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Abstract

Mostalgorithmsfor 3D reconstructiorfromimagesuse
costfunctionsbasedon SSD,which assumethat the sur
facesbeingreconstructedare visible to all camens. This
malesit dif cult to reconstructobjectsthat are partially
occluded. Recently reseachers working with large cam-
era arrayshaveshownit is possibleto “see through” oc-
clusionsusinga techniquecalled syntheticapertuie focus-
ing. Thissugeststhat we candesignalternativecostfunc-
tionsthatare robustto occlusionsisingsynthetiapertuies.
Our paperexploresthisdesignspace We compaeclassical
shaperomstereowith shapefromsyntheticapertuse focus.
We alsodescribetwo variantsof multi-view steleobasedon
color mediansand entropy that increaserobustnesgo oc-
clusions. We presentan experimentalcomparisonof these
costfunctionson comple light elds, measuringtheir ac-
curacy againsttheamountof occlusion.

1. Intr oduction

Reconstructingthe shapeand appearanceof objects
behind partial occlusionsis a challengefor current 3D
reconstructionalgorithms, even for Lambertian scenes.
Oneproblemis thelimited numberof views; asaresult,we
maynotbeableto reliably matchpartially occludedobjects
acrossthe views. Another problemis the cost functions
usedby mostalgorithms(basedon SSD,SAD, normalized
cross-correlationetc.) implicitly assumehatthe surfaces
being reconstructedre visible in all views. Occlusions
may be compensatetbr laterin the pipeline[9] or ignored
completely[10Q].

The rst problemcanbe addressedby simply imaging
the scenewith sufciently mary cameras(e.g., a 100-
cameraarray[19]). Whenwe have enoughcameraavhich
spana baseline(or syntheticapertue) wider thanthe oc-
cludersin scenewe cancapturesnougtraysthatgoaround
the foregroundoccludersand are incident on the partially
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occludedbackgroundobjects. Using a techniquecalled
syntheticapertuie focusing researcherdiave usedlarge
cameraarraysto image objects behind denseocclusions
like foliage[7, 15 or peoplein crovds[16].

To addressthe secondproblem, we needto design
alternatve cost functions which are robust to occlusion.
Oneapproachs to projectall cameramagesontoa virtual
focal planeandcomputetheir mean.In theresultingimage,
objectsat the depthof the focal planewill be alignedand
sharpwhile occludersin front will be blurred. By using
a sharpnessneasurewe could identify the objectsat the
currentdepth. This is a synthetic apertureanalogueof
shapefrom focus. A secondapproachs to enforcecolor
constang asin standardnulti-baselinestereowhile being
robustto outliersresultingfrom occlusions.This raisesthe
guestion:which of thetwo (stereoor focus)is better?

In this paper we explore costfunctionsfor reconstruct-
ing occludedsurfacesfrom syntheticapertures. Our rst
contrikution is a comparisonof shapefrom stereowith
shapefrom syntheticaperturefocus. Experimentsndicate
thatfocusperformsbetterfor sufciently texturedsurfaces
as occlusionincreases. Our secondcontribution is the
developmentof two variants of stereo,which are more
robustto occlusionghanstandardnulti-view stereo.These
arebasecdn color mediansandentropy.

Therearetwo major differencesbetweenour work and
previous reconstructionalgorithms. First, we use mary
morecameraspanningawider syntheticaperturghanpre-
vious methods.Secondwe seekto reconstrucbbjectsoc-
cludedin a signi cant portion of theinputimages,i.e. we
expectseveraloutliersamongspixelsto be matchedacross
views. Thisis amoregenerabndhardemproblemthanstan-
dardmulti-view stered10], whichassumesgooutliers.The
occludersthemseles are not reconstructeaxplicitly; we
rely ontheincreasedumberof views with alargeaperture
androbustcostfunctionsto achieze goodreconstruction.
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Figurel. Stereovs. focusfor a surfaceat depthd, with a constantntensitygradient. (a) Camerdayout, andraysconsideredor depth
hypothesesl = do andd = di. (b) Theintensitypro les of the meanof cameramages projectedon to depthplanesd = do (top) and
d = d; (bottom). (c) Comparingthe responsef stereo(variance)andfocus. The variancehasa parabolicpro le, with the minimumat
thecorrectdepthd,. The meanimagedoesnotvary with depth,soshaperom focusis not ableto reconstructiepthaccurately

