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Motivation

Forward Rendering (Computer Graphics)

• Complex Lighting (Environment Maps)



Motivation

Inverse Rendering (Computer Vision and Graphics)

• Estimate BRDF, Lighting, both BRDF and Lighting

? Theoretically Possible?

? Practically Feasible?
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Approach: Reflection is Convolution
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CONVOLUTION : B = L⊗ ρ̂



Related Work

Graphics: Prefiltering Environment Maps

• Qualitative Observation that Reflection is Convolution
• Miller & Hoffman 84, Greene 86
• Cabral Max Springmeyer 87, Cabral Olano Nemec 99

Vision, Perception

• D’Zmura 91: Reflection as Operator in Frequency Space

• Basri & Jacobs: Lambertian Reflection as Convolution



Related Work

Graphics: Prefiltering Environment Maps

• Qualitative Observation that Reflection is Convolution
• Miller & Hoffman 84, Greene 86
• Cabral Max Springmeyer 87, Cabral Olano Nemec 99

Vision, Perception

• D’Zmura 91: Reflection as Operator in Frequency Space

• Basri & Jacobs: Lambertian Reflection as Convolution

Our Contribution: Formal Analysis in General 2D case

• Key insights extend to 3D (more recent work)
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Fourier Analysis
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Insights

Reflected Light Field is Convolution of Lighting, BRDF

Convolution Theorem ⇒ Product of Fourier Coefficients

Signal Processing: Filter Lighting using BRDF Filter

Lighting ↔ Input Signal

BRDF ↔ Filter

Inverse Rendering is Deconvolution



Example: Directional Source at θi = 0

L(θi) = δ(θi) Lp =
1

2π

Bp,q = ρ̂−p,q

Reflected Light Field corresponds directly to BRDF

• Impulse Response of BRDF filter



Example: Mirror BRDF

ρ̂(θ′i, θ
′
o) = δ(θ′i + θ′o) ρ̂p,q =

δp,q
2π

Bp,q = δp,qL−p

Reflected Light Field corresponds directly to Lighting

Gazing Sphere



Example: Lambertian BRDF

Transfer function is Clamped Cosine

No output dependence, drop index q

Bp = 2πLpρ̂−p
Lambertian BRDF is Low-Pass filter

Incident Reflected



Properties: Lambertian BRDF Filter

ρ̂2p =
(−1)(p+1)

2π (4p2 − 1)
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Phong, Microfacet BRDFs

Rough surfaces blur highlights

Microfacet BRDF is Gaussian
• Hence, Fourier Spectrum also Gaussian

• Similar results for Phong (analytic formulae in paper)
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Inverse Rendering

Dana et al. 99
Debevec et al. 00, 
Marschner et al. 00, ...

BRDF Sato et al. 97,
?

Sato et al. 99  (shadows)

X

Yu et al. 99,
Unknown

Known

Miller & Hoffman 84
D’Zmura 91
Marschner&Greenberg97

Unknown

Known

Lighting

Often estimate Textured BRDFs (3rd axis of table)



Inverse Rendering

General Complex Illumination?

• Most inverse-BRDF methods use point source

• Outdoor methods: Sato&Ikeuchi94, Yu&Malik98

Well-Posedness, Conditioning?

• Well Posed if unique solution

• Well Conditioned if robust to noisy data

Factorization of BRDF,Lighting (find both)?

• Sato et al. 99 use shadows



Inverse Lighting

Lp = 1
2π

Bp,q
ρ̂−p,q

Well posed unless ρ̂−p,q vanishes for all q for some p.

Well conditioned when Fourier spectrum decays slowly.

• Need high frequencies in BRDF (sharp specularities)

• Ill-conditioned for diffuse BRDFs (low-pass filter)

Mirror Lambertian



BRDF estimation

ρ̂p,q = 1
2π
B−p,q
L−p

Well Posed if all terms in Fourier expansion L−p nonzero.

Well Conditioned when Fourier expansion decays slowly.

• Need high frequencies in lighting (sharp features)

• Ill-conditioned for soft lighting (low-frequency)

Directional Source Area Source (same BRDF)



Light Field Factorization

Up to a global scale, Light Field can be factored

• Can simultaneously estimate Lighting, BRDF

Number of Knowns (B) > Number of Unknowns (L , ρ)

• (B → 2D) > (L→ 1D + ρ→ 1/2(2D))

Explicit Formula in paper



3D

Fourier Series → Spherical Harmonics Ylm(θ, φ)

→ Representation Matrices of SO(3) Dl
mm′(α, β)
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2D: Bpq = 2πLpρ̂−p,q 3D: Blmpq = Llmρ̂lq,pq



Implications
Lambertian BRDF

• 2D: Only first 2 Fourier coefficients important

• 3D: First 2 orders of spherical harmonics→ 99% energy

? Only the first 9 coefficients are important

• Similar results independently derived by Basri & Jacobs

• Formally, recovery of radiance from irradiance ill-posed
? See On the relationship between Radiance and Irra-

diance: Determining the illumination from images of

a convex Lambertian object (submitted)

Phong & Microfacet BRDFs

• Gaussian Filters. Results similar to 2D



Practical Issues (in 3D)

Frequency spectra from Incomplete Irregular Data

Concavities: Self-Shadowing and Interreflection

Textures: Spatially Varying BRDFs



Practical Issues (in 3D)

Frequency spectra from Incomplete Irregular Data

Concavities: Self-Shadowing and Interreflection

Textures: Spatially Varying BRDFs

Issues can be addressed; can derive practical algorithms

• Use Dual Angular and Frequency-space Representations

• Associativity of Convolution

• See A Signal Processing Framework for Inverse Rende-

ring (submitted)



Experiment: Cat Sculpture

3 photographs of cat sculpture of known geometry

Microfacet BRDF under complex unknown lighting

Lighting also estimated

Then use recovered BRDF for new view, new lighting



Results: Cat Sculpture

Images below show new view, new lighting

REAL PHOTOGRAPH RENDERED IMAGE

Numerical values verified to within 5%



Implications for Perception

Assume Lambertian BRDF, no shadows

• Perception: Separate Reflectance, Illumination

• Low frequency ↔ lighting, High frequency ↔ texture

• Theory formally: lighting → only low-frequency effects

• Find high-frequency texture independent of lighting

• But ambiguity regarding low-frequency texture, lighting



Conclusion

Reflection as convolution

Fourier analysis gives many insights

Extends to 3D and results in practical inverse algorithms

Signal-Processing: A useful paradigm for Forward and

Inverse Rendering


