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Abstract

Mostalgorithmsfor 3D reconstructionfromimagesuse
cost functionsbasedon SSD,which assumethat the sur-
facesbeingreconstructedare visible to all cameras. This
makes it dif�cult to reconstructobjectsthat are partially
occluded. Recently, researchers working with large cam-
era arrayshaveshownit is possibleto “see through” oc-
clusionsusinga techniquecalledsyntheticaperture focus-
ing. Thissuggeststhat wecandesignalternativecostfunc-
tionsthatarerobustto occlusionsusingsyntheticapertures.
Our paperexploresthisdesignspace. Wecompareclassical
shapefromstereowith shapefromsyntheticaperture focus.
Wealsodescribetwovariantsof multi-view stereobasedon
color mediansand entropy that increaserobustnessto oc-
clusions.We presentan experimentalcomparisonof these
costfunctionson complex light �elds, measuringtheir ac-
curacyagainsttheamountof occlusion.

1. Intr oduction

Reconstructingthe shapeand appearanceof objects
behind partial occlusionsis a challengefor current 3D
reconstructionalgorithms, even for Lambertian scenes.
Oneproblemis thelimited numberof views;asaresult,we
maynotbeableto reliablymatchpartiallyoccludedobjects
acrossthe views. Another problemis the cost functions
usedby mostalgorithms(basedon SSD,SAD, normalized
cross-correlation,etc.) implicitly assumethat the surfaces
being reconstructedare visible in all views. Occlusions
maybecompensatedfor laterin thepipeline[9] or ignored
completely[10].

The �rst problemcanbe addressedby simply imaging
the scenewith suf�ciently many cameras(e.g., a 100-
cameraarray[19]). Whenwe have enoughcameraswhich
spana baseline(or syntheticaperture) wider than the oc-
cludersin scene,wecancaptureenoughraysthatgoaround
the foregroundoccludersandare incidenton the partially

occludedbackgroundobjects. Using a techniquecalled
syntheticaperture focusing, researchershave used large
cameraarraysto image objectsbehind denseocclusions
like foliage[7, 15] or peoplein crowds[16].

To addressthe secondproblem, we need to design
alternative cost functions which are robust to occlusion.
Oneapproachis to projectall cameraimagesontoa virtual
focalplaneandcomputetheirmean.In theresultingimage,
objectsat the depthof the focal planewill be alignedand
sharpwhile occludersin front will be blurred. By using
a sharpnessmeasure,we could identify the objectsat the
current depth. This is a syntheticapertureanalogueof
shapefrom focus. A secondapproachis to enforcecolor
constancy asin standardmulti-baselinestereo,while being
robust to outliersresultingfrom occlusions.This raisesthe
question:whichof thetwo (stereoor focus)is better?

In this paper, we explorecostfunctionsfor reconstruct-
ing occludedsurfacesfrom syntheticapertures.Our �rst
contribution is a comparisonof shapefrom stereowith
shapefrom syntheticaperturefocus. Experimentsindicate
that focusperformsbetterfor suf�ciently texturedsurfaces
as occlusion increases. Our secondcontribution is the
developmentof two variants of stereo,which are more
robustto occlusionsthanstandardmulti-view stereo.These
arebasedoncolormediansandentropy.

Therearetwo major differencesbetweenour work and
previous reconstructionalgorithms. First, we use many
morecamerasspanningawidersyntheticaperturethanpre-
viousmethods.Second,we seekto reconstructobjectsoc-
cludedin a signi�cant portionof the input images,i.e. we
expectseveraloutliersamongstpixelsto bematchedacross
views. This is amoregeneralandharderproblemthanstan-
dardmulti-view stereo[10], whichassumesnooutliers.The
occludersthemselves are not reconstructedexplicitly; we
rely on theincreasednumberof viewswith a largeaperture
androbustcostfunctionsto achieve goodreconstruction.
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Figure1. Stereovs. focusfor a surfaceat depthd0 with a constantintensitygradient.(a) Cameralayout,andraysconsideredfor depth
hypothesesd = d0 andd = d1 . (b) The intensitypro�les of themeanof cameraimages,projectedon to depthplanesd = d0 (top) and
d = d1 (bottom). (c) Comparingtheresponseof stereo(variance)andfocus. Thevariancehasa parabolicpro�le, with theminimumat
thecorrectdepthd0 . Themeanimagedoesnotvarywith depth,soshapefrom focusis notableto reconstructdepthaccurately.

