
Computational Video Editing for Dialogue-Driven Scenes

MACKENZIE LEAKE, Stanford University
ABE DAVIS, Stanford University
ANH TRUONG, Adobe Research
MANEESH AGRAWALA, Stanford University

Input Script and
Video Takes I am not buying that kid

a Christmas gift.

0. STACY
Stacy.

1. RYAN
He is a bad kid.

2. STACY
He’s family.

3. RYAN
Are you certain that your
cousin is his real father?
Because I’m pretty sure that
kid is the spawn of Satan.

4. STACY
Come on now, that’s a bit
dramatic.

5. RYAN

St
yl

e
A

St
yl

e
C

St
yl

e
B

STACY
I am not buying that
kid a Christmas gift

RYAN
Stacy.
 STACY
He is a bad kid.

0.65
0.40 0.40 0.12

0.66

0.77

Fig. 1. Given a script and multiple video recordings, or takes, of a dialogue-driven scene as input (le�), our computational video editing system automatically
selects the most appropriate clip from one of the takes for each line of dialogue in the script based on a set of user-specified film-editing idioms (right). For this
scene titled Flu�les, editing style A (top row) combines two such idioms; start wide ensures that the first clip is a wide, establishing shot of all the characters
in the scene, and speaker visible ensures that the speaker of each line of dialogue is visible. Editing style B (middle) adds in the intensify emotion idiom,
which reserves close ups for strongly emotional lines of dialogue, as in lines 4 and 5 where the emotional sentiment strength (shown in blue) is greater than
0.65. Editing style C (bo�om) replaces the intensify emotion idiom with emphasize character that focuses on the Stacy character whenever Ryan has a
particularly short line of dialogue, as in lines 1 and 3.

We present a system for e�ciently editing video of dialogue-driven scenes.
�e input to our system is a standard �lm script and multiple video takes,
each capturing a di�erent camera framing or performance of the complete
scene. Our system then automatically selects the most appropriate clip from
one of the input takes, for each line of dialogue, based on a user-speci�ed
set of �lm-editing idioms. Our system starts by segmenting the input script
into lines of dialogue and then spli�ing each input take into a sequence
of clips time-aligned with each line. Next, it labels the script and the clips
with high-level structural information (e.g., emotional sentiment of dialogue,
camera framing of clip, etc.). A�er this pre-process, our interface o�ers a set
of basic idioms that users can combine in a variety of ways to build custom
editing styles. Our system encodes each basic idiom as a Hidden Markov
Model that relates editing decisions to the labels extracted in the pre-process.
For short scenes (< 2 minutes, 8-16 takes, 6-27 lines of dialogue) applying the
user-speci�ed combination of idioms to the pre-processed inputs generates
an edited sequence in 2-3 seconds. We show that this is signi�cantly faster
than the hours of user time skilled editors typically require to produce such
edits and that the quick feedback lets users iteratively explore the space of
edit designs.

CCS Concepts: •Information systems→ Multimedia content creation;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2017/7-ART130 $15.00
DOI: h�p://dx.doi.org/10.1145/3072959.3073653

Additional Key Words and Phrases: video editing

ACM Reference format:
Mackenzie Leake, Abe Davis, Anh Truong, and Maneesh Agrawala. 2017.
Computational Video Editing for Dialogue-Driven Scenes. ACM Trans.
Graph. 36, 4, Article 130 (July 2017), 14 pages.
DOI: h�p://dx.doi.org/10.1145/3072959.3073653

1 INTRODUCTION
Digital cameras make it easy for �lmmakers to record many versions,
or takes, of a scene. Each new take can provide a unique camera
framing or performance, and skilled editors know how to combine
multiple takes to build a stronger narrative than any one recording
could capture. While well-cra�ed edits are not always obvious to
viewers [Smith and Henderson 2008], the best editors carefully cut
between di�erent framings and performances to control the visual
style and emotional tone of a scene [Arijon 1976; Bowen 2013; Katz
1991; Murch 2001]. Unfortunately, the process of editing several
takes together is slow and largely manual; editors must review each
individual take, segment it by hand into clips, and arrange these clips
on a timeline to tell a story. With existing frame-based video editing
tools this process is especially tedious, making creative exploration
of di�erent editing styles very di�cult.

In this paper we show that by focusing on a particular, but very
common type of scene – namely, dialogue-driven scenes – we can
create much more e�cient tools for editing video1. Such scenes are
1Our results can be viewed at h�p://graphics.stanford.edu/papers/roughcut

ACM Transactions on Graphics, Vol. 36, No. 4, Article 130. Publication date: July 2017.

http://graphics.stanford.edu/papers/roughcut

130:2 • Mackenzie Leake, Abe Davis, Anh Truong, and Maneesh Agrawala

one of the most common elements in live-action �lms and television.
From big-screen comedies and dramas, to small-screen sitcoms
and soap operas, conversational scenes take a large percentage
of screen time. Even action �lms use dialogue-driven scenes to
establish relationships between characters. A common work�ow
for producing such scenes is to �rst develop a script containing the
dialogue, and then capture multiple takes of the complete scene.
�e script provides an overall structure of the narrative, and our
editing tools are designed to let users make editing decisions based
on this structure.

We build on the established concept of �lm-editing idioms, which
represent rules-of-thumb for conveying a narrative through editing
decisions – e.g., ensure that the speaker of each line of dialogue is
visible, intensify emotion by using close ups for emotional lines, etc.
(Figure 1). Previous techniques have applied �lm-editing idioms to
the problem of virtual cinematography in 3D environments [Chris-
tianson et al. 1996; Elson and Riedl 2007; Galvane et al. 2015; He
et al. 1996; Jhala and Young 2005; Karp and Feiner 1993; Merabti et al.
2015], and to automatically edit video of classroom presentations
[Heck et al. 2007] or social gatherings [Arev et al. 2014]. While
we are inspired by this work, our system is the �rst to provide
idiom-based editing for live-action video of dialogue-driven scenes,
thereby enabling fast creative exploration of di�erent editing styles.

Our approach is designed to augment a typical work�ow for
producing dialogue-driven scenes. �e input to our system is a
standard �lm script, and several recorded takes of a scene. We
begin by running these inputs through our own segmentation and
labeling pre-processing pipeline, which automatically extracts high-
level structural information that allows our system to apply idioms
to the scene. Our tools let users explore di�erent editing styles
by composing basic �lm-editing idioms in di�erent combinations.
Finally, users can apply the resulting styles to any labeled scene,
immediately and automatically producing a fully edited video.

Our work makes three main contributions:
(1) Automatic segmentation and labeling pipeline. Most �lm-

editing idioms relate editing decisions to high-level structural in-
formation about a scene. For example, applying the speaker visible
idiom (Figure 1) requires at least two pieces of structural informa-
tion; (1) which video clips are associated with each line of dialogue,
and (2) whether or not the performer speaking the line is visible
in the corresponding clip. A key insight of our work is that, for
dialogue-driven scenes, we can extract this kind of structural infor-
mation automatically from a script and raw input videos. To this
end, we present an automatic segmentation and labeling pipeline
that breaks the script into lines of dialogue, then splits each take
into a sequence of clips time-aligned with each line, and �nally
extracts enough script- and clip-level labels to support a variety of
useful idioms (Section 4).
(2) Composable representation for �lm-editing idioms. Film-

makers usually combine multiple idioms to produce an edit that
conveys the narrative in a particular style. Figure 1 shows several
such idiom combinations for a scene. Flexibility in exploring dif-
ferent combinations of idioms is essential for �lmmakers to design
their own editing styles. �erefore, we propose representing indi-
vidual idioms as conditional probability distributions encoded in

Hidden Markov Models (HMMs) [Rabiner 1989]. �is approach lets
us combine idioms through simple arithmetic operations. Given a
combination of idioms, we construct the corresponding HMM so
that the maximum-likelihood set of hidden variables yields an edit
in the desired style (Section 5).

(3) Idiom-based editing interface. Existing video editing tools
force users to work with a frame-based timeline representation of the
raw video takes. Editors must therefore translate the high-level �lm
editing idioms into low-level operations such as selecting, trimming
and assembling clips into the edited result. �e tediousness of
scrubbing through a timeline with these tools makes it very di�cult
for editors to e�ciently explore the space of possible edits. In
contrast, we provide a prototype interface for idiom-based editing of
dialogue-driven scenes. Users can drag and drop basic idioms, adjust
their parameters and set their relative weights, to build custom idiom
combinations. Applying the resulting combination to the scene
generates an edited sequence with 2-3 seconds of processing time,
and users can iteratively update the idioms and their parameters
based on the result. Such immediate feedback is crucial for creative
exploration of the edit design space.

We demonstrate the e�ectiveness of our system by generating
edits for 8 short dialogue-driven scenes (< 2 minutes, 8-16 takes, 6-
27 lines of dialogue) in a variety of editing styles. �ese scenes each
required 110-217 minutes of system time to automatically segment
and label. Applying a user-speci�ed combination of idioms to such
pre-processed inputs takes 2-3 seconds. Our evaluation shows that
this is signi�cantly faster than the hours of user time skilled editors
typically require to produce such edits and that the quick feedback
lets users iteratively explore the space of edit designs.

