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Abstract

Motion-capture based facial animation has recently gained popular-
ity in many applications, such as movies, video games, and human-
computer interface designs. With the use of sophisticated facial
motions from a human performer, animated characters are far more
lively and convincing. However, editing motion data is difficult,
limiting the potential of reusing the motion data for different tasks.
To address this problem, statistical techniques has been applied to
learn models of the facial motion in order to derive new motions
based on the existing data. Most existing research focuses on audio-
to-visual mapping and reordering of words, or on photo-realistically
matching the synthesized face to the original performer. Little at-
tention has been paid to modifying and controlling facial expres-
sion, or to mapping expressive motion onto other 3D characters.

This paper describes a method for creating expressive facial anima-
tion by extracting information from the expression axis of a speech
performance. First, a statistical model for factoring the expression
and visual speech is learned from video. This model can be used to
analyze the facial expression of a new performance, or modify the
facial expressions of an existing performance. With the addition of
this analysis of the facial expression, the facial motion can be more
effectively retargeted to another 3D face model. The blendshape re-
targeting technique is extended to include subsets of morph targets
that belong to different facial expression groups. The proportion of
each subset included in a final animation is weighted according to
the expression information. The resulting animation conveys much
more emotion than if only the motion vectors were used for retar-
geting. Finally, since head motion is very important in adding live-
ness to facial animation, we introduces an audio-driven synthesis
technique for generating new head motion.
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1 Introduction

Computer animated characters are now necessary components of
computer games, movies, web pages, and various human computer
interface designs. In order to make these animated characters lively
and convincing, they require sophisticated facial expressions and
motions. Traditionally, facial animation has been produced largely
by skilled artists using manual keyframe techniques. Although it
ensures the best quality animation, this process is slow and costly.
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While large studios or production houses can afford to hire hun-
dreds of people to make feature films and movies, it is not feasible
for low budget or interactive applications.

Recently, a great deal of research has been dedicated to motion cap-
ture based and performance driven methods, hoping to produce fa-
cial animation more efficiently. However, editing motion capture
data is quite difficult, and no completely satisfying solution yet ex-
ists. Ideally an artist could freely edit the speech content, the emo-
tional style, or the visual appearance of a character, while retaining
the essence of the captured performance.

Most current research has focused on either data driven speech syn-
thesis which changes the speech content and lip motion of a video
sequence, or character animation which focuses on visual appear-
ance and methods for retargeting geometric deformations from one
face onto another. Relatively few methods exist for editing and
retaining the expressive style of facial animation. While existing
methods can produce photorealistic results, they focus on changing
the content of ”what” the character does, but not the style of ”how”
they do it, leaving the expression of captured data untouched. This
paper addresses the need for expressive facial animation by intro-
ducing methods for both retargeting and head motion synthesis that
have been explicitly designed to incorporate emotion.

Methods for editing content, style and appearance have been largely
separated, with few attempts to build a complete systems for edit-
ing and retargeting all aspects of a facial animation. One of the
keys to this problem lies in the choice of data representation. Con-
tent editors seek to preserve the identity of the original actor or
actress, so they choose a representation that preserve the appear-
ance of the data, often including complex high-dimensional texture
models. Retargeting methods seek to preserve speech content while
editing appearance, so they choose a representation such as marker
positions that is general and adaptable to multiple face models. Un-
fortunately sparse models of 3D markers may not contain sufficient
information to encode emotion. A complete system will need to
choose a data representation that is compatible with these often con-
tradictory goals. To address this need, and highlight the importance
of designing algorithms that are compatible with the whole process,
we introduce a framework for integrating content, style and appear-
ance into a single editing pipeline.

This paper attempts to resolve the problem of data representation
by choosing the middle ground. We neither choose a dense tex-
ture model, nor a simple sparse marker model. We instead analyze
video texture information and extract concise higher level informa-
tion that encodes facial expression. This expression information is
used to augment a sparse geometric model when retargeting. In ad-
dition, our method allows artists to retain control over the process of
interpreting various facial expressions. Input geometry is mapped
implicitly to the output face models, rather than preserving explicit
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Figure 1: Editing pipeline for expressive speech animation. This work focuses on the last three modules, editing and retargeting expressive
animation onto new characters.

geometric similarity.

Figure 1 illustrates the editing pipeline proposed in this work. The
input performance is a video sequence of a talking face. The speech
content of this sequence could be edited using any of several exist-
ing techniques. The resulting video is then analyzed using a statisti-
cal bilinear model, to factor emotional style and speech content into
two components. This model essentially provides an expression
shader with which we can modify the emotional style of the video.
We next retarget the video sequence onto a 3D character. By using
the extracted emotion vector to augment traditional shape informa-
tion, our retargeting method preserves emotional style while allow-
ing the characters appearance to be freely edited. Finally, since
head motion is an important aspect of expression, we present a data
driven synthesis technique that matches the characters emotional
state. Since this work emphasizes the importance of expression, we
focus on the last three modules, simply passing the input video’s
speech content directly to the expression synthesis module.