1.1.RelatedWork

In their comparisonof shapefrom stereoversusfocus
[12], Schechneret al observed that focus ought to be
more robust than stereoin presenceof occlusionswhile
stereoought to be more accuratedue to larger baselines.
This suggeststhat a syntheticaperturebaselinemay let
us achieve both accuracy and robustness,and has partly
inspired this research. The use of a �nite apertureof a
singlelensto seebeyondoccluderswasstudiedby Favaro
[5]. The limited aperturesize(andhencelimited depthof
�eld) of a single lens limits the depthresolutionand the
size of occludersthat can be seenaround. Moreover, a
singlelenscapturesa (3D) stackof 2D imagesfocusedat
depths�x ed during acquisition,as opposedto a 4D light
�eld capturedby a syntheticaperture. This prevents us
from using robust cost functions basedon mediansand
entropy.

In [8], Kang et al introduceda cost function basedon
view selectionto increaserobustnessto occlusions.Their
methodreconstructsthedepthsof only thosepointsvisible
in a referenceview. Our cost function basedon color
mediansgeneralizesthis, so that visiblity in a reference
view is not required.

Several algorithms for 3D reconstructionwork by
partitioning the scene into layers at different depths
[17, 2, 20]. Translucentlayerswere consideredin [14].
These approachesusually begin by �rst estimating the
foregroundlayer and using residualsto estimatethe rest.
For complex foreground occluderswhose reconstruction
may be error-prone, errors in foreground estimationcan
severely degrade the reconstructionof the background.

Sinceweseekto developcostfunctionsrobustto occluders,
wedonotrequireaninitial reconstructionof theforeground
layer. In our experiments,we restrict the searchfor the
occludedobjectsto depthsbehindtheforeground.

Algorithmsbasedonvoxel coloring[13] attemptacom-
plete scenereconstructionusing a front-to-back sweep.
Sincea thresholdis typically usedto committo foreground
occluders,erroneousassignmentsresultin backgroundpix-
els marked asforegroundor foregroundpixels not deleted
in backgroundreconstruction.Both casesdegradethe re-
constructionof the background.Thresholdingeffectscan
beamelioratedto anextentusingiterativeprobabilisticvari-
ants[4], but thesearenotguaranteedto converge.In section
4, wecompareourapproachwith voxel coloring.

2. Stereovs. Focus

We begin by analytically comparingshapefrom (syn-
thetic)focusandshapefrom stereo.A commonframework
to describethetwo is thespace-sweepapproachof Collins
[3]. This involvessweepinga planeover a rangeof depths
in thescene.At eachdepth(moreprecisely, disparity)d we
computea cost value for every pixel (x; y) on the plane,
creatingadisparityspaceimage(DSI) D(x; y; d) [14]. The
main differencebetweenstereoand focusmethodsis that
they usedifferent cost functionsin constructingthe DSI.
A depthmapd(x; y) is computedby �nding theminimum
costsurfacefrom theDSI: d(x; y) = argmind D(x; y; d).

We now de�ne thecostfunctionsusedby stereoandfo-
cus. For simplicity, we work in �atland: the camerasare
recti�ed line camerasandthe depthof a pixel determines
its horizontaldisparitywith respectto areferenceview [10].



Let I i;d (x) denotetheimagefrom camerai projectedonthe
planecorrespondingto disparityd. Themeanandvariance
of thewarpedimagesfrom theN camerasaregivenby

I d(x) =
1
N
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1
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(I i;d (x) � I d(x))2 (2)

Shapefromstereousesthevarianceof raysvd(x; y) through
the3D point(x; y; d) asthecostfunction.Shapefrom focus
usesthesharpnessof thesyntheticallyfocusedimageI d(x)
asthecostfunction:

f d(x) = �
�

@I d(x)
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� 2

(3)

Which methodis better? Onestraightforward observa-
tion we can make is that focus is lesssensitive to sensor
noise(due to averaging)and varying bias acrosscameras
(sinceit computesa spatialderivative) thanstereo.While
both would fail for texturelesssurfaces,we canshow that
there exist textured surfaces that can be reconstructed
accuratelyby stereobut notby focus(seeFig 1.)