1.1.RelatedWork

In their comparisonof shapefrom stereoversusfocus
[12], Schechneret al obsered that focus ought to be
more robust than stereoin presenceof occlusionswhile
stereooughtto be more accuratedueto larger baselines.
This suggestghat a synthetic aperturebaselinemay let
us achiere both accurag and robustness,and has partly
inspiredthis research. The useof a nite apertureof a
singlelensto seebeyond occluderswas studiedby Favaro
[5]. Thelimited aperturesize (and hencelimited depthof
eld) of a singlelenslimits the depthresolutionand the
size of occludersthat can be seenaround. Moreover, a
singlelenscapturesa (3D) stackof 2D imagesfocusedat
depths x ed during acquisition,as opposedto a 4D light
eld capturedby a syntheticaperture. This preventsus
from using robust cost functions basedon mediansand
entropy.

In [8], Kang et al introduceda costfunction basedon
view selectionto increaserobustnesgo occlusions. Their
methodreconstructshe depthsof only thosepointsvisible
in a referenceview. Our cost function basedon color
mediansgeneralizeghis, so that visiblity in a reference
view is notrequired.

Several algorithms for 3D reconstructionwork by
partitioning the scene into layers at different depths
[17, 2, 20]. Translucentlayerswere consideredn [14].
These approachesusually begin by rst estimatingthe
foregroundlayer and using residualsto estimatethe rest.
For complex foreground occluderswhose reconstruction
may be errorprone, errorsin foreground estimationcan
severely degrade the reconstructionof the background.

Sincewe seekto developcostfunctionsrobustto occluders,
we donotrequireaninitial reconstructiorof theforeground
layer. In our experiments,we restrict the searchfor the
occludedobjectsto depthsbehindtheforeground.

Algorithmsbasedn voxel coloring[13] attemptacom-
plete scenereconstructionusing a front-to-back sweep.
Sinceathresholds typically usedto committo foreground
occluderserroneousssignmentgesultin backgroundgix-
els marked asforegroundor foregroundpixels not deleted
in backgroundreconstruction.Both casesdegradethe re-
constructionof the background. Thresholdingeffects can
beamelioratedo anextentusingiterative probabilisticvari-
ants[4], but thesearenotguaranteetb converge. In section
4, we compareour approachwith voxel coloring.

2. Stereovs. Focus

We bggin by analytically comparingshapefrom (syn-
thetic)focusandshapefrom stereo. A commonframenork
to describethe two is the space-sweeppproactof Collins
[3]. Thisinvolvessweepinga planeover arangeof depths
in thescene At eachdepth(morepreciselydisparity)d we
computea costvalue for every pixel (x; y) on the plane,
creatingadisparityspacemage (DSI) D (x; y; d) [14]. The
main differencebetweenstereoand focus methodsis that
they usedifferent cost functionsin constructingthe DSI.
A depthmapd(x; y) is computedby nding the minimum
costsurfacefrom the DSI: d(x; y) = argming D(X; y; d).

We now de ne the costfunctionsusedby sterecandfo-
cus. For simplicity, we work in atland: the camerasare
recti ed line camerasandthe depthof a pixel determines
its horizontaldisparitywith respecto areferenceview [10].



Letliq (X) denoteheimagefrom camera projectedonthe
planecorrespondingo disparityd. The meanandvariance
of thewarpedimagesrom theN camerasregivenby
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Which methodis better? One straightforvard obsera-
tion we can male is that focusis lesssensitve to sensor
noise (dueto averaging)and varying bias acrosscameras
(sinceit computesa spatialderivative) than stereo. While
both would fail for texturelesssurfaces,we canshav that
there exist textured surfacesthat can be reconstructed
accuratelyby stereabut not by focus(seeFig 1.)