This paper contributes novel techniques for expressive retargeting
as well as head motion synthesis. In addition, and perhaps more
importantly, we demonstrate how these methods fit in a complete
pipeline that allows the creation and editing of compelling facial
animations.

2 Related work

Many research areas are relevant to this paper. We will organize
them into the following categories based on the flow of the paper:
speech content editing, facial expression analysis and modelling,
facial motion retargeting, and head motion synthesis.

Statistical techniques has been applied to learn models of speech
content in order to derive novel motion based on existing data.
For instance, Video Rewrite [Bregler et al. 1997] applied machine
learning technique to synthesize a talking face. To ensure a smooth
transition between words, a triphone model is used for each viseme.
The resulting system enables the same person to say things that
he or she has never said before. Voice Puppetry [Brand 1999]
learns a probability distribution of facial motion by applying a hid-
den markov model (HHM) to both the audio signal and the facial
motion. Given novel audio input, the algorithm predicts the most
likely trajectory of the facial motion. The synthesized motion can
be further retargeted to a different face by image warping. Ezzat
et al. [Ezzat et al. 2002] improved upon Video Rewrite by learning
a set of prototype mouth shapes from the training data. This min-
imizes the storage required to keep all the video in the database.
Many other research projects demonstrate similar types of work
e.g. [Cossato 2002; Cohen and Massaro 1993; Kalberer and Gool
2001]. However, the research effort in data-driven facial synthesis
has largely ignored emotion, and the resulting speech retains the
same neutral expression as the input data.

A great deal of previous research does involves the study of appro-
priate models of facial expression. Most of the effort has been with

regard to tracking and recognition of facial expressions, utilizing
the static or short-term dynamics of single-unit facial expressions,
such as a smile or a frown [Essa and Basu 1996; Essa and Pentland
1997; Tian et al. 2001]. A popular representation based on muscular
movement [Ekman and Friesen 1978] is the Facial Action Coding
System (FACS). However, rather than learning and recognition, our
goal is editing and synthesis of an expressive talking face, where the
long term dynamics of the entire facial configuration are important.
A method of separating the contributions of content and emotion is
needed. Cao applied Independent Component Analysis (ICA) for
representing facial motion data, and extracted out the influence of
facial expressions on speech by separating regions and layers that
contribute to different factors [Cao et al. 2003]. The authors of
this work have previously reported a bilinear model for factorizing
the influence of speech content and facial expression [Chuang et al.
2002]. This paper makes use of the bilinear model for factorizing
video in section 3, but considerably expands upon our prior method
by reporting a complete pipeline for expressive animation including
novel methods for retargeting and head motion synthesis.

This work uses a two factor model for expression analysis. Multi-
linear analysis involving more than two factors has been applied to
facial recognition [Vasilescu and Terzopoulos 2003]. Although the
method has not yet been applied to expression analysis, it seems a
promising future area.

Techniques for retargeting facial motion fall into several categories.
The first category uses explicit parameterization, where the param-
eters usually have values associated with physical dimensions, such
as eye opening, eyebrow raising, mouth opening, etc. [Buck et al.
2000; Parke 1982; Ostermann 1998]. The second category of re-
targeting techniques directly applies the movement of facial marker
data to the corresponding features on the target model. For ver-
tices that have corresponding markers, the displacement vectors are
simply re-normalized to match that of the target model. A inter-
polating deformation method is applied to compute the displace-
ment of the intermediate vertices [Litwinowicz and Williams 1994;
Noh and Neumann 2001]. A third category of facial retargeting
parameterizes facial motion with blendshapes. At each time step,
the facial state is a weighted combination of several basic expres-
sions, sometimes called morph targets in commercial animation
software [Kouadio et al. 1999; Pighin et al. 1998; Pyun et al. 2003;
Joshi et al. 2003; Zhang et al. 2003]. No existing methods have
specifically addressed the need to maintain emotional style during
the process of retargeting.

We base our retargeting method on blendshapes, since the mapping
is implicit rather than explicit, allowing broader and more intuitive
artistic control over character appearance. Traditional motion cap-
ture systems and explicit retargeting may not be able to effectively
capture and parameterize subtleties in facial expressions such as
eyes squinting, wrinkles, or shadows cast by small changes in the
face geometry. As we will show, implicit mapping allows these
subtleties to be analyzed and encoded separately, but still used in
the retargeting process. In addition, blendshape animation fits well
the traditional mode of how animators work, as many commercial
softwares already provides such a tool.