Theorem1. Shapefromstereocanreconstructthedepth
of diffuse surfaceswhose2nd and higher order spatial
derivativesof radiancevanish,whereasshapefrom focus
requires the radianceto havenon-zero 3rd-order spatial
derivatives.

Proof. Considera frontoparallelsurfaceat disparityd0

with intensity given by I (x). We computethe response
of stereoand focus at a point x0 for disparity d1. Let
� = d1 � d0 and x i the displacementof camerai from
the centralview. Given recti�ed images,we cancompute
I i;d 1 (x) usingaTaylor seriesexpansion:

I i;d 1 (x0) = I (x0 + x i � )

= I (x0) + (x i � )I x (x0) +
(x i � )2

2
I xx (x0) + : : :

Using eqs. (1-3) and
P

i x i = 0, we cancomputethe
meanimage,varianceandfocusto be
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We seethat for a non-zerogradientI x (x0), stereohas
a minimum at � = 0, enablingaccuratereconstruction.

However, if the 3rd order gradientI xxx (x0) is zero, the
focusresponsewill be approximatelyconstantas� varies.
This completestheproof. Thebehavior of stereoandfocus
for a thespecialcaseof a constantgradienttexture I (x) is
shown in Fig. 1. A weaker resultfor singlelensapertures
was proved in [6], where they showed that shapefrom
focusrequirestextureswith nonzero2nd-ordergradients.

In theanalysisabove,we have ignoredocclusions.How
wouldtheresponseof stereoandfocuschangeif thesurface
we aretrying to reconstructis occludedin someviews? In
general,theresponsewoulddependonthenatureof theoc-
cluder. For shapefrom focus,the meanimagewill have a
blurredimageof theoccludersuperimposedonit at thecor-
rect depthhypothesis. If the apertureis wide, the blurred
imageshouldnotcontributeto thespatialderivatives.How-
ever, the focusresponsewill be attenuatedby the cameras
that do not observe the surfacebeing reconstructed.For
shapefrom stereo,the variancewill not approachzero at
the correctdepthandmay not attaina minimum thereun-
lesstheoccluderis of a fairly uniform color. In Section4,
we show experimentalcomparisonsof stereoandfocusfor
reconstructingoccludedsurfaces.

3. Median and Entr opy

One problemwith stereoand focus is that they assign
equalimportanceto all raysthroughthe3D point (x; y; d)
in constructingtheDSI. Whenreconstructingoccludedsur-
faces,many of theserays will actually hit occludersand
shouldthereforebe consideredasoutliers. In this section,
we introducetwo variantsof stereothat try to mitigatethe
effectsof outliersdueto occlusionson depthandcolor re-
construction.

3.1.Shapefr om median

This approach is inspired by the observation that
amongstmeasuresof centraltendency, themedianis more
robust to outliers than the mean. Considerthe caseof
grayscaleimages. Supposethat a surfacepoint (x; y; d)
correspondsto pixels S = f I i;d (x; y) : 1 � i � N g
in theN input images.If thepoint is occludedin someim-
ages,themedianI M = medianS will bea betterestimator
for the surfaceintensity than the mean. This is precisely
why mediancolorshavebeenusedin matteextraction[18].
However, in additionto estimatingthesurfaceintensitywe
needa cost function to quantify the accuracy of the depth
estimate.Thecostfunctionweusefor constructingtheDSI
is themediandistanceof all theraysfrom I M , i.e.,

D (x; y; d) = medianfj I i;d (x; y) � I M j : 1 � i � N g

When a surfacepoint is visible in more than half the
cameras,themediancolor at thecorrectdepthshouldcor-



respondto thecolor of theoccludedsurface. As thenum-
ber of occludedcamerasincreasesover 50%, the estimate
of the medianbegins to breakdown. An interestingques-
tion is how to extendshapefrom medianto color images.
Thereare many ways to generalizethe notion of median
to higherdimensions[1]. We have experimentedwith the
component-wisemedianandtheL1 median,andobserved
they yield similar results.We preferto usethecomponent-
wisemedian,sinceit canbecomputedin O(N ) time.

