray Tracing and Inter active
Global Il lumination . PhD thesis, Saarland Univ ersity.

Woop, S., Schmittler, J., and Slusallek, P. 2005.
Rpu: a programmable ray processingunit for realtime ray
tracing. ACM Trans. Graph. 24, 3, 434{444.

A Code for Restart Optimizations

Figures A.1 through A.5 display the progressive modi�ca-
tions to standard k-d tree traversal asthe optimizations from
Section 3 are applied. Unlik e the text, packets are applied
last to make the di�erences easiestto follow.

A.1 Standard stack k-d tree traversal

stack.push(root,sceneMin,sceneMax)
tHit=infinity
while (not stack.empty()):

(node,tMin,tMax)=stack.pop()
while (not node.isLeaf()):

a = node.axis
tSplit = (node.value - ray.origin[a]) / ray.direction[a]
(first, sec) = order(ray.direction[a], node.left, node.right)
if(tSplit � tMax or tSplit < 0)

node=first
else if(tSplit � tMin)

node=second
else

stack.push(sec, tSplit, tMax)
node=first
tMax=tSplit

for tri in node.triangles():
tHit=min(tHit,tri.Intersect(ray))
if tHit < tMax:

return tHit //early exit
return tHit

A.2 Mo di�cations for kd-r estart traversal

tMin=tMax=sceneMin
tHit=infinity
while (tMax< sceneMax):

node=root
tMin=tMax
tMax=sceneMax
while (not node.isLeaf()):

a = node.axis
tSplit = (node.value - ray.origin[a]) / ray.direction[a]
(first, sec) = order(ray.direction[a], node.left, node.right)
if(tSplit � tMax or tSplit < 0)

node=first
else if(tSplit � tMin)

node=second
else

/* Remove:stack.push(sec, tSplit, tMax) */
node=first
tMax=tSplit

for tri in node.triangles():
tHit=min(tHit,tri.Intersect(ray))
if tHit < tMax:

return tHit //early exit
return tHit

A.3 Mo di�cations for push-down traversal

tMin=tMax=sceneMin tHit=infinity
while (tMax < sceneMax):

node=root
tMin=tMax
tMax=sceneMax
pushdown=True
while (not node.isLeaf()):

a = node.axis
tSplit = (node.value - ray.origin[a]) / ray.direction[a]
(first, sec) = order(ray.direction[a], node.left, node.right)
if(tSplit � tMax or tSplit < 0)

node=first
else if(tSplit � tMin)

node=second
else

node=first
tMax=tSplit
pushdown=False

if pushdown:
root=node

for tri in node.triangles():
tHit=min(tHit,tri.Intersect(ray))
if tHit < tMax:

return tHit //early exit
return tHit

A.4 Mo di�cations for short-stack traversal
tMin=tMax=sceneMin tHit=infinity
while (tMax < sceneMax):

if stack.empty():
node=root
tMin=tMax
tMax=sceneMax
pushdown=True

else:
(node,tMin,tMax)=stack.pop()
pushdown=False

while (not node.isLeaf()):
a = node.axis
tSplit = (node.value - ray.origin[a]) / ray.direction[a]
(first, sec) = order(ray.direction[a], node.left, node.right)
if(tSplit � tMax or tSplit < 0)

node=first
else if(tSplit � tMin)

node=second
else

stack.push(sec,tSplit,tMax)
node=first
tMax=tSplit
pushdown=False

if pushdown:
root=node

for tri in node.triangles():
tHit=min(tHit,tri.Intersect(ray))
if tHit < tMax:

return tHit //early exit
return tHit

A.5 Mo di�cations for packetized
short-stack traversal

tMin v =sceneMin
tMaxv =sceneMax
tHit v =infinity
donev =False
didstack=False
while ((didstack or not all(done v)) and not all(tHit v <tMaxv)):

node=root
if not stack.empty():

didstack=True
(nodev ,tMin v ,tMax v ,live v)=stack.pop()
pushdown=False

else:
didstack=False
node=root
live=tMin v <=tMaxv and not donev
pushdown=True

while (not node.isLeaf()):
a = node.axis
tSplit v = (node.value - ray v .org[a]) / ray v .dir[a]
(first, sec) = order(ray 0 .dir[a], node.left, node.right)
wantNearv =tSplit v >tMin v and live v
wantFar v =tSplit v � tMaxv and live v
if(all(wantNear v or not live v) and not any (wantFar v))

node=first
else if(all(wantFar v or not live v) and not any(wantNear v))

node=second
else

pushdown=False
node=first
top live v =live v and wantFar v
top tMin v =top live v ?max(tMin v ,tSplit v):tMin v
stack.push(second,top tMin v ,tMax v ,top live v)
live v =wantNearv
tMaxv =wantNearv ? min(tSplit v ,tMax v) : tMaxv

if pushdown:
root=node

for tri in node.triangles():
tHit v =min(tHit v ,tri.Intersect(ray))
if all(tHit v <tMaxv)

return tHit v //early exit
donev =donev or (tHit v <=tMaxv)
tMin v =tMaxv
tMaxv =sceneMax

return tHit v