Figure 2: Interpolated facial expressions from happy to neutral, and from neutral to angry. The expression changes gradually, while the
speech content maintains the same.

Head motion for animated faces has typically been produced either
manually, randomly, or by a set of rule derived from communi-
cation studies. Ken Perlin proposed generating random noise for
character movement [Perlin 1997]. Although surprisingly effec-
tive, viewers are eventually frustrated by the lack of correlation with
the facial animation. Head-motion procedures that model speaker
turns and interaction with a user have been proposed by several re-
searchers [Cassell et al. 1994; Takeuchi and Nagao 1993; Poggi
et al. 2000]. Most recently, [DeCarlo et al. 2002] proposed a new
procedural system that enhances non-verbal aspects of speech with
head motions. This work successfully models the correct behav-
ior; however, since behavior can only be specified at a higher level,
the animated avatars often lack the fine details of motion found in
realistic characters. Lastly, some facial synthesis systems use a
”background” sequence, which contains real head motion from a
different sequence, and align it with the synthesized facial motion.
Unfortunately since the head motion and the face are not corre-
lated, this motion is not always believable. This paper introduces a
data driven method for synthesizing head motion that is correlated
with the emotional content of the facial animation, and contains the
fine details that are necessary for interesting animation. Although
the parameterizations and challenges are very different from head
motion, we draw inspiration from several recent articulated motion
synthesis systems that have explored similar data driven methods
[Arikan and Forsyth 2002; Pullen and Bregler 2002; Kovar et al.
2002; Li et al. 2002].

3 Facial expression analysis

In order to create animated characters with expressive facial mo-
tion, we need to create a mathematical model of expression. This
work builds that model from video training data. Expression analy-
sis gives us a tool to factor the contributions of expressive style and
visual speech content. We use a bilinear model for this task [Tenen-
baum and Freeman 2000]. Our analysis results in an emotional
style vector used during retargeting. Additionally, given an input
facial image, we can modify the facial expression to enhance the
animation.

3.1 Data representation

We first represent images of a talking face by a statistical model
of the shape and color appearance in a similar spirit as in Ac-
tive Appearance Model [Cootes et al. 2001]. A set ofn tracked
feature points,[ f 1, .. f n], on the face define the face shape, repre-
sented as thex,y positions of the features in the vector~x, where
~x = [ fx1, fy1, fxn, fyn]′. We apply Principal Component Analysis
(PCA) to the data from all the frames in the training set to obtain
a representation with reduced dimensionality. Each sample shape

can now be approximated using:

~x = ~x0 +Ps ·~bs, (1)

where~x0 is the mean shape vector,Ps is the set of orthogonal modes
of variation derived from the PCA, and~bs is a set of shape parame-
ters.

For the texture, we first warp all the face images to the average
shape, and sample the pixel values in the normalized image, de-
noted as~g. Similarly to the shape model, we apply PCA to the
texture data:

~g = ~g0 +Pg · ~bg, (2)

where~g0 is the mean gray-level vector,Pg is a set of orthogonal
modes of variation and~bg is a set of color parameters.

The shape and appearance of the face can thus be summarized by
the vectors~bs and~bg. The facial configuration vector at any given
frame is defined as:

~y =
[

Bs ·~bs
~bg

]
. (3)

Bs is a diagonal matrix with weights for the shape parameters, al-
lowing for a difference in units between shape and gray values.

3.2 Model for facial expression

The bilinear model makes a simple assumption that the data is
influenced only by two underlying factors. In this case, the fac-
tors are the visual speech component and the expression compo-
nent. Bilinear models are two-factor models with the mathematical
property of separability, and the outputs are linear in either factor
when the other is held constant. Together, the two factors modu-
late each other’s contributions multiplicatively, which allows rich
interactions between them.

Mathematically, a bilinear model can be described as:

yk,s = ~es
′ ·Wk ·~c, (4)

whereyk,s is thekth component of the data vector, shown in equa-
tion 3, with a particular styles. ~es is the style vector, or expres-
sion vector,~c is the content vector, andWk is the basis matrix that
describes the multiplicative relationship between the style and the
content for thek-th component of the facial vector. ForK facial
components, we will needW = [W1, ...,WK ]. In this work, the style
is the facial expression, and the content is the visual representation
of speech, or viseme. We train our model using video sequences
captured with each of three expressions: happy, angry, and neutral.
The training algorithm is similar to [Chuang et al. 2002] and we
refer the reader to their work for details. Training results in the
models basis vectors,W, as well as a set of expression vectors for
happy, angry and neutral expressions,~eh, ~ea, ~en, that are used in the
retargeting process.



