
Tracing Ray Differentials

Homan Igehy

Computer Science Department

Stanford University

Abstract
Antialiasing of ray traced images is typically performed by super-
sampling the image plane. While this type of filtering works well
for many algorithms, it is much more efficient to perform filtering
locally on a surface for algorithms such as texture mapping. In
order to perform this type of filtering, one must not only trace the
ray passing through the pixel, but also have some approximation
of the distance to neighboring rays hitting the surface (i.e., a ray’s
footprint). In this paper, we present a fast, simple, robust scheme
for tracking such a quantity based on ray differentials, derivatives
of the ray with respect to the image plane.

CR Categories and Subject Descriptors: I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism – color,
shading, shadowing, and texture; raytracing.

1 INTRODUCTION
Ray tracing [18] is an image generation technique that is able to
accurately model many phenomena which are difficult or
impossible to produce with a traditional graphics pipeline. As
with any image synthesis algorithm, ray tracing is prone to
aliasing, and antialiasing is typically performed by tracing rays at
multiple sub-pixel offsets on the image plane (e.g., [12, 18]). By
stochastically point sampling each of many variables per ray [6],
one may filter over multiple phenomena simultaneously. For
some algorithms, however, it is much more efficient to filter over
a more local domain. For example, in texture mapping, a texture
will often be viewed under high minification so that the entire
texture falls under a small number of pixels. Filtering such a
texture by taking bilinear samples for a set of stochastic rays
requires the tracing of a correspondingly large number of rays.
This is problematic because the cost of tracing a ray is relatively
high, and the minification factor can be arbitrarily high. On the
other hand, if we knew the distance between a ray and the rays for
a neighboring pixel when the ray hit the texture map (i.e., a ray’s
footprint), then we could efficiently filter the texture by using a
fast, memory coherent algorithm such as mip mapping [19].
Tracing such a quantity in a polygon rendering pipeline is
straightforward because primitives are drawn in raster order, and

the transformation between texture space and image space is
described by a linear projective map [10]. In a ray tracer,
however, the primitives are accessed according to a pixel’s ray
tree, and the transformation between texture space and image
space is non-linear (reflection and refraction can make rays
converge, diverge, or both), making the problem substantially
more difficult.

Tracing a ray’s footprint is also important for algorithms other
than texture mapping. A few of these algorithms are listed below:

§ Geometric level-of-detail allows a system to simultaneously
antialias the geometric detail of an object, bound the cost of
tracing a ray against an object, and provide memory coherent
access to the data of an object. However, to pick a level-of-
detail, one must know an approximation of the ray density
when a ray is intersected against an object.

§ When ray tracing caustics, the intensity attributed to a
sampled light ray depends upon the convergence or
divergence of the wavefront [13]. Similarly, in illumination
mapping, the flux carried by a ray from a light source must
be deposited over an area on a surface’s illumination map
based on the density of rays [5].

§ Dull reflections may be modeled by filtering textures over a
kernel which extends beyond the ray’s actual footprint [2].

In this paper, we introduce a novel approach for quickly and
robustly tracking an approximation to a ray’s footprint based on
ray differentials. Ray tracing can be viewed as the evaluation of
the position and direction of a ray as the ray propagates through
the scene. Because a ray is initially parameterized in terms of
image space coordinates, in addition to tracing the ray, we can
also trace the value of its derivatives with respect to the image
plane. A first-order Taylor approximation based on these
derivatives gives an estimate of a ray’s footprint. A few
techniques for estimating ray density have been presented in the
literature [2, 5, 13, 16], but ray differentials are faster, simpler,
and more robust than these algorithms. In particular, because ray
differentials are based on elementary differential calculus rather
than on differential geometry or another mathematical foundation
that has an understanding of the 3D world, the technique may be
readily applied to non-physical phenomena such as bump
mapping and normal-interpolated triangles. General formulae for
tracing ray differentials are derived for transfer, reflection, and
refraction, and specific formulae are derived for handling normal-
interpolated triangles. Finally, we demonstrate the utility of ray
differentials in performing texture filtering.

2 RELATED WORK
Several algorithms have been developed for estimating a texture
filtering kernel in polygon rendering pipelines (e.g., [1, 10]).
Similar algorithms have been used in ray tracers that calculate the
projection of texture coordinates onto the image plane [8], but

homan@graphics.stanford.edu

such a projection is only valid for eye rays. This technique can be
extended to reflected and refracted rays by computing the total
distance traveled, but such an approximation is invalid because
curved surfaces can greatly modify the convergence or divergence
of rays. A few algorithms have been developed that take this into
account, and we will review them briefly.