2 RELATED WORK
Virtual cinematography. Using the conventions of cinematogra-

phy to convey animated 3D content, such as virtual actors per-
forming in a 3D game environment, is a well-studied problem in
computer graphics. �is work has focused on algorithmically encod-
ing �lm-editing idioms using knowledge-based planners [Jhala and
Young 2005; Karp and Feiner 1993], via declarative camera control
languages [Christianson et al. 1996] that can be modeled as �nite
state machines [He et al. 1996], or as penalty terms of an optimiza-
tion that can be solved using dynamic programming [Elson and
Riedl 2007; Galvane et al. 2014, 2015; Lino et al. 2011]. While our
work is inspired by these techniques, they rely on access to the
underlying sequence of geometry, events and actions (e.g., speak-
ing, reacting, walking) taking place in the virtual environment and
therefore cannot directly operate on live-action video. In contrast,
our system automatically extracts such scene structure from the
input script and the raw takes of live-action video. In addition, the
earlier methods do not provide an interface for combining multiple
idioms; the idioms are either baked in and cannot be changed or
require users to create new idioms by programming them using
specialized camera planning languages [Christianson et al. 1996;
Ronfard et al. 2013; Wu and Christie 2016]. Our editing system
includes an interface for combining a pre-built set of basic idioms
to explore the space of editing styles.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 130. Publication date: July 2017.

Computational Video Editing for Dialogue-Driven Scenes • 130:3

Idiom Name Description Labels Required

Avoid jump cuts Avoid transitions between clips that show the same visible speakers to prevent jarring transitions. (S)
(V) Speakers visible

Change zoom gradually Avoid large changes in zoom level that can disorient viewers and instead change zoom levels slowly. (S)
(V) Shot type: Zoom

Emphasize character
Do not cut away from shots that focus on an important character unless another character has a long line. �is
focuses the audience’s a�ention on the more important character.

(S)
(V) Speakers visible, Clip length

Intensify emotion Use close ups for particularly emotional lines to provide more detail in the performer’s face. (S) Emotional sentiment
(V) Shot type: Zoom

Mirror position
Select clips for one performer that most closely mirror the screen position of the other performer to create a
back-and-forth dynamic for a two person conversation.

(S)
(V) Screen position, Shot type: NumVis

Peaks and valleys
Zoom in for more emotional lines and zoom out for less emotional lines to allow the audience to see more detail
in the performer’ faces for emotional lines.

(S) Emotional sentiment
(V) Shot type: Zoom

Performance fast/slow Select shorter(longer) performances of a line to control the pacing of the scene. (S)
(V) Clip length

Performance loud/quiet Select louder(quieter) performances of a line to control volume of the scene. (S)
(V) Clip volume

Short lines Avoid cu�ing to a new shot for only a short amount of time to prevent rapid, successive cuts that can be jarring. (S) Speaker
(V) Speakers visible, Clip length

Speaker visible
Show the face of the speaking character on screen to help the audience keep track of which character is speaking
and understand the progression of the conversation.

(S) Speaker
(V) Speakers visible

Start wide
Start with the widest shot possible to establish the scene (i.e., start with establishing shot) and show the
relationship between performers and the surroundings.

(S)
(V) Shot type: Zoom

Zoom consistent Maintain a consistent zoom level throughout the scene to create a sense of balance between the performers. (S)
(V) Shot type: Zoom

Zoom in/out
Specify a preference for zooming in(out) throughout a scene to reveal more(less) detail in performers’ faces and
create more(less) intimacy.

(S)
(V) Shot type: Zoom

Table 1. Basic film-editing idioms for dialogue-driven scenes as distilled from books on cinematography and filmmaking. Our computational video editing
system allows users to combine these basic idioms to explore a variety of di�erent editing styles. The “Labels Required” column describes the high-level
structural information about the script (S) or the input video takes (V) required by our implementations of these idioms.

Instead of an idiom-based approach, Merabti et al. [2015] learn
�lm editing styles from existing �lms. �ey model the editing
process using a Hidden Markov Model (HMM) and hand-annotate
existing �lm scenes to serve as training data. But manual annotation
is tedious, and this approach still requires access to the underlying
scene actions when applying the learned style to new animated
scenes. Moreover, users cannot combine these multiple learned
styles to explore the editing design space. While we similarly model
the editing process with an HMM, our system directly encodes a set
of basic idioms and lets users combine them to produce a variety of
editing styles.

Fully-automated video editing. Fully automated techniques for
editing video footage have been developed for several domains.
Closest to our work are sytems for editing video of group meet-
ings [Ranjan et al. 2008; Takemae et al. 2003], educational lectures
and presentations [Heck et al. 2007; Liu et al. 2001; Shin et al. 2015],
and parties or other social gatherings [Arev et al. 2014; Zsombori
et al. 2011]. �ese methods combine general-purpose �lm editing
idioms (e.g., speaker visible, avoid jump-cuts) with domain speci�c
guidelines to produce the edited result. For example, with classroom
lectures Liu et al. [2001] suggest that the camera should occasionally
show local audience members to make the video more interesting to
watch. Arev et al. [2014] explain that in social gatherings the joint
center of a�ention should be onscreen as much as possible. All of
the techniques are designed to produce a single edited sequence as
output. While our video editing system similarly includes general-
purpose idioms with idioms speci�c to dialogue-driven scenes, it
also provides an interface for controlling the strength with which
di�erent idioms are applied.

Interactive video editing. While commericial video editing tools
are primarily frame-based, researchers have investigated the use

of higher-level editing tools. For example, Girgensohn et al. [2000]
analyze the raw footage to remove low quality (e.g., shaky, blurry,
or dark) segments. Users edit the video by rearranging the remain-
ing high-quality clips. Chi et al. [2013] use video analysis tech-
niques to segment demonstrations of physical procedures (e.g., cra�
projects, cooking, etc.) into meaningful steps that users can arrange
into tutorial videos. Recently, a number of researchers have devel-
oped transcript-based tools for editing talking-head style interview
video [Berthouzoz et al. 2012], condensing and rearranging speech
for audio podcasts [Rubin et al. 2013; Shin et al. 2016], annotating
video with review feedback [Pavel et al. 2016], selecting b-roll clips
for narrated documentary style video [Truong et al. 2016] and gen-
erating structured summaries of informational lecture videos [Pavel
et al. 2014]. Our system similarly leverages time-aligned scripts
to facilitate editing of dialogue-driven scenes. But, unlike earlier
methods, it also uses the structure imposed by the script to apply
higher-level idioms of �lm editing.

3 SYSTEM OVERVIEW
It is common practice in �lmmaking to start by writing a script
and then capture multiple takes of the scene ensuring that there is
enough coverage – variations in camera framings and performances
– within the takes to cover the entire script. Our computational video
editing system requires no modi�cation to this standard work�ow
and takes the script as well as the raw takes as input. Moreover, as
new video capture techniques, such as robotic cameras [Byers et al.
2003; Joubert et al. 2016; Kim et al. 2010] or multi-crop generation
from a single wide-angle camera [Gandhi and Ronfard 2015; Gandhi
et al. 2014], become available, our system can directly incorporate
these sources for the raw takes.

�e challenge of �lm-editing is to choose the most appropriate
camera framing and performance from the available takes for each

ACM Transactions on Graphics, Vol. 36, No. 4, Article 130. Publication date: July 2017.

130:4 • Mackenzie Leake, Abe Davis, Anh Truong, and Maneesh Agrawala

 STACY
I am not buying that
kid a Christmas gift.

 RYAN
Stacy.

STACY
He killed my sister’s
dog, Ryan. He killed
Fluffles.

...

...

...
...

Script Take 0 Take 1

Cl
ip

 0
Cl

ip
 1

Cl
ip

 2
6

Take 2 Take 3 Take 14

Li
ne

 2
6

Li
ne

 1
Li

ne
 0

Take 4

...

Fig. 2. Our system automatically breaks an input script into lines of dialogue spoken by each character (le�). This script contains 27 lines of dialogue. It then
time-aligns the script with each input take of the scene (15 takes in this case), and uses the alignment to divide each take into a sequence of clips, such that
each clip corresponds to a line of the script (right).

moment in the scene. While this is an extremely large space of
editing design choices, expert editors rely on the conventions of
cinematography to limit the size of this space to a manageable set
of choices. For example, one of the most common conventions is to
cut between lines of dialogue rather than within a line. Books on
cinematography and �lmmaking [Arijon 1976; Bowen 2013; Katz
1991; Murch 2001] describe a number of �lm-editing idioms that can
further guide the editing process. We have distilled the idioms found
in these books into a basic set that can be combined to produce a
variety of editing styles for dialogue-driven scenes. Many of the
idioms are based on higher-level structural information about the
scene. Table 1 presents the set of basic idioms included in our editing
tool along with the structural information that they use.