3.2.Shapefr om entropy

Let usconsiderthedistribution of intensitiesof therays
through the point (x; y; d), which may be visualizedby
plotting a histogram.If thedepthhypothesisd is incorrect,
these rays will hit different points on the foreground
occludersandbackgroundsurface.Giventexturedsurfaces,
we would expect the histogramto be spreadover a wide
rangeof intensities. If the depthhypothesisd is correct,
rays hitting the backgroundsurface will be clustered
over a small rangeof intensities,while thosehitting the
occluderwill still bespreadout resultingin a morepeaked
histogram. This suggeststhat we can use the Shannon
entropy of the intensity histogramas a cost function for
constructingthe DSI. The entropy is maximized for a
uniform distribution and decreasesas the intensitiesare
clusteredtogether.

For 8-bit grayscaleimages,wedivide theintensityrange
into K = 16 bins. If thenumberof raysin bin i is bi , the
entropy is givenby

H = �
KX

i =1

bi

N
log

bi

N
:

(For color images,we use entropy of a color histogram
where bins correspondto cubes in RGB space). The
entropy costfunction penalizesraysthat fall into different
bins. Unlike stereo,thepenaltydoesnot increasewith the
distancebetweendifferent ray colors. This helpsmitigate
thein�uence of outliersondepthreconstruction.

There are two interesting properties of shape from
entropy we would like to mention. First, given N rays,
the entropy canvary in incrementsof 1

N from 0 to logN .
Thus, the precisionof entropy is O( 1

N ), making it more
preciseasthe numberof views increases.Secondly, since
wearebinningtherays,entropy doesnotusethelowerbits
of the intensity values(for K = 16 bins, we useonly 4
bits perchannelto computethebin index for a pixel). This
could be exploited for saving storageor bandwidth,and
alsomakesentropy lesssensitive to colormiscalibration.

Both entropy and shapefrom medianretain the desir-
ablepropertyof shapefrom stereoof beingsensitiveto �rst-
ordertexturegradients.Both of thesestartto fail whenthe
occluderis of a fairly uniform color andtheamountof oc-
clusionexceeds50%- in this case,thereconstructedcolor
is thecolor of theoccluderratherthanthebackgroundsur-
face.

4. Experimentsand Results

We have comparedthe performanceof the four cost
functions—stereo(variance),focus, median,and entropy
on reconstructingoccludedobjectsin two acquiredlight
�elds of complicatedscenesandonesyntheticscene. As
weareavoidingexplicit reconstructionof theoccluders,we
limit our searchto a rangeof depthsbehind the occlud-
ers. The accuracy of the depthmapscomputedby each
methodis comparedwith groundtruth. To visualize the
reconstructedappearanceof theoccludedsurfaces,wecon-
structwinnercolor imagesobtainedby computingthecolor
for eachpoint on the reconstructedsurface,andprojecting
the surface(with color) into the centralcamera. In shape
from focusandstereo,themeancolorof raysthroughasur-
facepoint is usedasacolorestimate.Thewinnercolor im-
ageis just a syntheticallyfocusedimageon a focal surface
correspondingto the computeddepthmap. In shapefrom
median,we usethemediancolor ratherthanthemean.For
entropy, weusethemodalcolor from thecolorhistogram.

4.1.Experiment 1: Syntheticscene

To measurethe performanceof our cost functions
(stereo,focus,median,entropy) undervarying amountsof
occlusion,we experimentedwith a syntheticscenewith
precisely controlled amountsof occlusion. The scene
consistsof two planes.Thebackgroundplane(Fig. 2a)has
theCVPRlogocompositedwith whitenoiseto ensurethere
is suf�cient textureat eachpoint. Theforegroundoccluder
is composedof horizontalandverticalbars.We controlthe
amountof occlusion(between19% and75%) by varying
the spacing betweenthe bars. We have experimented
with threedifferenttextureson the foregroundbars:white
noise(strongtexture), pink noise(weak texture, obtained
by convolving white noise with a 5 � 5 box �lter) and
uniformly coloredbars(Fig. 2 b-d).