Figure 3: Examples of selected keyshapes for happy and angry expressions.

3.3 Modifying facial expression

The model described above can be used to modify facial expres-
sions. Given a new sequence represented by the facial configura-
tion shown in equation 3,~ytest, suppose we would like to analyze
it and perform some modifications. Take the bilinear basis vector
W from above, we need to solve for the expression vector~eand the
content vector~c. This can be done by iteratively solving for one
factor, while keeping the other factor fixed. Given the input data
~ytest and using the average from equation 4 as an initial guess for
the content vector~c0, the expression vector is:

~e′ = [[W ·~c0]VT]−1 ·~ytest. (5)

Similarly, the content vector is:

~c = [[WVT · ~e0
′]VT]−1 ·~ytest. (6)

HereXVT denotes the vector transpose ofX, andX−1 denotes the
pseudo inverse ofX. We iterate over these two equations until
reaching convergence.

This process factors the image sequence, providing the expression
and content vectors for each frame. In order to modify the facial
expression, the expression vector is simply replaced. By interpo-
lating between the expression vectors obtained during training, we
can obtain in-between expressions, such as halfway happy. For in-
stance, the facial vector~yi with facial expression betweens1ands2
is given as:

~yi = (α ·~es1 +(1−α) ·~es2) ·W i ·~c, (7)

whereα specifies the amount of each target expression. The value
of α should stay fairly close to the range between zero and one, for
if it’s outside this range, we are extrapolating the facial expressions.
Extrapolating too far can produce an invalid expression. Figure 2
shows interpolated facial expressions from happy to neutral, and
then to angry. The expressions change gradually, while the content
remains the same. Notice that the changes in the locations of the
facial features are subtle, the change in appearance is primarily due
to the changes in small facial details encoded in the texture.

We now have both a method for modifying facial expressions, and a
concise description of emotional state. This description is encoded
in the expression vector, which we will make use of during retar-
geting.

4 Facial expression retargeting

To retarget an expressive talking face to a different face model, we
choose to use a blendshape retargeting method. Many commercial
animation software systems have built-in methods for blendshape
animation using a set of predefined model poses. These basic poses
are typically called morph targets. It is common to find commercial
products of characters with pre-constructed morph targets built into
the character. However, they are intended for making facial anima-
tion using manual keyframing, as opposed to for facial motion retar-
geting. To retarget captured, or synthesized, facial motion onto the
pre-constructed morph targets, one would normally have to either
build a face model that mimics the appearance of the motion cap-
tured source [Pighin et al. 1999], or parameterize the marker data,
establish marker correspondences, and re-normalize the displace-
ment, so that the motion can be used on a different face[Kouadio
et al. 1999; Chai et al. 2003]. We introduce a method that nei-
ther requires building a complex 3D photo-realistic model for each
person we want to capture from, nor uses parameters that require
physical correspondences between the models. Instead, we select
a set of prototype images called keyshapes from the training data,
and allow an artist to design a corresponding set of keymorphs.

4.1 Keyshapes selection

An ideal set of keyshapes should cover all the possible variation in
the training set, using as few shapes as possible. Ezzat et al. [Ezzat
et al. 2002] described a method for automatically selecting proto-
type images, or keyshapes, by clustering. Instead, we use the data
points that have the largest values when projected onto the princi-
ple axes found by Principle Component Analysis. We found that
this performs slightly better, since clustering sometimes loses the
extreme facial poses [Chuang and Bregler 2002]. Starting from
the first principle axis, the one that has the largest eigenvalue, the
frames with the maximum and the minimum projection onto each
axis are chosen as key shapes. To pick k key shapes, we will use
the first k/2 axes. Sometimes the extremum for one dimension may
be the same or nearly the same data point as extremum for a dif-
ferent dimension. We compare the square difference of the two
data points, and if the difference is below some threshold, eliminate
the keyshape that was drawn from the lower dimension. The pro-
cess of keyshape selection is repeated separately for each expres-
sion used in the training set for the bilinear model. For example,

B = {~B(s)
1 ,~B(s)

2 , ...,~B(s)
ks
} represents a set ofks keyshapes for expres-

sion s. There is not any correspondence in a mathematical sense



between the keyshapes chosen for different expressions, nor do the
number of keyshapes need to be the same for all expressions. How-
ever, they do often look similar. Figure 3 shows some examples of
keyshapes for the happy and angry data sets. In our experiment, we
find that for the purpose of retargeting, it is sufficient to use only
the shapes of the face (~x as described in section3) for the selection
of keyshapes.