Given a script and multiple takes of a scene as input, our compu-
tational video editing system selects the most appropriate clip from
one of the takes for each line of dialogue in the script based on a
set of user-speci�ed idioms. Our system operates in two stages. In
the pre-processing stage, it applies an automatic segmentation and
labeling pipeline (Section 4) to extract structural information from
the input script and takes. �en, in the editing stage (Section 5), it
uses the structural information to apply the user-speci�ed idioms.
�e interface to our system (Section 6) lets users test di�erent com-
binations of the idioms and thereby explore the space of �lm-editing
styles.

4 PRE-PROCESS: SEGMENTATION AND LABELING
We pre-process the input script and takes in two steps. In the
segmentation step we break the script into lines and time-align
each such line with a corresponding clip from each input take. In
the labeling step we automatically extract additional structure and
high-level a�ributes for the script (e.g., emotional sentiment of each
line) and clips (e.g., the location of faces in each video clip).

4.1 Segmentation
Scripts are o�en forma�ed according to AMPAS screenplay format-
ting standard [Rider 2016] so that the name of the character appears
centered in all capitals above the dialogue spoken by that character
(Figure 2). We start by parsing the input script, assuming it is in
the AMPAS format, to produce an ordered sequence of lines, where
each line is labeled with the name of the character who speaks it.

Next, we time-align the text dialogue in the script with the speech
dialogue in each input video take using the phoneme-mapping
algorithm of Rubin et al. [2013]. �e aligner produces a word-level
mapping between the text and each take. We use this mapping
to segment each take into a sequence of clips, where each clip
corresponds to a line of dialogue from the script. In practice we
have found that performers o�en deviate from the exact wording of
a line in the script, adding or removing a word or phrase. Although
these deviations can cause misalignments between the script and
a take, as long as the misalignments are contained within a line of
dialogue, our approach properly segments each take into a sequence
of clips corresponding to each line.

If performers deviate signi�cantly from the script, misalignments
may cross multiple lines of dialogue. In such cases we �rst use either
an automatic text-to-speech tool [IBM 2016; Ochshorn and Hawkins
2016] or crowdsourcing transcription services, like rev.com, to
obtain a high-quality transcript of the input take. We then time-
align the accurate transcript to the take again using Rubin et al.’s
phoneme-mapping algorithm. Finally we apply Levenshtein’s edit
distance, using words as tokens, to align the accurate take-speci�c
transcript to the input script, and propagate this alignment to the
clips to obtain the correct clip to line correspondence.

�e result of this segmentation is that the input script S is divided
into a sequence of lines l0, ..., lL . Similarly each input video take tk
in the set of input takes T = {t0, ..., tN } is divided into a sequence
of clips ck0 , ..., c

k
L such that each clip cki corresponds to the line li .

4.2 Labeling
Our labeler analyzes the lines of text from the script as well as the
video clips associated with each line to generate additional structural
information about the scene. Each script or video label provides one
or more functions of the form f (li) or f (cki) that emits the label
values associated with line li or clip cki respectively.

Script Labels
We obtain the following labels for each line li in the script:

Speaker. As noted in Section 4.1, our segmentation algorithm
labels each line with the name of the speaking character. Provides
label function spkr (li).

ACM Transactions on Graphics, Vol. 36, No. 4, Article 130. Publication date: July 2017.

Computational Video Editing for Dialogue-Driven Scenes • 130:5

Emotional sentiment. We apply the NLTK [Bird 2006] sentiment
analysis algorithm to each line of dialogue to obtain positive and
negative valence probabilities (these sum to 1.0) as well as an
independent probability that the line is emotionally neutral. We
treat (1 − neutral) as a measure of the intensity of the emotion in
the line (e.g., arousal), since we expect intensely emotional lines
to have low neutrality and vice versa. Provides label functions
emPos (li), emNeд(li) and emInt (li).

Video Labels
We apply the face detection and tracking al-
gorithm of OpenFace [Baltrušaitis et al. 2016]
to each input video take to obtain 68 facial
landmark points (lying on the eyes, eyebrow
mouth, nose, and face contour) for each face
detected in each video frame. We also com-
pute the axis-aligned bounding box of the
landmarks points as the face bounding box for each frame (see in-
set). We use this information to compute the following labels for
each video clip.
Screen position. For each frame within a clip we compute the
center of each face bounding box. We then average this position
across all of the frames in the clip to obtain a clip-level label rep-
resenting the screen position of each performer’s face. Provides
label functions posx (cki) and posy (c

k
i).

Filmmakers typically classify the shot type of a clip based on the
number of performers in the frame (1-shot, 2-shot, etc.) and the
relative size (or zoom level) of the closest performer in the frame
(wide, medium, close up, etc.). �us, we label each clip with:
Shot type: NumVis. We compute the number of performers
in each clip as the median number of faces detected per frame
across the set frames contained in the clip. Provides label function
num(cki).
Shot type: Zoom. We identify the face with the largest median
bounding box height across the clip. We then compute the zoom
factor for the clip as the ratio of the median height of this face
to the height of the frame. Finally, we classify the clip into one
of seven of Bowen’s [2013] zoom-level categories – (1) extreme
wide shot (EWS), (2) wide shot (WS), (3) medium wide shot (MWS),
(4) medium shot (MS), (5) medium close up (MCU), (6) close up
(CU), (7) extreme close up (ECU) – using SciKitLearn’s K-nearest
neighbor classi�er [Pedregosa et al. 2011] on the zoom factor. To
build this classi�er we ran our face detector on 74 short scenes
we recorded, and randomly sampled 10 frames from each �lm
that included at least one detected face. We hand-labeled the face
bounding box and the zoom-level, and used this as training data
for our classi�er. �e labels are ordered from widest (e.g., smallest
face relative to frame) to closest so that we can use the zoom-
level number in our implementations of the �lm-editing idioms.
Provides label function zoom(cki).

Speakers visible. We identify the speakers that are visible in each
take by grouping clips according to the character listed as the
speaker of the corresponding line of dialogue and comparing aver-
age mouth motions of the faces between these groups. Consider a

L0 (Stacy) L1 (Ryan) L2 (Stacy) L3 (Ryan) L4 (Stacy) L5 (Ryan) L6 (Stacy) L7 (Ryan) L8 (Stacy) L9 (Ryan)

Ta
ke

 5
Ta

ke
 2

Clip 2 Clip 3 Clip 6 Clip 7

Fig. 3. To compute the speakers visible label for each video clip, we first
compute the median change in mouth area across all frame within the clip.
The graph shows this clip mouth motion for the clips from take 2 (green
line) and take 5 (blue line), corresponding to the first 10 lines of dialogue of
this scene. For clips in take 2 the mouth motion is much higher when Stacy
is speaking according to the script, than when Ryan is speaking, and vice
versa for take 5.

scene with two characters Stacy and Ryan, and two takes – close
ups of each character (Figure 3). For each frame i of these two takes
we compute the area contained by the mouth landmark points mi .
�e frame-to-frame change in mouth area |mi −mi−1 | is a mea-
sure of the mouth motion between frames. We compute the clip
mouth motion as the median mouth motion across all the frames
in the clip. We assume that within any take of Stacy (e.g., take
2), the clips corresponding to Stacy’s lines of dialogue will have
larger mouth motions compared to the clips for which Ryan is the
speaker. A similar argument applies takes of Ryan (e.g., take 5). So
for each take we group together all of the clips corresponding to
each speaking character based on the speaker script label. In this
case, we group together clips for lines 0, 2, 4, 6 and 8 because they
are Stacy’s lines and we group the remaining clips because they
are Ryan’s lines. �e speaking character associated with the group
with the highest average clip mouth motion is likely to be visible,
as large mouth motions imply that the mouth is visibly changing
in area a lot. In our example, we see that for take 2 the average
clip mouth motion for Stacy’s lines is higher than for Ryan’s lines,
and the opposite holds for take 5. �erefore, we label Stacy as
the speaker visible in every clip of take 2 and Ryan as the speaker
visible in every clip of take 5. For takes containing multiple faces
we apply the same algorithm separately considering groups for
each tracked face within the take. In such cases multiple characters
may be listed as visible. Provides label function svis (cki).
Clip volume. We compute the average root mean square (RMS)
energy of the audio signal to determine the volume of the spoken
performance for each clip. Provides label function avдvol (cki).
Clip length. We treat the total duration of the clip as a label.
Provides label function len(cki).

5 EDITING
To generate an edited sequence, we must select a single clip from
the available takes for each corresponding line of dialogue in our
script. For a scene with L lines and N recorded takes, this leaves us
a space of N L alternative sequences to choose from. Our task is to

ACM Transactions on Graphics, Vol. 36, No. 4, Article 130. Publication date: July 2017.

130:6 • Mackenzie Leake, Abe Davis, Anh Truong, and Maneesh Agrawala

Fig. 4. We use an HMM to model the editing process. Each hidden state
xi represents the selection of a clip cki from take tk to be used for the
corresponding line li . Each observation yi contains any script- or clip-level
labels that apply to line li .

�nd the sequence that best matches a set of user-speci�ed idioms,
or editing style. We build on the established machinery of Hidden
Markov Models (HMMs) [Rabiner 1989], which o�er a natural and
e�cient way to optimize over time-sequence data.