Theorem 1. Shapdromstereocanreconstructhedepth
of diffuse surfaceswhose 2nd and higher order spatial
derivativesof radiancevanish,whereasshapefrom focus
requires the radianceto have non-zeo 3rd-order spatial
derivatives.

Proof. Considera frontoparallelsurfaceat disparitydg
with intensity given by | (x). We computethe response
of stereoand focus at a point xo for disparity d;. Let

= di dy andx; the displacemenbf camerai from
the centralview. Givenrecti ed images,we cancompute
l'-a, (X) usinga Taylor seriesexpansion:

I (Xo+ Xi )
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Usingegs. (1-3)and ; x; = 0, we cancomputethe
meanimage,varianceandfocusto be

Tg,(xo) = 1(X0)+ I (X0) 2 x2N + O( 3);
X 1
va(xo) = 212(xe) x2N + O( %); and
! X
fa(xo) = [Ix(xo) + 2 yux (x0) Xi2:N + O( 4)]2

We seethat for a non-zerogradientl  (Xg), stereohas
aminimumat = 0, enablingaccuratereconstruction.

lwx (Xo) + :::

However, if the 3rd order gradientl 4« (Xo) is zero, the
focusresponsevill be approximatelyconstantas varies.
This completeghe proof. Thebehaior of sterecandfocus
for athe specialcaseof a constanigradienttexture | (x) is
shavn in Fig. 1. A wealer resultfor singlelensapertures
was proved in [6], where they shoved that shapefrom
focusrequirestextureswith nonzero2nd-oder gradients.

In theanalysisabove, we have ignoredocclusions.How
wouldtheresponsef sterecandfocuschangef thesurface
we aretrying to reconstrucis occludedin someviews? In
generaltheresponsevould depenconthenatureof theoc-
cluder For shapefrom focus,the meanimagewill have a
blurredimageof theoccludersuperimposednit atthecor
rect depthhypothesis. If the apertureis wide, the blurred
imageshouldnot contributeto thespatialderivatives. How-
ever, the focusresponsewill be attenuatedy the cameras
that do not obsere the surface being reconstructed. For
shapefrom stereo,the variancewill not approactezero at
the correctdepthand may not attaina minimum thereun-
lessthe occluderis of afairly uniform color. In Section4,
we showv experimentalcomparison®f sterecandfocusfor
reconstructingccludedsurfaces.

3. Median and Entropy

One problemwith stereoand focusis that they assign
equalimportanceto all raysthroughthe 3D point (x; y; d)
in constructinghe DSI. Whenreconstructingpccludedsur
faces,mary of theserayswill actually hit occludersand
shouldthereforebe consideredasoutliers. In this section,
we introducetwo variantsof sterecthattry to mitigatethe
effectsof outliersdueto occlusionson depthandcolor re-
construction.

3.1.Shapefrom median

This approachis inspired by the obseration that
amongsimeasure®f centraltendeng, the medianis more
robust to outliers than the mean. Considerthe caseof
grayscaleimages. Supposethat a surface point (x; y; d)
corresponddo pixelsS = flig(x;y) @ 1 i Ng
in theN inputimages.If the pointis occludedn someim-
agesthemedianlyy = medianS will beabetterestimator
for the surfaceintensity thanthe mean. This is precisely
why mediancolorshave beenusedin matteextraction[18].
However, in additionto estimatingthe surfaceintensitywe
needa costfunctionto quantify the accuray of the depth
estimate Thecostfunctionwe usefor constructinghe DSI
is themediandistanceof all theraysfrom 1y , i.e.,

D(x;y;d) = mediarij lig (X;y) Imj:1 1 Ng

When a surface point is visible in more than half the
camerasthe mediancolor at the correctdepthshouldcor



respondo the color of the occludedsurface. As the num-

ber of occludedcamerasncreasesver 50%, the estimate
of the medianbeginsto breakdown. An interestingques-
tion is how to extend shapefrom medianto color images.
Thereare mary waysto generalizethe notion of median
to higherdimensiong1]. We have experimentedwith the

component-wisenedianandthe L1 median,andobsened

they yield similar results.We preferto usethe component-
wisemediansinceit canbecomputedn O(N) time.