Within the context of a ray tracer, finite differencing has been
used to calculate the extent over which a light ray’s illuminance is
deposited on an illumination map by examining the illumination
map coordinates of neighboring rays [5]. The main advantage of
finite differencing is that it can easily handle any kind of surface.
The main disadvantages, however, are the difficult problems
associated with robustly handling neighboring eye rays whose ray
trees differ. The algorithm must detect when a neighboring ray
does not hit the same primitives and handle this case specially.
One plausible method of handling such a case is to send out a
special neighboring ray that follows the same ray tree and
intersects the plane of the same triangles beyond the triangle
edges, but this will not work for spheres and other higher-order
primitives. Additionally, this special case becomes the common
case as neighboring rays intersect different primitives that are
really part of the same object (e.g., a triangle mesh). Our
algorithm circumvents these difficulties by utilizing the
differential quantities of a single ray independently of its
neighbors.

Cone tracing [2] is a method in which a conical approximation
to a ray’s footprint is traced for each ray. This cone is used for
edge antialiasing in addition to texture filtering. The main
problem with a conical approximation is that a cone is isotropic.
Not only does this mean that pixels must be sampled isotropically
on the image plane, but when the ray footprint becomes
anisotropic after reflection or refraction, it must be re-
approximated with an isotropic footprint. Thus, this method
cannot be used for algorithms such as anisotropic texture filtering.
In addition, extending the technique to support surfaces other than
planar polygons and spheres in not straightforward.

Wavefront tracing [9] is a method in which the properties of a
differentially small area of a ray’s wavefront surface is tracked,
and it has been used to calculate caustic intensities resulting from
illumination off of curved surfaces [13]. Wavefronts have also
been used to calculate the focusing characteristics of the human
eye [11]. Although highly interrelated, the main difference
between wavefronts and our method of ray differentials is that our
method tracks the directional properties of a differentially small
distance while wavefront tracing tracks the surface properties of a
differentially small area. Thus, wavefronts cannot handle
anisotropic spacing between pixel samples. Additionally, because
a differential area is an inherently more complex quantity, the
computational steps associated with wavefront tracing are more
complicated. Wavefront tracing is based on differential geometry
while our algorithm is based on elementary differential calculus,
and a technical consequence of this is that we can readily handle
non-physically based phenomena such as normal-interpolated
triangles, bump mapped surfaces, and other algorithms that are
self-contradicting in the framework of differential geometry. A
practical consequence of being based on the simpler field of
elementary differential calculus is that our formulation is easier to
understand, and extending the technique to handle different
phenomena is straightforward.

Paraxial ray theory [4] is an approximation technique
originally developed for lens design, and its application to ray
tracing is known as pencil tracing [16]. In pencil tracing, paraxial
rays to an axial ray are parameterized by point-vector pairs on a

plane perpendicular to the axial ray. The propagation of these
paraxial rays is approximated linearly by a system matrix. As
with wavefront tracing, the computational complexity of pencil
tracing is significantly higher than our method. Additionally,
pencil tracing makes a distinct set of simplifying assumptions to
make each phenomenon linear with respect to the system matrix.
An approximation is made even on transfer, a phenomenon that is
linear with respect to a ray. Furthermore, the handling of non-
physical phenomena is unclear. By comparison, the single unified
approximation we make is simply that of a first-order Taylor
approximation to a ray function.

3 TRACING RAY DIFFERENTIALS
One way to view ray tracing is as the evaluation of the position
and direction of a ray function at discrete points as it propagates
through the scene. Any value v that is computed for the ray (e.g.,
luminance, texture coordinate on a surface, etc.) is derived by
applying a series of functions to some initial set of parameters,
typically the image space coordinates x and y:

()()()()yxv nn ,ffff 121 K−= (1)

We can compute the derivative of this value with respect to an
image space coordinate (e.g., x) by applying the Chain Rule:

xx
v

n

n

∂
∂

∂
∂

∂
∂

∂
∂

−
= 1

1

2

1

f
f
f

f
f

K (2)

As transformations are applied to a ray to model propagation
through a scene, we are just applying a set of functions fi to keep
track of the ray. We can also keep track of ray differentials,
derivatives of the ray with respect to image space coordinates, by
applying the derivatives of the functions. These ray differentials
can then be used to give a first-order Taylor approximation to the
ray as a function of image space coordinates. In the forthcoming
derivations, we express scalars in italics and points, directions,
and planes with homogeneous coordinates in bold.