A standard HMM relates the time series of hidden states x =
x0, ...,xL to corresponding observations y = y0, ...,yL , through
a probability distribution P (x|y) with the pa�ern of conditional
dependencies shown in Figure 4. Each xi can take a value from
the state space T = {t0, ..., tN } for hidden variables, and each yi
can take a value from the space U = {u0, ...,uM } of observations.
�e HMM then describes P (x|y) through a N × 1 vector of start
probabilities b, a M ×M transition matrix A, and a N ×M emission
matrix E, where

bk = P (x0 = tk), s .t .
∑
k

bk = 1 (1)

Aj,k = P (xi+1 = tk |xi = tj), s .t .
∑
k

Aj,k = 1 (2)

Ej,k = P (yi = uk |xi = tj), s .t .
∑
j
Ej,k = 1 (3)

Given a sequence of observations y, the Viterbi algorithm [1967]
o�ers an e�cient way to calculate the maximum-likelihood se-
quence of unknown hidden states x̂ = arg maxx P (x|y).

In our se�ing, each hidden state xi represents the selection of a
clip cki from take tk to be used for the corresponding line li . Each
observation yi then contains any script- or clip-level labels that
apply to line li (e.g., emotional sentiment, speaker visibility). In this
case, b controls the probability of starting a scene with a particular
clip, A controls the probability of cu�ing from one clip to another,
and E controls the probability of using a particular clip to convey a
particular line of dialogue. Unlike classic HMMs, we allow A and E
to vary across time, noting that the Viterbi algorithm still produces
the correct maximum-likelihood sequence x̂ [Forney 1973].

One concern with this formulation is that the size of the emission
matrix E depends on M , the number of unique possible observations.
With a large space of potential labelings (possible values of yi),
E becomes impractically large. We address this by noting that,
in practice, calculating the maximum-likelihood sequence x̂ only
requires the columns of E that correspond to labelings we actually
encounter. �erefore, we only construct those columns of E that
correspond to these observations.

Another concern is that the size and number of b, A, and E matri-
ces depend on speci�c properties of our input (e.g., the number of
input takes and lines in our script). To separate the design of idioms
from these scene-speci�c properties, we de�ne b, A, and E implicitly
through the functions B (ck0), A (cki , c

j
i+1), and E (cki). We assume

that any function of clip cki has access to all labels associated with
cki and li . By taking these scene-speci�c properties as parameters,
our functions provide a recipe for constructing HMMs that can be
applied to any scene. �at is, we de�ne b, A, and E as

bk ∝ B (c
k
0), s .t .

∑
k

bk = 1 (4)

Aj,k ∝ A (cki , c
j
i+1), s .t .

∑
k

Aj,k = 1 (5)

Ej,k ∝ E (c
k
i), s .t .

∑
k

Ej,k = 1 (6)

Note that in Equation 6, we apply the summation constraint to
columns of E, rather than rows of E, as we did in Equation 3. Apply-
ing the constraint in this way lets us avoid enumerating the entire
observation space of possible labelings. �is constraint e�ectively
assumes a uniform prior over the space of all possible labelings.
While this approach introduces a constant of proportionality to
the probabilities P (x|y) calculated by Viterbi, the constant does not
a�ect the selection of the maximum-likelihood sequence x̂.

5.1 Encoding Basic Film-Editing Idioms
To encode a �lm-editing idiom into an HMM we must design the
functions B, A, and E to yield distributions P (x|y) that favor edit
sequences satisfying the idiom. Here we present example encodings
for a few basic idioms from Table 1. Encodings for the rest of the
idioms in Table 1 can be found in Appendix A.
Start wide. To encourage the use of a wide, establishing shot for
the �rst clip in the scene, we set the start probabilities to favor
clips that have smaller zoom-level values (i.e., wide shots rather
than close ups). We set the start probabilities as

B (ck0) =
1

zoom(ck0)
, A (cki , c

j
i+1) = 1, E (cki) = 1

We set probabilities for every zoom level so that if the scene does
not contain a particular zoom level (e.g., extreme wide shots) the
idiom will encourage the use of the next widest shot.
Avoid jump cuts. To avoid jarring cuts between clips of the same
visible speakers, we set the transition probabilities as

B (ck0) = 1, E (cki) = 1

A (cki , c
j
i+1) =




1 if k = j

1 if svis (cki) , svis (c
j
i+1)

ϵ otherwise

We favor two kinds of transitions, (1) those between clips that
remain on the same take k = j and (2) those that switch to a take in
which the set of speakers visible is di�erent svis (cki) , svis (c

j
i+1).

ACM Transactions on Graphics, Vol. 36, No. 4, Article 130. Publication date: July 2017.

Computational Video Editing for Dialogue-Driven Scenes • 130:7

Speaker visible. We encourage the use of clips the show the face
of the speaking character. We set the emission probabilities as

B (ck0) = 1, A (cki , c
j
i+1) = 1

E (cki) =



1, if spkr (li) ∈ svis (cki)
ϵ otherwise

so that we favor clips in which the speaker of the line is in the set
of speakers visible in the clip.
Intensify emotion. We encourage the use of close ups whenever
the emotional intensity of a line is high by se�ing the emission
probabilities as

B (ck0) = 1, A (cki , c
j
i+1) = 1

E (cki) =




1 if emInt (cki) > ϕ and zoom(cki) ≥ 6 (CU)
1 if emInt (cki) ≤ ϕ and zoom(cki) < 6 (CU)
ϵ otherwise

where ϕ is a user-speci�ed parameter for controlling the emotional
intensity threshold at which close ups (CU) or extreme closeups
(ECU) are preferred.

5.2 Composing Idioms
Filmmakers typically combine several di�erent idioms when editing
a scene. To let users explore this space computationally, we need a
way to combine di�erent idioms and a way to specify the relative
importance of di�erent idioms within a combination.

To combine multiple idioms we simply take an element-wise
product of their corresponding HMM parameters b, A, and E, and
renormalize according to Eq 4-6. �e resulting distribution P (x|y) as-
signs each edit sequence x a probability proportional to the product
of that sequence’s probabilities in the original idioms. Composing
two idioms in this manner simply produces a new HMM representa-
tion for the combined idiom, which can itself be further composed
with other HMM-based idioms. We let users control the relative im-
portance of di�erent idioms by specifying a weight w for each one.
We apply each weight as an exponent to its corresponding idiom
before normalization (le�ing w = 1 by default), le�ing the relative
weights of di�erent idioms control their relative in�uence on the
resulting combination. Negative weights can be used to encourage
edits that violate an idiom.

5.3 Tempo Control
Editors can also control the style and tone of a scene by changing
the amount of time le� between cuts. Most performers leave some
silence between the end of one line and the beginning of the line
that follows (otherwise, performers are talking over one another).
When we cut between two clips, we can choose how much of this
silence to take from the beginning and end of each clip, providing
some additional control over speed and tempo in our �nal edit. We
set this spacing between the lines using two tempo parameters, α
and β . We treat α as the fraction of available silence to be used
before each line, and β as the fraction of silence to be used a�er
each line. When consecutive clips are selected from the same take,
our system forces α + β = 1 to avoid skipping or repeating frames.
For all other cuts, we use global pair of α and β parameters set by the

user. If users set (α + β) < 1 then the spacing between lines shorten,
giving a sense of increased tempo and urgency. Alternatively, if
users set (α + β) > 1 then the spacing between lines lengthens,
giving the scene a slower feel. When (α + β) = 1, the tempo on
average matches that of the input takes. By default we set α = 0.9
and β = 0.1, based on a survey of such between-line spacing in
dialogue-driven scenes [Salt 2011].

6 INTERFACE
Figure 5 shows the main components of our editing interface. �e
Idiom Builder (C) is the primary tool for exploring the space of
possible edits. �e basic set of idioms are built into the interface
(Table 1) and appear in the “Basic Idioms List”. �e color (pink,
green, blue) of these basic idioms depends on whether the idiom
speci�es a start function B, a transition function A, or emission
function E, respectively.

Users build a custom idiom combination by dragging one or
more of these basic idioms into the “Idiom Building Area.” �e
interface automatically combines any basic idioms of the same type
by computing an element-wise product of the corresponding HMM
parameters b, A, and E, and renormalizing them (Section 5.2). �e
user can also specify the weight of each idiom in the combination
using the weight textbox to the right of each idiom. A few of our
basic idioms take user-speci�ed parameters. For example, the short
lines idiom takes a length threshold parameter to determine the
maximum length of a “short line” (Appendix A). Users can click on
any basic idiom to modify such parameters in a pop-up window.
�e “Idiom Properties” area lets users set a name and description
for the idiom they have built. Users can also adjust the the tempo
parameters α and β (Section 5.3) to set the timing between lines of
dialogue in the edited sequence.