4.2 Motion parameterization

Given a new sequence of input images where the facial expres-
sions change over time, we need to first solve for the expression
and speech content as described in section 3.3 to get the expression
matrix and content matrices. Once we have these matrices, we can
synthesize new sequences for each of the basic expressions (happy,
angry, etc...). To represent these expression sequences in terms of
the keyshapes for that expression as defined in the previous section,
we first re-project back out the shape and texture vector using the
inverse of equation1 through3. Here we only use the shape portion
of the facial vector,~x. Each frame~x(s)(t) of the sequence associated
with expressions can be decomposed into a linear combination of
key shapesB, and weightsw1,w2, ...,wks

.

~x(s)(t) =
Ks

∑
i=1

wi(t) ·~B(s)
i , wi ≥ 0. (8)

The weights are found by minimizing the least-squares error sub-
ject to a non-negative constraint. Each frame of the input sequence
is now represented as a linear combination of keyshapes, with dif-
ferent keyshapes and weights for each expression.

In our representation ofB, there is no simple relationship between
the above equation and the synthesis equation (equation4) without
going through several rounds of matrix transformation. One might
wonder why a new basisB is needed for retargeting, and whether
there is some natural relation between these bases.W is a mathe-
matically optimal basis set computed in the context of the bilinear
model. It needs to represent the data well, but there is no need for it
to have semantic meaning to a human. In contrast, the keyshapesB
must have semantic meaning since, as will be described in the next
section, an artist must produce corresponding keymorphs. However
B does not need to be “optimal”, it just needs to adequately repre-
sent the space of variations.W could not be used to replaceB, since
an artist could not interpretW. Given the complexity encoded in
the bilinear model, we doubt thatB could be used to replaceW in a
straightforward way. An interesting question for future exploration
is whether some other set of basis functions could be found which
are both semantically meaningful and suitably powerful, such that
they would be appropriate for both domains.

4.3 Keymorphs and motion retargeting

In order to relate a captured sequence of images to our output 3D

model we build a new set of morph targets,G = [~G(s)
1 , ..., ~G(s)

K ],
that resemble the look of the keyshapes chosen from the training
data. These are built using the pre-defined morph targets, and
we call these keymorphs. Keymorphs are similar to the set of
primitive morph targets defined in the character model. However,
the mapping between the keymorphs and the keyshapes are con-
structed to be one-to-one, whereas no natural mapping exists be-
tween keyshapes and the predefined morph targets. A one-to-one
mapping allows the vector of weights from the source data to be ap-
plied directly to the keymorphs to produce a retargeted animation.

A set of keymorphs is created for each basic facial expression, re-
sulting in several retargeted animations that all say the same thing,
each with a different facial expression. Figure 4 shows some pairs
of keyshapes and keymorphs.

Figure 4: Examples of corresponding keyshapes to keymorphs for
different expressions.

Finally, to create an animation with arbitrary or changing facial ex-
pression, we blend the retargeted facial animation for each basic
expression together using:

~H(t) =
N

∑
j=1

α j (t) ·
K

∑
i=1

w( j)
i (t)~G( j)

i , (9)

whereN is the number of basic expressions. Theα j ’s are the user
chosen barycentric coordinates of the desired output expression in
terms of the basic expression vectors found during training.

Notice that we do not solve for direct correspondence in a vertex
to vertex sense. This is important as it keeps the method flexible
and does not limit the types of motion capture source or types of
target model. The vector of source data is only defined with re-
spect to source keyshapes, while the vector of target data is only
defined with respect to target keymorphs. In the examples shown in
this paper, we use 2D facial feature points as data when construct-
ing the source keyshapes,B, and blendshape control parameters for
the target keymorphs,G. We have been equally successful using
polygon vertices or NURB control points as the data vector when
constructing keymorphs. In principle, keyshapes and keymorphs
can be constructed from any measurement as long as it can be lin-
earized.

Note that the semantic notion of ”happy” or ”angry” is defined in
both the video based bilinear space (training), and the output char-
acter’s 3D blendshape representation. In order to change expres-
sions, we merely need to interpolate between the various semanti-
cally defined expressions. In the bilinear space this interpolation
occurs on the style (expression) vector, allowing the expression of
video images to be changed. In the blendshape space, this interpola-
tion occurs between the keymorph sets defined for each expression,
allowing the 3D character’s expression to be changed. It is both
meaningful and possible to control the expression in either space.

This method requires manual modeling and therefore it is not com-
pletely automatic. We feel that this is beneficial since artists fre-
quently wish to control the precise appearance of the target charac-
ter. Furthermore, we find that the keyshapes for several expressions
are often similar. In these cases, the shape itself is not an ade-
quate descriptor of expression, and automatic methods are unlikely
to correctly interpret artistic intent. Artistic judgment isrequired



to insure that the keymorphs for each expression are interpreted as
desired.