A ray can be parameterized by a point representing a position
on the ray and unit vector representing its direction:

DPR =
v

(3)

The initial values for a ray depend on the parameterization of the
image plane: a pinhole camera is described by an eye point, a
viewing direction, a right direction, and an up direction. The
direction of a ray going through a pixel on the image plane can be
expressed as a linear combination of these directions:

() UpRightViewd yxyx ++=, (4)

Thus, the eye ray is given by:

()
()

() 21
,

,

dd
dD

EyeP

⋅
=

=

yx

yx
(5)

We can now ask the question, given a ray, if we were to pick a
ray slightly above or to the right of it on the image plane, what ray
would result? Each of these differentially offset rays can be
represented by a pair of directions we call ray differentials:

yyy

xxx

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

=

DPR

DPR

v

v

(6)

A ray differential is illustrated in Figure 1. If we evaluate the ray
differentials as a ray propagates in addition to the position and
direction of the ray, then the distance between neighboring rays
(and hence the ray’s footprint) can be estimated with a first-order
differential approximation:

() ()[] ()

() ()[] ()
y

yx

x
yx

yyxyyx

xyxyxx

∂
∂

∂
∂

∆≈−∆+

∆≈−∆+

,

,

,,

,,

R

R

RR

RR
v

v

vv

vv

(7)

We can compute the initial value of the ray differential in the x
direction by differentiating (5) with respect to x:

() ()
() 23dd

dRightdRightddD

P 0

⋅
⋅−⋅

∂
∂

∂
∂

=

=

x

x
(8)

A similar expression can be derived for the y direction. Although
we only track first-order derivatives, higher-order derivatives
could be computed as well for a better approximation or for error
bounding. However, we have found that discontinuities limit the
effectiveness of higher-order approximations and that a first-order
approximation is sufficient in practice.

3.1 Propagation
Given an expression for the propagation of a ray for any
phenomenon (i.e., how a phenomenon affects the ray’s value),
then we can find the expression for the propagation of a ray
differential by simply differentiating the expression. Here, we
will derive the formulae for the three common ray tracing
operations: transfer, reflection, and refraction. We will express
our formulae as derivatives with respect to x without any loss in
generality.

3.1.1 Transfer
Transfer is the simple operation of propagating a ray through a
homogenous medium to the point of intersection with a surface.
The equation for transfer onto a surface at a distance t is given by:

DD

DPP

=′
+=′ t

(9)

For a ray differential, we differentiate (9) to get:

()
xx

x
t

xxx
t

∂
∂

∂
′∂

∂
∂

∂
∂

∂
∂

∂
′∂

=

++=

DD

DPP D
(10)

For a planar surface N (defined as the locus of points P′′ such that
P′′ • N = 0), t is given by:

ND
NP
⋅
⋅−=t (11)

Differentiating this and re-expressing it in terms of t, we get:

()
ND

NDP

⋅
⋅+

∂
∂ ∂

∂
∂
∂

−= xx
t

x
t (12)

Note that the fourth component of N is irrelevant in this equation
(its dot product is taken with directions only), and it can thus be
viewed as the normal of the surface. Equations (10) and (12)
actually have a geometric interpretation: the first two terms of the
first equation in (10) express the fact that as a ray travels through
homogeneous space, the positional offset of a differentially offset
ray changes according to its directional offset and the distance
traveled. Then, the third term orthographically projects this
positional offset in the direction of the ray onto the plane.

Although a formal proof is beyond the scope of this paper,
(12) is not only valid for a plane, but is also correct for an
arbitrary surface. In the case of an arbitrary surface, N is just the
normal of the surface at the point of intersection. The intuition
behind this is that a surface has a fixed shape and curvature at an
intersection point. As we intersect an offset ray against this
surface by smaller and smaller offsets, the surface will look more
and more like the tangent plane at the intersection point. In the
limit, a differentially offset ray intersects the surface in the
tangent plane of the intersection point.