A�er building an idiom, users click “Generate” to apply the result-
ing HMM and produce the edited sequence of clips that maximizes
the probability for the speci�ed combination. �e generated se-
quence populates the Edit View. Users can then further modify
the idiom or completely rebuild it to further explore the space of
edits. �e edit resulting from each new combination of idioms is
automatically saved along with the idiom itself so that users can
toggle between the di�erent edits using the “Saved Idioms” drop-
down menu. In addition, users can directly choose to swap out any
of the clips in a resulting edit with another clip of the same line
by selecting it from the Clip View. Users can also click on a clip
once it is in the Edit View to �x it in place, turning its black border
gray. With such �xed clips in place, users can click the “Generate”
bu�on to re-apply the HMM to generate the maximum-likelihood
edit sequence that passes through the �xed clips. Finally, users can
click the “Render” bu�on to export an MP4 video of the edit or
click “Export EDL” to save the edit as an edit decision list (EDL)
�le that can be loaded into traditional video editing so�ware like
Adobe Premiere, Avid Media Composer, or Final Cut Pro for further
re�nement.

Our interface also provides tools for viewing and manually cor-
recting labels, both on the script and on the video clips. For example,
the clip labeling interface (inset next page) includes a “Timeline”
that displays all of the clips within the take as alternating yellow
and green blocks. A grey block indicates a region of silence. Users

ACM Transactions on Graphics, Vol. 36, No. 4, Article 130. Publication date: July 2017.

130:8 • Mackenzie Leake, Abe Davis, Anh Truong, and Maneesh Agrawala

AA

Basic Idioms List Idiom Building Area Idiom Properties

B

C

D E

Fig. 5. Our film editing interface. The Script View (A) displays the character name and dialogue text for each line of the script. In the Clip View (B) each
column shows an input take, split into clips, with each clip thumbnail horizontally aligned with the corresponding line of dialogue. Each take is assigned a
unique color, and the colored bar under each clip thumbnail denotes the take it belongs to. Clicking on a clip plays it. The Idiom Builder (C) lets users combine
and apply one or more basic idioms to explore the space of editing styles. The resulting edit appears in the Edit View (D), and each clip in the edit sequence is
aligned with the corresponding lines of the script, just as in the Clip View. The “Player” View (E) lets users see the edited video and shows the color-coded
take sequence in the timeline bar below.

can click on a block to play the corresponding clip and to bring
up the “Clip Label” textbox showing all existing clip labels. Users

Clip Label Box
Tim

eline
Player

can manually correct any
errors in the labels and
even add new labels to
the clip. While we do
not make use of this
functionality for the re-
sults presented in this pa-
per, we have found these
tools to be useful for pro-
totyping new labels and
idioms.

7 RESULTS
We have used our computational video editing system to explore the
edit design space for 8 dialogue-driven scenes, as listed in Table 2.
Figures 1 and 6–9 show some of the di�erent editing styles we can
produce by combining our basic �lm-editing idioms. Supplemental
materials provide a more comprehensive set of examples with both
thumbnail strips and videos for each edit sequence. Our results are
best experienced as videos, and we encourage readers to watch the
videos provided in the supplemental materials.

We used the standard �lmmaking work�ow to obtain the input
scenes. For some, we wrote the dialogue ourselves (Fired, Flu�es,
Friend, Gold�sh, Krispies), while others use dialogue from existing
�lms (Baby Steps, Princess Bride, Social Network). We then used

Scene Inputs Pre-Processing Editing
Takes Lines Dur Align Face Lbls HMM Hand

Baby Steps 8 6 9.1m 2m 153m 11.4s 2s 105m
Fired 9 11 16.8m 5m 160m 15.0s 2s 105m
Flu�es 15 27 18.3m 4m 205m 22.3s 3s 180m
Friend 8 13 14.4m 3m 198m 14.7s 2s 135m
Gold�sh 8 19 9.6m 3m 107m 14.2s 2s 105m
Krispies 15 8 14.7m 2m 169m 19.9s 2s 90m
Princess Bride 15 13 13.3m 4m 213m 25.3s 2s 135m
Social Network 13 9 7.6m 2m 147m 14.8s 2s 90m

Table 2. For each scene we report Inputs: number of raw takes (Takes),
number of lines in script (Lines), and total duration of takes (Dur); Pre-
Processing: time to align script to each take (Align), time to detect faces
in each take (Face), and time to compute labels given face detections (Lbls);
Editing: time required to apply an HMM and generate an edit (HMM) and
time required by a skilled editor to generate an edit manually (Hand).

a single camera setup and recorded enough takes to ensure good
coverage of a variety of common camera framings. We worked with
amateur performers and usually captured several performances
with each framing. We recorded the raw footage at 1080p resolu-
tion at 23.976 frames per second, and our system maintains this
high-resolution throughout its pre-processing and editing stages.
�e supplemental videos were downsized as a post-process to re-
duce their �le size. All of the results shown in this paper and in
supplemental materials were generated using our fully automated
segmentation and labeling pipeline without manual correction in
our labeling interface. Although our editing interface allows users
to manually select a clip for each line of dialogue, we did not use

ACM Transactions on Graphics, Vol. 36, No. 4, Article 130. Publication date: July 2017.

Computational Video Editing for Dialogue-Driven Scenes • 130:9
St

yl
e

A
St

yl
e

B

Perhaps an arrangement
can be reached?

There will be no
arrangement, and you're
killing her.

Well if there can be no
arrangement, then we
are at an impasse.

I’m afraid so. I can't
compete with you
physically, and you're no
match for my brains.

You're that smart? Let me put it this way: have
you ever heard of Plato,
Aristotle, Socrates?

Yes.
3. MAN IN BLACK 4. VIZZINI 5. MAN IN BLACK 6. VIZZINI 7. MAN IN BLACK 8. VIZZINI 9. MAN IN BLACK

0.60
0.60 0.65

0.83

0.87

0.65

0.51

Fig. 6. Princess Bride. Editing style A combines three idioms: start wide, speaker visible and avoid jump cuts, while editing style B adds a fourth idiom,
peaks and valleys, which uses close ups for the peak emotional lines 6 and 7 (emotional sentiment strength shown in blue), but zooms out to medium and
wide shots for less emotional lines.

St
yl

e
A

St
yl

e
B

Not today. Remember? Oh, yeah. She called yesterday. Where was she going
to dinner tonight?

The Red Chili Hut. What is that? We ate there.
1. CRAIG 2. LINDA 3. CRAIG 4. LINDA 5. CRAIG 6. LINDA 7. CRAIG

Fig. 7. Goldfish. Editing style A combines the idioms: start wide and speaker visible with short lines. In this case, lines 2, 3 and 6 are short, and the edit
stays consistent on these lines with either of the longer adjacent lines on either side of them. In lines 2 and 3 the edit remains on the close up of Linda from
line 4. For line 6 it stays on the medium shot of Craig from line 5. Editing style B replaces the short lines idiom with emphasize character, and we specify
Craig as the character to emphasize on all short lines.

this functionality for the edited results we present and instead relied
solely on combining idioms to produce them.

In developing the various editing styles shown in Figures 1 and 6–
9, we �rst applied a standard editing style; we began the scene with
a wide, establishing shot to reveal all the characters and ensured
that the speaker of each line was visible (Flu�es Figure 1, style
A and Princess Bride Figure 6, style A). We then iterated on the
design of the resulting edit, adding or removing idioms or modifying
idiom parameters and weightings, to see how the changes would
a�ect the visual style and tone of the scene. For example, with
Flu�es (Figure 1), editing style B uses close ups to intensify strongly
emotional lines of dialogue, as when Stacy talks in line 4 about the
kid being the “spawn of Satan” and Ryan responds in line 5. In
editing style C we instead chose to emphasize Stacy and focus on
her as the more important character in the scene. For Princess Bride
(Figure 6), editing style B uses close ups for the peak emotional
lines, 6 and 7, to give a sense of intimacy with the performers at
emotional moments and uses wider shots for less emotional lines to
contrast with the emotional peaks.

Since Gold�sh (Figure 7) has many short lines, ensuring that the
speaker is visible produces many quick cuts. Editing styles A and B
use di�erent strategies to avoid such rapid cu�ing by either avoiding
cu�ing to a new take for short lines (style A) or by emphasizing
a particular character (style B). In Fired (Figure 8) the performers
varied the pace of their delivery in each take, with many long pauses
within and between lines. Editing styles A and B explore how
selecting either the longest or shortest performance of lines, along

with se�ing the tempo controls to increase or decrease the spacing
between lines, a�ects the pacing and overall feel of the scene. �e
Krispies (Figure 9) edits explore how the weight of an idiom can be
used to control its strength relative to other idioms in combination.
As the weight on the performance fast idiom is increased, it locally
takes precedence over the other idioms more and more o�en, and
the length of the edited result becomes shorter and shorter.

7.1 Evaluation
We evaluated our system on a 3.1GHz MacBook Pro Laptop with
16GB of memory and as Table 2 shows, the slowest stage of our
system is pre-processing. �e pre-processing time is dominated by
face detection and tracking, which can take several hours depending
on the number of takes. While we report the total time for running
each pre-processing step serially on each take, we could alternatively
run them in parallel on all the takes at once to signi�cantly speed up
the pre-processing time. We also expect that using lower-resolution
video subsampled in time would reduce this pre-processing time
further without appreciably decreasing the accuracy of our labels,
but we leave such optimization to future work. We note, however,
that the pre-process is fully automatic and does not require any
work from the user. In contrast to the pre-processing pipeline, the
time required by our system to generate an edit based on a user-
speci�ed combination of idioms is 2-3 seconds. �us, once our fully
automated pre-processing is complete, users can e�ciently explore
di�erent combinations of idioms.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 130. Publication date: July 2017.