By modeling the keymorphs one might wonder whether the artist
has done most of the hard work already, negating the need for a
retargeting system at all. However, this is precisely the point of
the method. The artist has done most of the hard work, but they
have not done most of the tedious work. Using a small number
of manually defined keymorphs, the algorithm can process a long
video sequence. This would normally require the artist to define
hundreds of keyframes manually.

5 Adding head motion

Head motion is a very important part of facial animation. Tradi-
tional animators often start by creating the head motion first, and
then filling in “less important” details, like lip-sync and other ex-
pressions. This work introduces a data-driven approach to synthe-
sizing head motion that is consistent with the characters intended
emotion.

Head motion synthesis presents a different set of challenges to
facial speech animation. The coupling between phonemes and
visemes (the visual appearance of the mouth) is much stronger then
that found between audio signal and head motion. Many statistical
techniques rely on strong correlations among the different param-
eters. However in this case there is no deterministic relationship
or obvious correlation between head motion and other communi-
cation cues. For the same sentence and expression, many different
head motions are possible. Nevertheless, there is at least a weak
correlation, and randomly generated head motion will not convey
the expressiveness desired.

Fortunately, there is evidences that leads us to believe that audio
features as simple as pitch contour are correlated with head mo-
tions. Recent study in the phonetics and linguistic community sug-
gests that there is anatomical evidence of a coupling between head
motion and pitch [Honda 2000]. In addition, empirical study by
Yehia et al. [Yehia et al. 2000] also found that the pitch contour in
a voice audio signal is highly correlated to head motions.

Our process of head motion synthesis begins by building a database
of examples which relate audio pitch to motion. Synchronized mo-
tion and audio streams are captured and then segmented and stored
in the database. A new audio stream can be matched against seg-
ments in the database. A smooth path is found through the match-
ing segments and stitched together to create synthetic head motion.
Figure 5 shows the overview of the approach.

5.1 Segmentation

We segment the input audio track using pitch contour information.
The same segment boundary is then used for slicing the head mo-
tion tracks.

We used a program called Praat [Boersma and Weenink 2003] to
process the audio data and extract pitch. Unfortunately this process-
ing is relatively noisy. The top of figure 6 shows a raw pitch signal.
We filter the pitch values to consider only those that lie within the
normal human range. In addition we interpolate neighboring values
to fill in very short periods of missing data. After cleaning the pitch
curve, we use voiceless regions (regions with no pitch), to divide the
curve into segments. The bottom part of figure 6 shows the same
pitch contours now partitioned and cleaned up after the processing.
Since head motion continues to change regardless of whether the

Figure 5: Overview for the head motion synthesis.

audio contains a voiced and voiceless region, a segment is defined
as starting from the onset of one pitch segment and ending on the
onset of the next pitch segment. Empirically we observe that most
of the large head motion happens right after pitch onset, suggesting
that this is indeed a good segment boundary.
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Figure 6: Top: noisy pitch data. Bottom: cleaned up pitch data and
segmented for use in the matching process.

5.2 Pitch matching

For a given sequence of new audio pitch segments, we need to find
a matching sequence of segments from the database. We define the
matching distance in a two-stage process:

In the first stage, we compare pitch for an entire phrase, not just
a single segment. This is important because the emotional, id-
iosyncratic content of speech is often conveyed at a sentence level
through pitch phrasing. By matching first at the sentence or phrase
level we use only those sentences in our database with expressive
style similar to our new audio sequence. Sentences are compared
by matching feature vectors derived from the audio data. These fea-
tures include statistics related to the speech rhythm; the speaking
rate, and the average length of the voiced and voiceless regions, as
well as simple statistics on the pitch signal, including the minimum,
maximum, mean, and standard deviation of pitch values [Dellaert
et al. 1996]. These statistics are normalized and used as a feature



vector. Euclidian distance is used for calculating the top M sen-
tences that best match the test input. These M sentences represent
a subset of the database which has the desired expressive style.

In the second stage, we compare individual pitch segment in the
test phrase against the pitch segments in the database subset. The
metric consists of similarity in geometric properties of the segments
Gd (min val, max val, range, min slope, max slope, curvature, etc.).
Each pitch segment is re-sampled to match the average length of
all pitch segments. Then root-mean-square difference is used to
compute a distance metric to every other pitch segment:

Pd = RMS(Ptest−Ptemplate). (10)

Ptest and Ptemplateare length normalized pitch contour. To avoid
over stretching or shortening of the segments, a second criteria is
used to penalize cases where the difference in lengths of the original
segments are too large:

Ld =
|length(Ptemplate)− length(Ptest)|

length(Ptest)
. (11)

A combined distance metric is defined as a weighted sum of these
two metrics:

Dtotal = b·Gd +c·Pd +(1−b−c) ·Ld. (12)

In our experiment, we usedc = 0.3 andb = 0.05 to produce the
final animations. Finally, the list of matching segments for each
input segment is pruned to retain only the topK choices. These
segments are the possible matches which will be stitched together
during path searching.