3.1.2 Reflection
Given a ray that has been transferred onto a surface by (9), the
equation for a reflection ray [7] is given by:

()NNDDD

PP

⋅−=′
=′

2
(13)

For a ray differential, reflection is given by:

() ()

 +⋅−=

=

∂
⋅∂

∂
∂

∂
∂

∂
′∂

∂
∂

∂
′∂

NND NDNDD

PP

xxxx

xx

2
(14)

where:

()
xxx ∂

∂
∂
∂

∂
⋅∂ ⋅+⋅= NDND DN (15)

This equation requires the evaluation of the derivative of the
normal at the point of intersection, a topic that will be addressed
in Sections 3.2 and 3.3.

3.1.3 Refraction
Once a ray has been transferred onto a surface, the equation for a
refracted ray [7] can be expressed as:

NDD

PP

µ−η=′
=′

(16)

where we use the shorthand notation:

() ()[]

()[]22 11 NDND

NDND

⋅−η−−=⋅′

⋅′−⋅η=µ
(17)

x

y

()xP

()xP∂

()xD∂
Eye

surface

x∂

()xx ∂+R
v

()xR
v

()xx ∂+D

()xx ∂+P

()xD

Figure 1: A Ray Differential. The diagram above illustrates
the positions and directions of a ray and a differentially
offset ray after a reflection. The difference between these
positions and directions represents a ray differential.

and η is the ratio of the incident index of refraction to the
transmitted index of refraction. Differentiating, we get:

 +µ−η=

=

∂
µ∂

∂
∂

∂
∂

∂
′∂

∂
∂

∂
′∂

NNDD

PP

xxxx

xx
(18)

where (referring to (15) from Section 3.1.2):

()
()

()
xx ∂
⋅∂

⋅′
⋅η

∂
µ∂

−η= ND

ND
ND2

(19)

3.2 Surface Normals
The formulae derived for reflection and refraction of ray
differentials in Sections 3.1.2 and 3.1.3 depend on the derivative
of the unit normal with respect to x. In differential geometry [17],
the shape operator (S) is defined as the negative derivative of a
unit normal with respect to a direction tangent to the surface. This
operator completely describes a differentially small area on a
surface. For our computation, the tangent direction of interest is
given by the derivative of the ray’s intersection point, and thus:

()
xx ∂

∂
∂
∂ −= PN S (20)

For a planar surface, the shape operator is just zero. For a sphere,
the shape operator given a unit tangent vector is the tangent vector
scaled by the inverse of the sphere’s radius. Formulae for the
shape operator of both parametric and implicit surfaces may be
found in texts on differential geometry (e.g., [17]) and other
sources [13], and thus will not be covered here in further detail.

3.3 Discussion
One interesting consequence of casting ray differentials in the
framework of elementary differential calculus is that we may
forgo any understanding of surfaces and differential geometry,
even in expressing the derivative of a unit normal. For that
matter, we may forgo the geometric interpretation of any
calculation, such as the interpretation made for equations (10) and
(12). For example, if we know that the equation of a unit normal
to a sphere with origin O and radius r at a point P on the sphere is
given by:

() rOPN −= (21)

then we may “blindly” differentiate with respect to x to get:

r
xx ∂

∂
∂
∂ = PN (22)

This differentiation may be performed on any surface or for any
phenomenon. If we know the formula for how a ray is affected by
a phenomenon, then we can differentiate it to get a formula for
how a ray differential is affected without any understanding of the
phenomenon. For example, if we apply an affine transformation
to a ray so that we may perform intersections in object space
coordinates, then the ray differential is transformed according to
the derivative of the affine transformation. If we apply an ad hoc
non-linear warp to rays in order to simulate a fish-eye lens effect,
then we can derive an expression for warping the ray differentials
by differentiating the warping function. This is a large advantage
of being based on elementary differential calculus rather than on a
physically-based mathematical framework.

In graphics, we often use non-physical surfaces that separate
the geometric normal from the shading normal, such as normal-
interpolated triangles or bump mapped surfaces. For such
surfaces, the use of ray differentials is straightforward. In the case
of transfer to the point of intersection, the geometric normal is
used for (12) because a neighboring ray would intersect the
surface according to the shape defined by the geometric normal.
For reflection and refraction, however, the shading normal is used
because neighboring rays would be reflected and refracted
according to the shading normal. Because of its common use, we
derive an expression for the derivative of the shading normal for a
normal-interpolated triangle in the box below.