130:10 • Mackenzie Leake, Abe Davis, Anh Truong, and Maneesh Agrawala
St

yl
e

A
St

yl
e

B

Why did Mr. Tate have to
�re us?

0. ALICE
You set a customer's hair
on �re.

1. BOB
Sure, but I mean, it was
an accident.

2. ALICE
Then you tried to put it
out with a three hundred
dollar bottle of wine.

3. BOB
What was I supposed
to do?

4. ALICE
You corked a bottle of
wine while her hair was
burning, and poured it on
that poor woman’s head.

5. BOB
What would you have
done?

5. ALICE

Fig. 8. Fired. Editing styles A and B both apply the start wide, speaker visible, and performance fast, or performance slow idioms respectively to control
the pacing of the scene. In style A the edit selects the shortest performance of each line subject to the other idioms to generate a faster overall sequence, while
in style B the edit selects the longest performance of each line relative to the other idioms to give the scene a slower feel. Note that in this example focusing
on timing is best viewed in supplemental materials.

St
yl

e
A

St
yl

e
B

You know Snap, Crackle,
and Pop?

0. ADA
The mascots for Rice
Krispies?

1. BETTY
Yea. Do you think
they're brothers, or
just really good friends?

2. ADA
I always �gured they were
just workplace
acquaintances.

3. BETTY
So just co-workers?

4. ADA Weight of Performance Fast Idiom

D
ur

at
io

n
in

 S
ec

on
ds

0 10 20 30 40 50
40

42

44

52

46

48

50

44

Fig. 9. Krispies. Editing styles A and B both combine the start wide, speaker visible, and avoid jump cuts idioms with the performance fast idiom, which
tries to select the fastest delivery of each line to control the pacing of the scene. In style A we set the weight of performance fast to 0, and, therefore, it
e�ectively ignores the idiom. We generate an edit that is 53 seconds long. In style B we set the weight to 50 so that the idiom is enforced even when it locally
conflicts with another idiom. For example, line 0 is no longer a wide, establishing shot in style B, despite the start wide idiom having been applied. The
resulting edit is 41 seconds long. The graph (right) shows how the length of the edit becomes shorter as we increase the weight of the performance fast
idiom from 0 to 50, and the idiom locally takes precedence over the other idioms more and more o�en.

Manually checking the pre-processed results, we found that our
phoneme-based script-to-take alignment would sometimes drop a
syllable at the start or ends of lines and occasionally include extra
words from an adjacent line. Although our tempo controls are
designed to insert space between lines and can thereby correct most
such errors in the edited result, it is possible to hear missing syllables
and repeated words in a few cases. We also manually checked the
labels generated based on our face detection and tracking (e.g., shot-
type: zoom, speaker visible, etc.) and found that while our face
detector could be inaccurate on a subset of frames within a clip,
when we aggregated the face-based labels across an entire clip, the
labels were correct for all 8 of our scenes.

7.2 Comparison to Professional Hand-Edited Results
We asked a professional �lm editor with 25 years of experience to
manually edit each of our scenes (see Supplemental Materials). We
asked him to ensure that the �nal edited results contained every
line in the script and to make sure that the audio and video were
cut together at the same point in time. We also asked him not to
add in fades or any other special e�ects. He was free to design
any editing style he thought best �t the scene and could use any
editing so�ware. He chose Avid Media Composer, a commercial
frame-based video editing tool.

As shown in Table 2, in total it took him 90-180 minutes to produce
each edited result. He reported that logging the raw takes to mark
boundaries between lines of dialogue took 15-30% of his time, while
the remainder was spent choosing an appropriate sequence of clips.
Although he only produced a single edit for each scene, he estimated
that re-editing a scene in a new style would require 60-90 minutes
depending on the complexity of the scene and the desired style. In
contrast, a�er our automatic pre-processing stage, our interface can
apply a set of idioms to generate an edited result in 2-3 seconds.
�is is a substantial savings of human time and e�ort that can be
spent iteratively designing and testing signi�cantly more stylistic
variations.

Overall, while his edited results appear more polished than those
generated by our system, many of the editing decisions are similar.
For example, he mostly cut between the lines of dialogue and used a
variety of shot types just as in most of the edits we designed with our
system. He also consistently started with a wide establishing shot.
He also told us that he strategically used close ups for emotional
dialogue, though the lines he considered most emotional sometimes
did not match those chosen by our system.

We also showed him our interface as well as a number of edited
results generated by our system. He was surprised by how e�ciently
our system could produce useful rough-cuts for a wide variety of

ACM Transactions on Graphics, Vol. 36, No. 4, Article 130. Publication date: July 2017.

Computational Video Editing for Dialogue-Driven Scenes • 130:11

Avoid jump cuts
Change zoom gradually
Emphasize character (A)
Emphasize character (B)

Intensify emotion
Mirror position

Peaks and valleys
Performance fast

Performance slow
Performance loud

Performance quiet
Short lines

Speaker visible
Start wide

Zoom consistent
Zoom in

Zoom out

Gold�shFlu�es Krispies Princess Bride Social Network
L0 L26 L0 L0 L0 L0L18 L7 L12 L8

Fig. 10. These matrices show the relative probabilities of each clip according to each of our idioms for five of the professional, hand-edited videos. The
probability of each clip (column) is evaluated relative to an optimal alternative, according to each idiom (row). The redness of each cell indicates how strongly
an idiom has been violated. We see that start wide and avoid jump cuts are followed by every clip in all scenes. Flu�les and Krispies are the only scenes
where speaker visible is violated - but every clip that violates this idiom satisfies an emphasize character idiom, suggesting that a combination of idioms
was e�ectively used.

di�erent editing styles. He told us he would never be able to produce
and explore that much stylistic variation without such a system.
While he thought that our results were excellent as a starting point
and acceptable as is for online video sharing, he also suggested that
they would need some re�nements before he would treat them as
ready for broadcast. Speci�cally, he would add L cuts and J cuts,
i.e., where the video transition between clips leads or lags behind
the audio transition [Bowen 2013]. Similarly, he would clean up
alignment errors, such as missing or repeated syllables and words,
and locally adjust the spacing between each adjacent pair of clips
rather than globally as with our tempo controls. When we told him
that he could export the edit produced by our system as an Edit
Decision List (EDL) and load it into Avid for such re�nement, he
saw how it could �t into his existing work�ow and signi�cantly
speed up his editing process.

To be�er understand how a human editor makes decisions, we
evaluate the probability of clip selections in the professional hand-
edited sequences with respect to each of our idioms. �e probability
of each clip is determined by the emission matrix corresponding
to its respective line and the transition matrices that correspond to
neighboring lines. Figure 10 visualizes the relative probabilities of
each clip in �ve of our scenes, according to each of our individual
idioms. Each row in the �gure corresponds to an individual idiom,
and each column corresponds to a di�erent clip from a di�erent
scene. Probabilities (shown in yellow for high probability, red for
low probability) are relative to the most probable alternative clip
choice, ensuring that all clips considered optimal by an idiom will
appear yellow in the idiom’s corresponding row. For example, in
the hand-edit of Flu�es, the professional editor fully followed the
avoid jump cuts, mirror position, and start wide idioms (row is
entirely yellow). For all of the lines where he breaks the speaker
visible idiom, he follows emphasize character (B – Stacy), sug-
gesting that his edit e�ectively combines these two idioms with
some weight.

8 LIMITATIONS AND FUTURE WORK
While our approach for editing dialogue-driven scenes enables cre-
ative exploration of the edit design space, it does have a few limita-
tions that o�er directions for future work.

Additional video genres. Our system utilizes a line-based segmen-
tation structure of dialogue-driven scenes to support idiom-based
editing. �e idioms we describe capture cinematographic conven-
tions speci�c to editing this type of video. Extending our approach
to other types of video (e.g., action scenes, step-by-step instructional
video, etc.) would require access to an underlying segment structure
(e.g., meaningful actions, each step of the instruction) and a set of
idioms for editing this genre of videos.

Discretization of possible cuts. We treat lines of dialogue as the
fundamental unit of time at which all editing decisions are made.
While our approach produces e�ective edits in many cases, this
limitation makes it impossible to cutaway from the speaker in the
middle of a line to show a reaction from another character. Although
it may be possible to work with units that are shorter than a complete
line (e.g., a phrase, a short �xed time interval, a frame), working at
a �ner scale could signi�cantly increase the size of the space over
which we would have to compute the edit. De�ning the appropriate
unit is an open challenge.

Continuity. Our system does not explicitly check for continuity
errors between adjacent clips. For example, hand gestures or the
positions of props can di�er between takes and cu�ing between
clips containing such di�erences can be jarring. In professional
�lmmaking, skilled performers learn to minimize such gestural
di�erences “hi�ing their marks” in every take. Alternatively, skilled
editors learn to carefully position their cuts to hide such continuity
errors. One way to correct continuity errors in our results is to
export the EDL into a frame-based editing tool and re�ne the cut
points manually. Automatically tracking di�erences between takes
to identify potential continuity errors is an open problem.