5.3 Path searching

GivenN pitch segments in the input audio, and the topK matches
for each test segment, each matching segment forms a node (Si

t ) in
a Trellis graph, as shown in figure 7. We set the weight of nodes
equal to the pitch distance metric as defined in equation 12.

Figure 7: Trellis graph formed by the audio segments in the
database which match those of the new sequence.

We need to find a path through the graph that produces a good head
motion trajectory. Here we use the head motion data accompany-
ing each matching segment and compute the cost of transitions (Ci j

t )
from one segment to the next. Transition cost is based on two crite-
ria.

First, in order to produce a smooth head motion, neighboring seg-
ments should have matching boundaries in terms of position,Pi

t ,
velocity,V i

t , and acceleration,Ai
t . Therefore, the first cost function

is:
H i j

t = ωP · (Pi
t −P j

t+1)
2+

ωV · (V i
t −V j

t+1)
2 + ωA · (Ai

t −A j
t+1)

2 , (13)

where the values ofωP,ωV ,ωA are chosen to normalize the average
contributions of each term.

Second, consecutive segments in the original database are highly
encouraged, since these result in the most natural motion. Simi-
larly, repeating the same segment is discouraged, since it produces
repetitive motion. The second cost function is thus:

Ri j
t = {

0, Si
t and Sj

t+1 are consecutive

2, Si
t = Sj

t+1
1, otherwise

. (14)

The complete transition cost is a weighted sum of these two terms:

Ci j
t = ω1 ·H i j

t +ω2 ·Ri j
t . (15)

We merely set the weight ofω1 andω2 equally, and have achieve
good results. It would be interesting to investigate an optimal bal-
ance of the various segment and transition weights in the future.

Finally, we apply the Viterbi algorithm to find the best path through
the graph [Viterbi 1967].

5.4 Motion Blending

The motion data associated with each segment is joined together to
produce the final motion. To achieve this, each motion segment is
re-sampled to match the length of the test segment. Although this
alters the frequency content of the motion data, the length of the
segment is part of the matching criteria, thus the selected segments
should have length similar to the test segment. Next, the starting
position of each motion segment is moved to match the ending po-
sition of the previous segment. This could lead to potential drifting
for long sentences. When this occurs, we break long sequences into
smaller units, and perform path search for each sub-sentence. In
general, we found that breaks between sentences, where the speaker
take a breath serve as good boundaries for the subunits. Each sub-
sequence is linearly warped to join the next sub-sequence to correct
for the drifting. Finally, the end positions where the segments are
connected are smoothed to minimize high frequency artifact caused
by mismatch in the velocity.

6 Experiment

Our training data is drawn from three short video sequences in-
cluding three basic expressions: neutral, angry and happy. Each
sequence is around 12 seconds long, but chosen so that the words
cover most viseme groups. The facial features are tracked us-
ing a technique similar to eigen-tracking [Black and Jepson 1996],
and the resulting data is compressed and represented as vectors as
shown in equation 3. A bilinear model is then fitted to this data
according to equation 4.



Subsets of keyshapes for different facial expressions are selected
from the training set using the method described in section 4. Al-
though the required number of keyshapes or basis vectors are often
chosen automatically to represent a fixed percentage of the source
variation, this still leaves the choice of cutoff percentage as a pa-
rameter to be chosen by the animator or system developer. For
the examples presented in this section the animator determined that
approximately 20 keyshapes adequately represented the range of
motion expected, and specified the number of keyshapes directly,
since this is more intuitive for artists than specifying the underlying
mathematical quantities. It should be noted that there is no require-
ment that the number of keyshapes be equal for each expression,
and artists tended to choose slightly fewer keyshapes for the neutral
expression since less variation existed in the data. The keyshapes
themselves are determined automatically and separately in each ex-
pression set. These keyshapes will be used for decomposing and
retargeting facial expressions.

For the output character, we used commercial models that have
built-in morph targets, such as mouth opening, eye browsing rais-
ing, etc., and sliders for manipulating the blendshape with the
morph targets. Keymorphs for the chosen keyshapes are con-
structed to correspond to each keyshape. Depending on the model,
the user’s skill, and inclination for perfectionism, this modelling
process can take anywhere from minutes to hours.