The computational cost of tracing ray differentials is very
small relative to the other costs of a ray tracer. Each of the

Normal-Interpolated Triangles
The position of a point P on the plane of a triangle may be
expressed as a linear combination of the vertices of triangle:

γβα γ+β+α= PPPP

where the barycentric weights α, β, and γ are all positive when P
is inside the triangle and add up to one when P is on the plane of
the triangle. These values may be calculated as the dot product
between the point P expressed in normalized homogeneous
coordinates (i.e., w=1) and a set of planes Lα, Lβ, and Lγ:

()
()
() PLP

PLP

PLP

⋅=γ

⋅=β

⋅=α

γ

β

α

Lα can be any plane that contains Pβ and Pγ (e.g., one that is
perpendicular to the triangle), and its coefficients are normalized
so that Lα• Pα = 1; Lβ and Lγ can be computed similarly. The
normal at a point is then computed as a linear combination of the
normals at the vertices:

() () ()

() 21nn
nN

NPLNPLNPLn

⋅

γγββαα

=

⋅+⋅+⋅=

Differentiating, we get:

() () ()
() ()

() 23nn

nnnnN

PPPn

nn

NLNLNL

⋅

⋅−⋅
∂
∂

γ∂
∂

γβ∂
∂

βα∂
∂

α∂
∂

∂
∂

∂
∂

=

⋅+⋅+⋅=

xx
x

xxxx

where a direction (e.g., the derivative of P) is expressed in
homogeneous coordinates (i.e., w=0). The sum of the three
barycentric weights for the derivative of P add up to zero when
the direction is in the plane of the triangle.

Similarly, a texture coordinate can be expressed as a linear
combination of the texture coordinates at the vertices:

() () () γγββαα ⋅+⋅+⋅= TPLTPLTPLT

and its derivative is given by:

() () () γ∂
∂

γβ∂
∂

βα∂
∂

α∂
∂ ⋅+⋅+⋅= TLTLTL PPPT

xxxx

interactions in Section 3.1 requires a few dozen floating-point
operations. On a very rough scale, this is approximately the same
cost as a single ray-triangle intersection, a simple lighting
calculation, or a step through a hierarchical acceleration structure,
thus making the incremental cost insignificant in all but the
simplest of scenes.

4 TEXTURE FILTERING
One practical application of ray differentials is texture filtering. If
we can approximate the difference between the texture
coordinates corresponding to a ray and its neighboring rays, then
we can find the size and shape of a filtering kernel in texture
space. The texture coordinates of a surface depend on the texture
parameterization of the surface. Such a parameterization is
straightforward for parametric surfaces, and algorithms exist to
parameterize implicit surfaces [14]. In general, the texture
coordinates of a surface may be expressed as a function of the
intersection point:

()PT f= (23)

We can differentiate with respect to x to get a function that is
dependent on the intersection point and its derivative:

()[] ()
xxx ∂

∂
∂

∂
∂
∂ == PPT P,gf (24)

We also derive the expression for the derivative of texture
coordinates for a triangle in the box on the previous page.

Applying a first-order Taylor approximation, we get an
expression for the extent of a pixel’s footprint in texture space
based on the pixel-to-pixel spacing:

() ()[]
() ()[]

yy

xx

yyxyyx

xyxyxx

∂
∂
∂
∂

∆≈−∆+=∆

∆≈−∆+=∆

T

T

TTT

TTT

,,

,,
(25)

4.1 Filtering Algorithms
Assuming texture coordinates are two-dimensional, (25) defines a
parallelogram over which we filter the texture. This is illustrated
by Figure 2. Given this parallelogram, one of several texture
filtering methods can be used. The most common method, mip
mapping [19], is based on storing a pyramid of pre-filtered
images, each at power of two resolutions. Then, when a filtered
sample is required during rendering, a bilinearly interpolated
sample is taken from the level of the image pyramid that most
closely matches the filtering footprint. There are many ways of
selecting this level-of-detail, and a popular algorithm [10] is based
on the texel-to-pixel ratio defined by the length of the larger axis
of the parallelogram of Figure 2:

() ()

 ∆⋅∆∆⋅∆=

2121
,maxlog2 yyxxlod TTTT (26)

Because the computed level-of-detail can fall in between image
pyramid levels, one must round this value to pick a single level.
In order to make the transition between pyramid levels smooth,
systems will often interpolate between the two adjacent levels,
resulting in trilinearly interpolated mip mapping.