3.2.Shapefrom entropy

Let usconsiderthe distribution of intensitiesof therays
through the point (x; y; d), which may be visualized by
plotting a histogram.If the depthhypothesidl is incorrect,
these rays will hit different points on the foreground
occludersaandbackgroundsurface.Giventexturedsurfaces,
we would expectthe histogramto be spreadover a wide
rangeof intensities. If the depthhypothesisd is correct,
rays hitting the backgroundsurface will be clustered
over a small rangeof intensities,while thosehitting the
occluderwill still be spreadbut resultingin a morepealed
histogram. This suggestghat we can use the Shannon
entrofy of the intensity histogramas a cost function for
constructingthe DSI. The entrofy is maximized for a
uniform distribution and decreasess the intensitiesare
clusteredogether

For 8-bit grayscalemageswe divide theintensityrange
into K = 16 bins. If the numberof raysin bini is ly, the
entroyy is givenby

X b
H = B WIog

Z|o

(For color images,we use entrofy of a color histogram
where bins correspondto cubesin RGB space). The
entropy costfunction penalizesaysthatfall into different
bins. Unlike stereothe penaltydoesnot increasewith the
distancebetweerdifferentray colors. This helpsmitigate
thein uence of outlierson depthreconstruction.

There are two interesting properties of shape from
entrory we would like to mention. First, given N rays,
the entrofy canvary in incrementsof Ni from O to logN..
Thus, the precisionof entrofy is O(Ni), making it more
preciseasthe numberof views increases.Secondly since
we arebinningtherays,entrofy doesnotusethelower bits
of the intensity values(for K = 16 bins, we useonly 4
bits perchanneto computethe bin index for a pixel). This
could be exploited for saszing storageor bandwidth,and
alsomalkesentropy lesssensitve to color miscalibration.

Both entrofy and shapefrom medianretain the desir
ablepropertyof shapdrom stereaf beingsensitveto rst-
ordertexture gradients.Both of thesestartto fail whenthe
occluderis of afairly uniform color andthe amountof oc-
clusionexceeds50% - in this case the reconstructedolor
is the color of the occluderratherthanthe backgroundsur
face.

4. Experiments and Results

We have comparedthe performanceof the four cost
functions—stereqvariance),focus, median, and entrofy
on reconstructingoccludedobjectsin two acquiredlight
elds of complicatedscenesand one syntheticscene. As
we areavoiding explicit reconstructiorof the occluderswe
limit our searchto a rangeof depthsbehindthe occlud-
ers. The accurag of the depth mapscomputedby each
methodis comparedwith groundtruth. To visualizethe
reconstructeappearancef the occludedsurfaceswe con-
structwinnercolor imagesobtainedoy computingthe color
for eachpoint on the reconstructedurface,andprojecting
the surface (with color) into the centralcamera.In shape
from focusandstereothe meancolor of raysthrougha sur
facepointis usedasacolor estimate Thewinnercolorim-
ageis just a syntheticallyfocusedmageon a focal surface
correspondindo the computeddepthmap. In shapefrom
median we usethe mediancolor ratherthanthe mean.For
entropy, we usethe modalcolor from the color histogram.

4.1.Experiment 1. Synthetic scene

To measurethe performanceof our cost functions
(stereo focus, median,entrofy) undervarying amountsof
occlusion, we experimentedwith a synthetic scenewith
precisely controlled amountsof occlusion. The scene
consistf two planes.The backgrounglane(Fig. 2a) has
the CVPRIlogo compositedvith white noiseto ensurghere
is sufcient texture at eachpoint. The foregroundoccluder
is composeaf horizontalandvertical bars.We controlthe
amountof occlusion(between19% and 75%) by varying
the spacingbetweenthe bars. We have experimented
with threedifferenttextureson the foregroundbars: white
noise (strongtexture), pink noise (weak texture, obtained
by convolving white noisewith a5 5 box Iter) and
uniformly coloredbars(Fig. 2 b-d).