For reconstruction,we used81 views of this scene.The
camerapositionswere on a 9 � 9 planar grid perturbed
by randomoffsets. (This is to avoid producinga strong
correlationbetweenvisibility andcamerapositions,which
rarelyarisesin practiseandwould introduceadditionerrors
in reconstruction,contaminatingour simulation). The two
planeswereseparatedby a disparityof 40 pixelsacrossthe
syntheticaperture.We measuredhow well eachof thefour



(a) Background layer

(h) Focus(g) Entropy(f) Median

(c) 49% occlusion(b) 31% occlusion (d) 64% occlusion

(e) Stereo

(j) White noise textured occluder(i) Uniform colored occluder (k) Pink noise textured occluder

Figure2. A synthetictwo-planesceneusedfor performanceevaluationof our four cost functionsfor reconstructingoccludedsurfaces.
(a) Unoccludedview of backgroundplane.(b-d) Thebackgroundplanebehindoccludingbars.We experimentedwith thethreedifferent
texturesonthebarsasshown. By varyingthespacingbetweenthebars,wecanvary theamountof occlusion.(e)-(h)Reconstructionof the
backgroundplane(winnercolor images)usingstereo,median,entropy andfocusrespectively for thesetupin (c). 81 views of thescene
wereused.(i-k) Plotof reconstructionaccuracy (percentageof pixelsreconstructedcorrectly)vs. theamountof occlusionfor thefour cost
functionsfor thethreedifferentoccludertextures.

costfunctionsreconstructedthebackgroundplane.

Over the rangeof occlusiondensitiesand foreground
texturesin our experiments,entropy doesbest,with near-
perfectreconstructionsup to 65% occlusion. Shapefrom
medianstartsto fail asthe occlusiondensitycrosses50%.
For all threeforegroundtextures,thefractionof background
pointscorrectlyreconstructedby focusis about15%higher
thanthatfor regularstereo.This suggeststhatgivenanad-
equatelytexturedsurface,focusdoesbetterthanSSDin the
presenceof occlusions. Note that real scenescould have
surface textures that stereocan reconstructbut not focus
(Theorem1); in which casestereowould obviously do bet-
ter. Plotsof reconstructionaccuracy versusamountof oc-
clusionfor the threeoccludertexturesareshown in Fig. 2
(i-k). The entiresetof scenesandthe reconstructionsob-
tainedareavailableonourwebsite[11].

4.2.Experiment 2: CD casebehind plants

This light �eld wasacquiredusinga singlecameraon
a computercontrolledgantry. The camerapositionsspan
a 21 � 5 grid (syntheticaperturesize 60cm by 10cm).
Our goal was to reconstructa picture of the StraussCD
casebehind the plants (Fig. 3 a). For ground truth, the
depthof theCD casewasestimatedmanually. To estimate
the amountof occlusionfor the CD case,we capturedan
identicallight �eld of thesamescenewithout theoccluding
plants and used image differencing to determinewhich
pixels wereoccluded. We canthuscomputean occlusion
map image,whereeachpixel in the occlusionmapstores
the number of views in which the correspondingpixel
on the CD is occluded(Fig. 3 b). Given ground truth
and an occlusion value, we determinefor each of the
four cost functionsthe percentageof pixels reconstructed
correctly(within onedisparitylevel) for differentamounts
of occlusion(Fig. 3 c). Thehistogramindicatesthatstereo,



median,andentropy startto performpoorly astheamount
of occlusionincreases,with entropy performingbest. The
median-basedcostfunctionstartsto fail oncetheamountof
occlusionexceeds50%.Depthfrom focusdoesnotdowell
on thewhole,but it overtakesthestereo-basedapproaches
asocclusionincreasesbeyond60%.