Mip mapping is an isotropic texture filtering technique that
does not take into account the orientation of a pixel’s footprint.
When using (26), textures are blurred excessively in one direction

if the parallelogram defined by (25) is asymmetric. Anisotropic
filtering techniques take into account both the orientation and the
amount of anisotropy in the footprint. A typical method [3, 15] is
to define a rotated rectangle based on the longer of the two axes of
the parallelogram, use the rectangle’s minor axis to choose a mip
map level, and average bilinear samples taken along the major
axis. Again, one may interpolate between mip map levels.

4.2 Results
Figure 3 and Figure 4 demonstrate a scene rendered with four

approaches towards texture filtering, all generated with a single
eye ray per pixel at a resolution of 1000 by 666. In this scene,
which consists entirely of texture mapped triangles, we are at a
desk that is in a room with a wallpaper texture map for its walls
and a picture of a zebra in the woods on the left. We are viewing
a soccer ball paper weight on top of a sheet of text, and we are
examining the text with a magnifying glass.

In Figure 3a, we perform texture filtering by doing a simple
bilinear filtering on the texture map. The text in this image is
noticeably aliased in the three places where minification is
occurring: on the paper, in the reflection off of the ball, and
around the edges of the lens. Additionally, the reflection of the
walls and the zebra in the soccer ball is very noisy. This aliasing
is also apparent on the frame of the magnifying glass, especially
on the left edge as the zebra is minified down to only a few pixels
on the x direction. Even at sixteen rays per pixel (not shown), this
artifact is visible.

In Figure 3b, mip mapping is performed for texture lookups,
and the level-of-detail value is calculated based on the distance a
ray has traveled and projection onto the surface. The textures of
the image are properly filtered for eye rays, but reflected and
refracted rays use the wrong level-of-detail. For the reflections,
the divergence of the rays increases because of the surface
curvature, and thus the level-of-detail based on ray distance is too
low. This results in aliasing off of the ball and the frame. For
refraction, the rays converge, making the ray distance-based
algorithm cause blurring.

In Figure 4a, we perform mip mapping with the level-of-detail
being computed by ray differentials. The limitations of this
isotropic filtering are most apparent in the text. In order to
address the blurring of the text on the paper, in the reflection off
the ball, and around the edges of the lens, we demonstrate
anisotropic texture filtering in Figure 4b. This image still has
visible aliasing due to silhouette edges and shadowing
discontinuities, and Figure 5 demonstrates that a simple super-
sampling of 4 rays per pixel combined with anisotropic texture
filtering produces a relatively alias-free image.

x u

vy

Image Space Texture Space

xT∆

yT∆

Figure 2: Texture Filtering Kernel. A pixel’s footprint in
image space can map to an arbitrary region in texture space.
This region can be estimated by a parallelogram formed by a
first-order differential approximation of the ratios between
rate of change in texture space and image space coordinates.

4.3 Discussion
Given the use of ray differentials for texture filtering, two
interesting problems arise on how to combine the technique with
adaptive edge filtering and with illumination sampling algorithms.
First, because the algorithm filters only texture data, some sort of
filtering is still necessary for edge discontinuities. The brute-

force algorithm used in Figure 5 solves this problem, but an
adaptive algorithm would certainly be more efficient. An open
question is what kind of adaptive algorithms would work most
effectively. It would seem that adaptively super-sampling pixels
whose ray trees differ from their neighbors’ ray trees would work
well, but implementing such an algorithm is challenging.

(a)

(b)

Figure 3: Texture Filtering. The textures in (a) were filtered by taking a bilinearly interpolating an unfiltered texture map, and the
textures in (b) were filtered by trilinearly interpolating a mip map at a level-of-detail based on ray distance.

Another open issue with using ray differentials for texture
filtering involves surface interactions. Although many surfaces
can be described using reflection, refraction, and a localized
shading model, one of the large advantages of ray tracing is its
ability to implement all sorts of shading and illumination
algorithms. For example, a general bi-directional reflectance

function (BRDF) is necessary for describing physically correct
reflectance models. BRDFs are usually sampled, and an open
question is how to combine a ray’s footprint with a sampled
reflectance model. The idea of dull reflections (as presented for
cone tracing [2]) suggests that a large amount of efficiency can be
gained by factoring out texture filtering from BRDF sampling.