For reconstructionywe used81 views of this scene.The
camerapositionswereon a9 9 planargrid perturbed
by randomoffsets. (This is to avoid producinga strong
correlationbetweenvisibility andcamerapositions,which
rarelyarisesin practiseandwouldintroduceadditionerrors
in reconstructioncontaminatingour simulation). The two
planeswereseparatedby a disparityof 40 pixelsacrosshe
syntheticaperture We measuredhow well eachof the four
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Figure2. A synthetictwo-planesceneusedfor performancesvaluationof our four costfunctionsfor reconstructingpccludedsurfaces.
(a) Unoccludedview of backgroundplane. (b-d) The backgroundlanebehindoccludingbars. We experimentedwith the threedifferent
texturesonthebarsasshavn. By varyingthespacingoetweerthe bars we canvary theamountof occlusion.(e)-(h) Reconstructiomf the
backgroundpblane(winner color images)usingstereomedian,entrofy andfocusrespecitiely for the setupin (c). 81 views of the scene
wereused.(i-k) Plotof reconstructioraccurag (percentagef pixelsreconstructedorrectly)vs. theamountof occlusionfor thefour cost

functionsfor thethreedifferentoccludernextures.

costfunctionsreconstructedhe backgroundglane.

Over the rangeof occlusiondensitiesand foreground
texturesin our experiments entrofy doesbest,with near
perfectreconstructionaip to 65% occlusion. Shapefrom
medianstartsto fail asthe occlusiondensitycrosses0%.
For all threeforegroundtextures thefractionof background
pointscorrectlyreconstructety focusis about15%higher
thanthatfor regular stereo.This suggestshatgivenan ad-
equatelytexturedsurface focusdoesbetterthanSSDin the
presenceof occlusions. Note that real scenescould have
surface textures that stereocan reconstructbut not focus
(Theoreml); in which casestereowould obviously do bet-
ter. Plotsof reconstructioraccurag versusamountof oc-
clusionfor the threeoccludertexturesare shovn in Fig. 2
(i-k). The entiresetof scenesandthe reconstruction®b-
tainedareavailableon our website[11].

4.2.Experiment 2: CD casebehind plants

This light eld wasacquiredusing a single cameraon
a computercontrolledgantry  The camerapositionsspan
a2l 5 grid (syntheticaperturesize 60cm by 10cm).
Our goal was to reconstructa picture of the StraussCD
casebehindthe plants (Fig. 3 a). For groundtruth, the
depthof the CD casewasestimatednanually To estimate
the amountof occlusionfor the CD case,we capturedan
identicallight eld of thesamescenewithouttheoccluding
plants and used image differencingto determinewhich
pixels were occluded. We canthus computean occlusion
map image,whereeachpixel in the occlusionmap stores
the number of views in which the correspondingpixel
on the CD is occluded(Fig. 3 b). Given ground truth
and an occlusion value, we determinefor each of the
four costfunctionsthe percentagef pixels reconstructed
correctly (within onedisparitylevel) for differentamounts
of occlusion(Fig. 3 ¢). Thehistogramindicatesthatstereo,



median,andentropy startto performpoorly asthe amount
of occlusionincreaseswith entrogy performingbest. The
median-basedostfunctionstartsto fail oncetheamountof
occlusionexceeds50%. Depthfrom focusdoesnotdo well
on thewhole, but it overtalesthe stereo-basedpproaches
asocclusionincrease®eyond 60%.