Performance-based labels and idioms. Performances can vary from
take to take as performers experiment with di�erent voicings, facial
expressions, and acting. However, our system does not currently
label many such performance variations, and, therefore, our id-
ioms cannot choose between performances based on these features.
However, researchers have developed techniques for tracking pitch,
timbre and other vocal variations [Rubin et al. 2015] as well as for

ACM Transactions on Graphics, Vol. 36, No. 4, Article 130. Publication date: July 2017.

130:12 • Mackenzie Leake, Abe Davis, Anh Truong, and Maneesh Agrawala

identifying facial expressions [Baltrušaitis et al. 2016]. We are ex-
ploring how to incorporate such labels as well as designing idioms
that make use of them.

Capture-time editing and feedback. One direction for future work
is to use our system to aid �lmmakers during the capture process.
For example, to run our system in the �eld so that as the raw takes
are captured they are immediately pre-processed, and �lmmakers
can then generate complete edits within a few hours of collecting the
footage. While the bo�leneck in our approach is the pre-processing
step, we believe it is possible to signi�cantly speed it up. Giving
�lmmakers the option of editing their footage as they capture it in
the �eld might allow them decide whether shooting another take is
necessary.

9 CONCLUSION
Editing dialogue-driven scenes of live-action video is a laborious
process with frame-based video editing tools. Even for skilled ed-
itors, the e�ort required to choose clips and arrange them into a
sequence that conveys the story makes it di�cult to explore the
space of editing styles. Our computational video editing system
signi�cantly speeds up the editing process by le�ing editors specify
the set of �lm-editing idioms they would like to enforce and then
automatically generating the corresponding edit in a few seconds.
�is lets editors iteratively adjust the edit by trying di�erent com-
binations of idioms and testing di�erent parameters to quickly see
how their scene would appear using a variety of editing styles. As
video becomes an increasingly dominant form of storytelling, we
believe that such automated editing systems will be essential for
increasing production quality.

10 ACKNOWLEDGMENTS
We thank Lex Davis, Shannon Davis, Jane E, Alex Hall, Zhengtao Jin,
Craig Leake, Linda Leake, Lily Liu, Kristen Pilgrim, Daniel Ritchie,
Kaitlyn Spees, and Evan Strasnick for performing in our videos.
We also thank Flu�es for giving his life so that we may have this
paper. Our research is supported by �e Brown Institute for Media
Innovation.

REFERENCES
Ido Arev, Hyun Soo Park, Yaser Sheikh, Jessica Hodgins, and Ariel Shamir. 2014. Auto-

matic editing of footage from multiple social cameras. ACM Transactions on Graphics
(TOG) 33, 4 (2014), 81.

Daniel Arijon. 1976. Grammar of the �lm language. Focal Press London.
Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency. 2016. OpenFace: an

open source facial behavior analysis toolkit. In IEEE Winter Conference on Applica-
tions of Computer Vision.

Floraine Berthouzoz, Wilmot Li, and Maneesh Agrawala. 2012. Tools for placing cuts
and transitions in interview video. ACM Transactions on Graphics (TOG) 31, 4 (2012),
67.

Steven Bird. 2006. NLTK: The natural language toolkit. In Proc. of COLING/ACL. 69–72.
Christopher J Bowen. 2013. Grammar of the Edit. CRC Press.
Zachary Byers, Michael Dixon, Kevin Goodier, Cindy M Grimm, and William D Smart.

2003. An autonomous robot photographer. In Proc. of IROS, Vol. 3. 2636–2641.
Pei-Yu Chi, Joyce Liu, Jason Linder, Mira Dontcheva, Wilmot Li, and Björn Hartmann.

2013. Democut: Generating concise instructional videos for physical demonstrations.
In Proc. of UIST. 141–150.

David B Christianson, Sean E Anderson, Li-wei He, David H Salesin, Daniel S Weld, and
Michael F Cohen. 1996. Declarative camera control for automatic cinematography.
In AAAI/IAAI, Vol. 1. 148–155.

David K Elson and Mark O Riedl. 2007. A Lightweight Intelligent Virtual Cinematogra-
phy System for Machinima Production.. In AIIDE. 8–13.

G David Forney. 1973. �e Viterbi algorithm. Proc. IEEE 61, 3 (1973), 268–278.
�entin Galvane, Rémi Ronfard, Marc Christie, and Nicolas Szilas. 2014. Narrative-

driven camera control for cinematic replay of computer games. In Proceedings of the
Seventh International Conference on Motion in Games. 109–117.

�entin Galvane, Rémi Ronfard, Christophe Lino, and Marc Christie. 2015. Continuity
editing for 3d animation. In AAAI Conference on Arti�cial Intelligence.

Vineet Gandhi and Rémi Ronfard. 2015. A computational framework for vertical video
editing. In 4th Workshop on Intelligent Camera Control, Cinematography and Editing.

Vineet Gandhi, Remi Ronfard, and Michael Gleicher. 2014. Multi-clip video editing
from a single viewpoint. In Proceedings of the 11th European Conference on Visual
Media Production. 9.

Andreas Girgensohn, John Boreczky, Patrick Chiu, John Doherty, Jonathan Foote,
Gene Golovchinsky, Shingo Uchihashi, and Lynn Wilcox. 2000. A semi-automatic
approach to home video editing. In Proc. of UIST. 81–89.

Li-wei He, Michael F Cohen, and David H Salesin. 1996. �e virtual cinematographer: A
paradigm for automatic real-time camera control and directing. In Proc. of SIGGRAPH.
217–224.

Rachel Heck, Michael Wallick, and Michael Gleicher. 2007. Virtual videography. ACM
Transactions on Multimedia Computing, Communications, and Applications (TOMC-
CAP) 3, 1 (2007), 4.

IBM. 2016. IBM Speech to Text Service. h�ps://www.ibm.com/smarterplanet/us/en/
ibmwatson/developercloud/doc/speech-to-text/. (2016). Accessed 2016-12-17.

Arnav Jhala and Robert Michael Young. 2005. A discourse planning approach to
cinematic camera control for narratives in virtual environments. In AAAI, Vol. 5.
307–312.

Niels Joubert, Jane L E, Dan B Goldman, Floraine Berthouzoz, Mike Roberts, James A
Landay, and Pat Hanrahan. 2016. Towards a Drone Cinematographer: Guid-
ing �adrotor Cameras using Visual Composition Principles. arXiv preprint
arXiv:1610.01691 (2016).

Peter Karp and Steven Feiner. 1993. Automated presentation planning of animation
using task decomposition with heuristic reasoning. In Graphics Interface. 118–118.

Steven Douglas Katz. 1991. Film directing shot by shot: Visualizing from concept to screen.
Gulf Professional Publishing.

Myung-Jin Kim, Tae-Hoon Song, Seung-Hun Jin, Soon-Mook Jung, Gi-Hoon Go, Key-
Ho Kwon, and Jae-Wook Jeon. 2010. Automatically available photographer robot
for controlling composition and taking pictures. In Proc. of IROS. 6010–6015.

Christophe Lino, Mathieu Chollet, Marc Christie, and Rémi Ronfard. 2011. Computa-
tional model of �lm editing for interactive storytelling. In International Conference
on Interactive Digital Storytelling. Springer, 305–308.

Qiong Liu, Yong Rui, Anoop Gupta, and Jonathan J Cadiz. 2001. Automating camera
management for lecture room environments. In Proc. of CHI. 442–449.

Bilal Merabti, Marc Christie, and Kadi Bouatouch. 2015. A Virtual Director Using
Hidden Markov Models. In Computer Graphics Forum. Wiley Online Library.

W Murch. 2001. In the Blink of an Eye (Revised 2nd Edition). (2001).
Robert Ochshorn and Max Hawkins. 2016. Gentle: A Forced Aligner. h�ps:

//lowerquality.com/gentle/. (2016). Accessed 2016-12-17.
Amy Pavel, Dan B Goldman, Björn Hartmann, and Maneesh Agrawala. 2016. VidCrit:

Video-based Asynchronous Video Review. In Proc. of UIST. ACM, 517–528.
Amy Pavel, Colorado Reed, Björn Hartmann, and Maneesh Agrawala. 2014. Video

Digests: A Browsable, Skimmable Format for Informational Lecture Videos. In Proc.
of UIST. 573–582.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
�irion, Olivier Grisel, Mathieu Blondel, Peter Pre�enhofer, Ron Weiss, Vincent
Dubourg, and others. 2011. Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research 12, Oct (2011), 2825–2830.

Lawrence R Rabiner. 1989. A tutorial on hidden Markov models and selected applications
in speech recognition. Proc. IEEE 77, 2 (1989), 257–286.

Abhishek Ranjan, Jeremy Birnholtz, and Ravin Balakrishnan. 2008. Improving meet-
ing capture by applying television production principles with audio and motion
detection. In Proc. of CHI. 227–236.

April Rider. 2016. For a Few Days More: Screenplay Forma�ing Guide. h�ps://www.
oscars.org/sites/oscars/�les/scriptsample.pdf. (2016). Accessed 2016-12-17.