To capture training data for head motion synthesis, a marker-based
motion-capture system from Vicon is used for motion acquisition.
We employed seven cameras with 120 Hz visual sampling fre-
quency. Eight markers are placed on a plastic hair-band worn by
the actress, and two markers are placed on each of her ear lobes.
These points are rigid relative to each other, so we can compute 3D
rotations and translations using a technique based on singular value
decomposition (SVD) [Arun et al. 1987]. To increase the amount
of data, we add to the head motion data by mirror imaging the head
motion. We recorded a collection of 67 phrases. Each phrase con-
sists of two or three sentences. The actress was free to move from
waist up, and was informed that highly expressive motions were
desired, therefore the footage consists of a wide variety of motion.

To show the process of making a new expressive animation, we
videotaped an input test sequence about 13 seconds long which
consists of the actress saying a completely new set of sentences
with neutral facial expression. The test sequence is analyzed using
the bilinear model, and sequences with different facial expressions
are synthesized. We then decompose the reconstructed sequences
into a weighted combination of keyshapes. The resulting weights
are used for retargeting. Since we do not have a method for synthe-
sizing expressive audio, we recorded the actress speaking the same
text as the input test sequence but with different emotions. The au-
dio is used as input to the head motion synthesis. Finally, the timing
of the final animation is warped to match the new speech.

We show sample frames of the final animation in figure 8 and 9. The
full animation is in the supplementary video. Notice that the facial
expression does not stay constant throughout the whole animation,
instead, it seems to be more extreme in some frames and rather
neutral in others. This is desirable because a realistically animated
character will need to talk and convey emotions at the same time.
As one tries to make a certain mouth shape necessary for speaking,
the dynamics of the entire facial configuration change depending
on the viseme, and therefore it would be unnatural to hold a smile
constantly throughout the entire sequence. This variation is crucial
to natural looking facial animation.

To see the video of the complete animation, please visit the follow-
ing URL: http://graphics.stanford.edu/papers/moodswings/.

7 Conclusion and Discussion

This paper presents a method for creating expressive facial anima-
tion and retargeting it onto new characters with arbitrary appear-
ance. The example takes expressionless speech performance as in-
put, analyzes the content, and modifies the facial expression accord-
ing to a statistical model. The expressive face is then retargeted onto
a 3D character using blendshape animation. By explicitly maintain-
ing a facial expression vector in our model, we are able to choose
the appropriate combination of morph targets during retargeting.
The resulting animation is thus much more expressive than would
otherwise be possible. Finally, we present a head motion synthe-
sis algorithm which produces expressive head motion that is cor-
related to the audio signal, making the resulting facial animation
more lively and characteristic.

There are many opportunities to improve the techniques presented
here. First, the bilinear model we use for analyzing the expression
does not include temporal constraints, therefore the output synthe-
sis can sometimes be jittery. A method for incorporating tempo-
ral constraints would be valuable. Second, the fact that we com-
pletely rely on the implicit mapping from keyshapes to keymorphs
can sometimes be problematic, since it relies on the artist to main-
tain consistency in the mapping. For instance, if eyebrow raising
in one source keyshape is mapped to an ear enlarging in the tar-
get keymorph, then eyebrow raising in another keyshape should
also map to ear enlarging in that keymorph. Either an automated
method for ensuring consistency or a method of visual feedback to
guide the artist would be useful. Lastly, the head motion synthesis
technique presented does not address the dependency of head mo-
tion on speech context. For instance, in most cultures, nodding is
used for confirmation, and head shaking for negation. A method to
incorporate these contextual rules in the algorithm is needed.

Although specific methods and data types were used for the mod-
ules described in this paper, the methodology is much more general,
and we wish to reiterate our emphasis on building a complete pro-
cess for creating expressive animation. Changes could be made to
almost any module while preserving the pipeline, and we hope to
inspire future work by suggesting a couple of possibilities here. We
currently rely on 2D video as a source for deriving input shape and
emotion vectors. The use of video-rate 3D range images would
presumably result in better models, which will address issues re-
lating to robustness against lighting changes and out-of-plane head
movement. Furthermore, as with other video synthesis techniques,
the facial expression analysis method used in this paper is person
specific. Two possibilities can be explored. A more general sta-
tistical model, such as a multi-linear model described in [Vasilescu
and Terzopoulos 2003] could be used for representing the person’s
identity as the third dimension. Alternatively, more abstract facial
parameters such as those used in the field of facial expression recog-
nition could replace the appearance based facial features used here.
This would allow for the modeling of more general features that
would represent the facial expressions of all people. It would also
be interesting to explore physical simulation for creating the morph
targets. In this case, instead of blending the locations of vertices,
the output space would be a linear combination of physical parame-
ters. Linking expression to physical parameters may lead to a level
of performance beyond what is now possible.
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