The winner color imagesfrom eachcost function are
shavn in Fig. 4 (top row). Thetext onthe CD caseis most
legible for entrory andmedian.The bottomrow shaws the
reconstructiorof the CD obtainedby voxel coloring after
reconstructingnddeletingthe occludingplants.Voxel col-
oringusesathresholdo committo foregroundoccluderso
that pixels correspondindo the occluderare deletedprior
to reconstructinghe background Note thatthereis no sin-
gle thresholdfor which the CD is reconstructegroperly
At low thresholds,all foreground pixels are not deleted;
at higher thresholds,mary backgroundpixels are recon-
structedasforegroundanddeleted.Thereconstructedepth
mapsfor thecompletesceneareavailableat[11].

4.3.Experiment 3: DenseFoliage

Thislight eld (Fig. 5 a) wascapturedusinganarrayof
88 camerasThesceneconsistof a personanda statuebe-
hind adensdvy wall. We computeda percameramattefor
the occluderusingstandardlue screentechniques While
we do not have groundtruth for this scene,we can esti-
matevisibility nearthe true depthsusingthe occludermat-
tes. Theobjectsbehindtheivy areoccludedn about70%of
the cameras Entropy, medianandvoxel coloringall failed
to reconstructary part of the occludedobjectsaccurately
This is dueto the high degreeof occlusion,andthe rela-
tively uniform color of the occluder Focusdoessomavhat
betterthan stereo— it is able to reconstructthe statues
torchandthe persons facewheresteredfailed (Fig. 5 b,c).

5. Conclusionsand Futur e Work

In this paper we have studied cost functions for re-
constructingoccludedsurfacesusing syntheticapertures.
Most existing algorithms use cost functions developed
for reconstructinghe (unoccluded)oreground. We have
studiedan alternatve approach:designingcost functions
that leveragea large syntheticapertureand large number
of views to be robust to occlusions. This is usefulwhen
the foregroundis dif cult to reconstructaccurately(see,
for example, Fig. 5) andin applicationslike suneillance
of crowded areaswherereconstructinghe appearancef
occludedobjectsmaybeof primaryinterest.

While the cost functions we have developed shav
encouragingesults,we believe we have merely scratched
the surfaceof this designspace.We would like to explore

ways to combine information from different cost func-
tions to gain betterresults. Our approachcould also be
combinedwith existing multi-layer estimationalgorithms
to improve reconstructionof all layers. One limitation
of our work is that we have not enforcedary spatial
regularization. We would like to nd ways of extending
algorithmsbasedon graph cuts or belief propagtion to
handleoutliers due to denseocclusion. While our focus
in this work has been on diffuse surfaces, we believe
robust cost functions like medianand entropy may also
beusefulfor thereconstructiommf non-Lambertiasurfaces.

Finally, we would like to develop a theoreticalmodel
that explains the performancdimits of syntheticaperture
reconstructiomalgorithms. Sucha model shouldincorpo-
rate the size, Il factor andtexture of the occluders,the
texture on the occludedsurfacesto be reconstructedand
the sizeandnumberof views of the syntheticaperture.
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Figure4. Experiment2: Winner colorimagesfor reconstructinghe StraussCD casebehindplants(seeFig. 3). Thetop row shaws the

reconstructedurfaceandcolor usingentrofy, median focusandstereo.The bottomrow shaws the reconstructiorusingvoxel coloring,

theseimagesare obtainedby deletingall voxels up to the depthof the foregroundoccluders and projectingthe restinto the reference
cameraFor low thresholdssomepointson the CD surfacearenotreconstructedtall. At high thresholdsthe computeddepthfor points

onthe CD casecanbe muchcloserto the cameraghanthe true depth,causingthemto be deletedwith the occluders.Thesetwo effects

causeheholesvisible in thereconstruction.

(a) Image from one camera (b) Stereo reconstruction (c) Focus reconstruction (d) Unoccluded objects

Figure5. Experiment3: Reconstructiorof a personandstatuebehinda densewall of arti cial ivy. The high occlusion(about70%)and
uniform color of the occludemalkesthis a failure casefor medianandentropy. Focusdoessomevhatbetterthansterecontheright partof

the statueandthe persons face(shown in bluecircles).Image(d) wascreatedby manuallycompositingayersafterdeletingthe occluded
pixelsusingbluescreening.



