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Motivation

Forward Rendering (Computer Graphics)

Complex Lighting (Environment Maps)




Motivation

Inverse Rendering (Computer Vision and Graphics)

Estimate BR
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Approach: Reflection is Convolution
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Related Work

Graphics: Prefiltering Environment Maps

Qualitative Observation that Reflection is Convolution
Miller & Hoffman 84, Greene 86
Cabral Max Springmeyer 87, Cabral Olano Nemec 99

Vision, Perception
D’'Zmura 91: Reflection as Operator in Frequency Space
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Fourier Analysis
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Fourier Analysis
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Fourier Analysis
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Insights

Reflected Light Field is Convolution of Lighting, BRDF
Convolution Theorem = Product of Fourier Coefficients

Signal Processing: Filter Lighting using BRDF Filter
Lightin Input Signal




Example: Directional Source at 6, =0
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Example: Mirror BRDF

A ) Op,
§OB) = S(B+0) g = 2

Bp,q — 5p,qL —p

Reflected Light Field corresponds directly to Lighting
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Example: Lambertian BRDF

Transfer function is Clamped Cosine

No output dependence, drop index q




Properties: Lambertian BRDF Filter

(—1)+D)
21 (4p? — 1)

P2p —

0.16

=)
[EEY
NS

o
[EEN
N

o

N
|
+—
c
2
=
=
(D)
o
O
S
2
S




Phong, Microfacet BRDFs
Rough surfaces blur highlights
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Inverse Rendering

Lighting

Known Unknown

Miller & Hoffman 84
K X D’'Zmura 9l
nown Marschner& Greenberg97

BRDF Sato et al. 97,




Inverse Rendering

General Complex lllumination?

Most inverse-BRDF methods use point source
QOutdoor methods: Sato&lkeuchi94, Yu&Malik98

Well-Posedness, Conditioning?




Inverse Lighting

b 2mppg

Well posed unless p_, , vanishes for all g for some p.
Well conditioned when Fourier spectrum decays slowly.




BRDF estimation

Well Posed if all terms in Fourier expansion L_, nonzero.
Well Conditioned when Fourier expansion decays slowly.

Need high frequencies in lighting (sharp features)

lll-conditioned for soft lighting (low-frequenc




Light Field Factorization

Up to a global scale, Light Field can be factored
Can simultaneously estimate Lighting, BRDF

Number of Knowns (B) > Number of Unknowns (L, p)
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3D

Fourier Series — Spherical Harmonics Y},,,(6, ¢)

— Representation Matrices of SO(3) D! («a, 3)
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Implications
Lambertian BRDF

2D: Only first 2 Fourier coefficients important
3D: First 2 orders of spherical harmonics — 99% energy

*x Only the first 9 coefficients are important
Similar results independently derived by Basri & Jacobs

Formally, recovery of radiance from irradiance ill-posed
* See On the relationship between Radiance and Irra-
diance: Determining the illumination from images of

a convex Lambertian object (submitted)
Phong & Microfacet BRDFs
Gaussian Filters. Results similar to 2D



Practical Issues (in 3D)

Frequency spectra from Incomplete Irregular Data

Concavities: Self-Shadowing and Interreflection

Textures: Spatially Varying BRDFs




Practical Issues (in 3D)

Frequency spectra from Incomplete Irregular Data

Concavities: Self-Shadowing and Interreflection

Textures: Spatially Varying BRDFs

Issues can be addressed; can derive practical algorithms




Experiment: Cat Sculpture
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Results: Cat Sculpture

Images below show new view, new lighting




Implications for Perception

Assume Lambertian BRDF, no shadows

Perception: Separate Reflectance, lllumination

Low frequency <« lighting, High frequency < texture
Theory formally: lighting — only low-frequency effects
Find high-frequency texture independent of lighting




Conclusion

Reflection as convolution

Fourier analysis gives many insights

Extends to 3D and results in practical inverse algorithms