The winner color imagesfrom eachcost function are
shown in Fig. 4 (top row). Thetext on theCD caseis most
legible for entropy andmedian.Thebottomrow shows the
reconstructionof the CD obtainedby voxel coloring after
reconstructinganddeletingtheoccludingplants.Voxel col-
oringusesathresholdto committo foregroundoccludersso
that pixels correspondingto the occluderaredeletedprior
to reconstructingthebackground.Notethatthereis no sin-
gle thresholdfor which the CD is reconstructedproperly.
At low thresholds,all foregroundpixels are not deleted;
at higher thresholds,many backgroundpixels are recon-
structedasforegroundanddeleted.Thereconstructeddepth
mapsfor thecompletesceneareavailableat [11].

4.3.Experiment 3: DenseFoliage

This light �eld (Fig. 5 a) wascapturedusinganarrayof
88cameras.Thesceneconsistsof apersonandastatuebe-
hindadenseivy wall. Wecomputedaper-cameramattefor
theoccluderusingstandardbluescreentechniques.While
we do not have groundtruth for this scene,we can esti-
matevisibility nearthetruedepthsusingtheoccludermat-
tes.Theobjectsbehindtheivy areoccludedin about70%of
thecameras.Entropy, medianandvoxel coloringall failed
to reconstructany part of the occludedobjectsaccurately.
This is due to the high degreeof occlusion,and the rela-
tively uniform color of theoccluder. Focusdoessomewhat
better than stereo— it is able to reconstructthe statue's
torchandtheperson's facewherestereofailed(Fig. 5 b,c).

5. Conclusionsand Futur eWork

In this paper, we have studiedcost functions for re-
constructingoccludedsurfacesusing syntheticapertures.
Most existing algorithms use cost functions developed
for reconstructingthe (unoccluded)foreground. We have
studiedan alternative approach:designingcost functions
that leveragea large syntheticapertureand large number
of views to be robust to occlusions. This is useful when
the foreground is dif�cult to reconstructaccurately(see,
for example,Fig. 5) and in applicationslike surveillance
of crowded areaswherereconstructingthe appearanceof
occludedobjectsmaybeof primaryinterest.

While the cost functions we have developed show
encouragingresults,we believe we have merelyscratched
thesurfaceof this designspace.We would like to explore

ways to combine information from different cost func-
tions to gain better results. Our approachcould also be
combinedwith existing multi-layer estimationalgorithms
to improve reconstructionof all layers. One limitation
of our work is that we have not enforced any spatial
regularization. We would like to �nd ways of extending
algorithmsbasedon graph cuts or belief propagation to
handleoutliers due to denseocclusion. While our focus
in this work has been on diffuse surfaces, we believe
robust cost functions like medianand entropy may also
beusefulfor thereconstructionof non-Lambertiansurfaces.

Finally, we would like to develop a theoreticalmodel
that explains the performancelimits of syntheticaperture
reconstructionalgorithms. Sucha model shouldincorpo-
rate the size, �ll factor, and texture of the occluders,the
texture on the occludedsurfacesto be reconstructed,and
thesizeandnumberof views of thesyntheticaperture.
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Figure4. Experiment2: Winnercolor imagesfor reconstructingtheStraussCD casebehindplants(seeFig. 3). The top row shows the
reconstructedsurfaceandcolor usingentropy, median,focusandstereo.Thebottomrow shows thereconstructionusingvoxel coloring,
theseimagesareobtainedby deletingall voxels up to the depthof the foregroundoccluders,andprojectingthe rest into the reference
camera.For low thresholds,somepointson theCD surfacearenot reconstructedat all. At high thresholds,thecomputeddepthfor points
on theCD casecanbemuchcloserto thecamerasthanthe truedepth,causingthemto bedeletedwith theoccluders.Thesetwo effects
causetheholesvisible in thereconstruction.

(d) Unoccluded objects(c) Focus reconstruction(b) Stereo reconstruction(a) Image from one camera

Figure5. Experiment3: Reconstructionof a personandstatuebehinda densewall of arti�cial ivy. Thehigh occlusion(about70%)and
uniformcolorof theoccludermakesthisa failurecasefor medianandentropy. Focusdoessomewhatbetterthanstereoon theright partof
thestatueandtheperson's face(shown in bluecircles).Image(d) wascreatedby manuallycompositinglayersafterdeletingtheoccluded
pixelsusingbluescreening.