(a)

(b)

Figure 4: Texture Filtering. The textures in (a) were filtered by trilinearly interpolating a mip map at a level-of-detail based on the
ray differential approximation of this paper. To reduce blurring, (b) performs anisotropic texture filtering based on ray differentials.

5 CONCLUSION
In this paper, we have presented a novel algorithm for tracking an
approximation to a ray’s footprint based on ray differentials, the
derivatives of a ray function with respect to the image plane. This
technique can robustly handle anisotropic pixel spacing and
anisotropic texture filtering. Because our algorithm is based on
elementary differential calculus, the application of ray
differentials to a variety of physical and non-physical graphics
algorithms is straightforward. Furthermore, the incremental cost
of tracking ray differentials is very small compared to other costs
of a ray tracer. Finally, we have demonstrated the use of ray
differentials to efficiently perform texture antialiasing without
super-sampling the image plane.

Acknowledgements
We would like to thank Pat Hanrahan, Matthew Eldridge, Matt
Pharr, Tamara Munzner, and the reviewers for their assistance
with this paper. Financial support was provided by Intel and
DARPA contract DABT63-95-C-0085-P00006.

References
[1] K. Akeley. RealityEngine Graphics. Computer Graphics

(SIGGRAPH 93 Proceedings), 27, 109-116, 1993.

[2] J. Amanatides. Ray Tracing with Cones. Computer Graphics
(SIGGRAPH 84 Proceedings), 18, 129-135, 1984.

[3] A. Barkans. High-Quality Rendering Using the Talisman
Architecture. 1997 SIGGRAPH / Eurographics Workshop on
Graphics Hardware, 79-88, 1997.

[4] M. Born and E. Wolf. Principles of Optics. Pergamon Press, New
York, 190-196, 1959.

[5] S. Collins. Adaptive Splatting for Specular to Diffuse Light
Transport. Fifth Eurographics Workshop on Rendering, 119-135,
1994.

[6] R. Cook, T. Porter, and L. Carpenter. Distributed Ray Tracing.
Computer Graphics (SIGGRAPH 84 Proceedings), 18, 137-145,
1984.

[7] A. Glassner, ed. An Introduction to Ray Tracing. Academic Press,
San Diego, 288-293, 1989.

[8] L. Gritz and J. Hahn. BMRT: A Global Illumination
Implementation of the RenderMan Standard. Journal of Graphics
Tools, 1(3), 1996.

[9] A. Gullstrand. Die reelle optische Abbildun g. Sv. Vetensk.
Handl., 41, 1-119, 1906.

[10] P. Heckbert. Texture Mapping Polygons in Perspective. NYIT
Computer Graphics Lab Technical Memo #13, 1983.

[11] J. Loos, P. Slusallek, and H. Seidel. Using Wavefront Tracing for
the Visualization and Optimization of Progressive Lenses.
Computer Graphics Forum (Eurographics 98 Proceedings), 17(3),
1998.

[12] D. Mitchell. Generating Antialiased Images at Low Sampling
Densities. Computer Graphics (SIGGRAPH 87 Proceedings), 21,
65-72, 1987.

[13] D. Mitchell and P. Hanrahan. Illumination from Curved
Reflectors. Computer Graphics (SIGGRAPH 92 Proceedings), 26,
283-291, 1992.

[14] H. Pederson. Decorating Implicit Surfaces. Computer Graphics
(SIGGRAPH 95 Proceedings), 29, 291-300, 1995.

[15] A. Schilling, G. Knittel, and W. Strasser. Texram: A Smart
Memory for Texturing. IEEE Computer Graphics and
Applications, 16(3), 32-41, 1996.

[16] M. Shinya and T. Takahashi. Principles and Applications of Pencil
Tracing. Computer Graphics (SIGGRAPH 87 Proceedings), 21,
45-54, 1987.

[17] D. Struik. Lectures on Classical Differential Geometry, Second
Edition. Dover Publications, New York, 1961.

[18] T. Whitted. An Improved Illumination Model for Shaded
Displays. Communications of the ACM, 23(6), 343-349, 1980.

[19] L. Williams. Pyramidal Parametrics. Computer Graphics
(SIGGRAPH 83 Proceedings), 17, 1-11, 1983.

Figure 5: Texture Filtering. Here, we demonstrate four rays per pixel with anisotropic texture filtering based on ray differentials.