Remi Ronfard, Vineet Gandhi, and Laurent Boiron. 2013. �e Prose Storyboard Lan-
guage. In AAAI Workshop on Intelligent Cinematography and Editing, Vol. 3.

Steve Rubin, Floraine Berthouzoz, Gautham J Mysore, and Maneesh Agrawala. 2015.
Capture-Time Feedback for Recording Scripted Narration. In Proc. of UIST. 191–199.

Steve Rubin, Floraine Berthouzoz, Gautham J Mysore, Wilmot Li, and Maneesh
Agrawala. 2013. Content-based tools for editing audio stories. In Proc. of UIST.
113–122.

Barry Salt. 2011. Reaction time: How to edit movies. New Review of Film and Television
Studies 9, 3 (2011), 341–357.

Hijung Valentina Shin, Floraine Berthouzoz, Wilmot Li, and Frédo Durand. 2015. Visual
Transcripts: Lecture Notes from Blackboard-style Lecture Videos. ACM Trans.
Graph. 34, 6 (2015), 240:1–240:10.

Hijung Valentina Shin, Wilmot Li, and Frédo Durand. 2016. Dynamic Authoring of
Audio with Linked Scripts. In Proc. of UIST. 509–516.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 130. Publication date: July 2017.

https://www.ibm.com/smarterplanet/us/en/ibmwatson/ developercloud/doc/speech-to-text/
https://www.ibm.com/smarterplanet/us/en/ibmwatson/ developercloud/doc/speech-to-text/
https://lowerquality.com/gentle/
https://lowerquality.com/gentle/
https://www.oscars.org/sites/oscars/files/scriptsample.pdf
https://www.oscars.org/sites/oscars/files/scriptsample.pdf

Computational Video Editing for Dialogue-Driven Scenes • 130:13

Tim J Smith and John M Henderson. 2008. Edit Blindness: The relationship between
a�ention and global change blindness in dynamic scenes. Journal of Eye Movement
Research 2, 2 (2008).

Yoshinao Takemae, Kazuhiro Otsuka, and Naoki Mukawa. 2003. Video Cut Editing
Rule Based on Participants’ Gaze in Multiparty Conversation. In Proc. of Multimedia.
303–306.

Anh Truong, Floraine Berthouzoz, Wilmot Li, and Maneesh Agrawala. 2016. �ickcut:
An interactive tool for editing narrated video. In Proc. of UIST. 497–507.

Andrew Viterbi. 1967. Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm. IEEE Trans. on Information �eory 13, 2 (1967), 260–
269.

Hui-Yin Wu and Marc Christie. 2016. Analysing Cinematography with Embedded
Constrained Pa�erns. (2016).

Vilmos Zsombori, Michael Frantzis, Rodrigo Laiola Guimaraes, Marian Florin Ursu,
Pablo Cesar, Ian Kegel, Roland Craigie, and Dick CA Bulterman. 2011. Automatic
generation of video narratives from shared UGC. In Proc. of Hypertext. 325–334.

A APPENDIX: IDIOM IMPLEMENTATIONS
We detail the implementation of the basic �lm-editing idioms in
Table 1 that were not presented in Section 5.1.

Change zoom gradually. To avoid large changes in zoom level
we favor transitions in which the di�erence between zoom levels
is at most equal to 1. We set the transition probabilities as

B (ck0) = 1, E (cki) = 1

A (cki , c
j
i+1) =




1, if dzm (cki , c
j
i+1) ≤ 1

1
dzm (cki ,c

j
i+1)

otherwise

dzm (cki , c
j
i+1) = |zoom(cki) − zoom(c

j
i+1) |

If the di�erence in zoom is greater than 1, we lower the transition
probability based on the inverse of the di�erence to encourage
zoom transitions that are as small as possible.

Emphasize character. To avoid cu�ing away from an important
character during short lines from the other characters, we favor
two kinds of transitions; (1) transitions in which the length of both
clips is long, and (2) transitions in which one of the clips is short
and the important character is in the set of visible speakers for
the other clip and both clips are from the same take. Note that the
second case is described using two symmetric conditions in the
following equations.

B (ck0) = 1, E (cki) = 1

A (cki , c
j
i+1) =




1 if len(cki) > ϕ and len(c
j
i+1) > ϕ

1 if ρ ∈ svis (cki) and len(c
j
i+1) ≤ ϕ and k = j

1 if ρ ∈ svis (c ji+1) and len(cki) ≤ ϕ and k = j

ϵ otherwise

where ρ is a parameter specifying the the name of the character
to emphasize and ϕ is a parameter for se�ing the time threshold
for short lines (1.25 seconds by default).

Mirror position. We encourage transitions between 1-shots of
performers that mirror one another’s horizontal positions on screen.

We set the transition probabilities as

B (ck0) = 1, E (cki) = 1

A (cki , c
j
i+1) =




1
dmir (cki ,c

j
i+1)

if num(cki) = num(c
j
i+1) = 1

and siдn(mid (cki)) , siдn(mid (c
j
i+1))

ϵ otherwise

mid (cki) =midpt − posx (c
k
i)

dmir (c
k
i , c

j
i+1) = | |mid (cki) | − |mid (c

j
i+1) | |

wheremidpt is the x-position of the center of the screen.
Peaks and valleys. We encourage close ups when the emotional
intensity of lines is high, wide shots when the emotional intensity
is low, and medium shots when it is in the middle. We set the
emission probabilities as

B (ck0) = 1, A (cki , c
j
i+1) = 1

E (cki) =




1 if emInt (cki) > ϕ and zoom(cki) ≥ 6 (CU)
1 if emInt (cki) ≤ (1 − ϕ) and zoom(cki) ≤ 2 (WS)
1 if (1 − ϕ) < emInt (cki) ≤ ϕ and 2 < zoom(cki) ≤ 6
ϵ otherwise

where ϕ is a user-speci�ed parameter for controlling the emotional
intensity threshold at which close ups (CU, ECU), medium (MWS,
MS, MCU) and wide (EWS, WS) shots are preferred.
Performance fast. We encourage selection of the shortest clip for
each line by se�ing the emission probabilities as

B (ck0) = 1, A (cki , c
j
i+1) = 1

E (cki) =
1

len(cki)

Performance slow. We encourage selection of the longest clip for
each line by se�ing the emission probabilities as

B (ck0) = 1, A (cki , c
j
i+1) = 1

E (cki) = len(c
k
i)

Performance loud. We encourage selection of the loudest clip for
each line by se�ing the emission probabilities as

B (ck0) = 1, A (cki , c
j
i+1) = 1

E (cki) = avдvol (cki)

Performance quiet. We encourage selection of the quietest clip
for each line by se�ing the emission probabilities as

B (ck0) = 1, A (cki , c
j
i+1) = 1

E (cki) =
1

avдvol (cki)

Short lines. Like the emphasize character idiom, our goal is to
avoid cu�ing away to a new take on short lines. �us, if one of
the clips in a transition is short, we encourage a transition that

ACM Transactions on Graphics, Vol. 36, No. 4, Article 130. Publication date: July 2017.

130:14 • Mackenzie Leake, Abe Davis, Anh Truong, and Maneesh Agrawala

stays on the same take as the other clip as long as the speaker is
visible in the other clip. We set the transition probabilities as

B (ck0) = 1, E (cki) = 1

A (cki , c
j
i+1) =




1 if len(cki) > ϕ and len(c
j
i+1) > ϕ

1 if spkr (li) ∈ svis (cki) and len(c
j
i+1) ≤ ϕ and k = j

1 if spkr (li+1) ∈ svis (c
j
i+1) and len(cki) ≤ ϕ and k = j

ϵ otherwise
where ϕ is a parameter for se�ing the time threshold for short
lines (1.25 seconds by default).
Zoom consistent. We encourage the use of a consistent zoom
level throughout the scene by se�ing the transition probabilities
as

B (ck0) = 1, E (cki) = 1

A (cki , c
j
i+1) =




1 if zoom(c
j
i+1) = zoom(cki)

ϵ otherwise
Zoom in/out. We encourage either zooming in or zooming out by
se�ing the transition probabilities as

B (ck0) = 1, E (cki) = 1

A (cki , c
j
i+1) =




2ϕ if zoom(c
j
i+1) > zoom(cki)

2 if zoom(c
j
i+1) = zoom(cki)

2ϕ if zoom(c
j
i+1) < zoom(cki)

where ϕ is a user-speci�ed parameter that controls the aggressive-
ness of the zoom. Positive values of ϕ encourage zooming in while
negative values of ϕ encourage zooming out.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 130. Publication date: July 2017.

	Abstract
	1 Introduction
	2 Related Work
	3 System Overview
	4 Pre-Process: Segmentation and Labeling
	4.1 Segmentation
	4.2 Labeling

	5 Editing
	5.1 Encoding Basic Film-Editing Idioms
	5.2 Composing Idioms
	5.3 Tempo Control

	6 Interface
	7 Results
	7.1 Evaluation
	7.2 Comparison to Professional Hand-Edited Results

	8 Limitations and Future Work
	9 Conclusion
	10 Acknowledgments
	References
	A Appendix: Idiom Implementations

