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Fig. 1. Unified Many Worlds Browsing enables curiosity-driven exploration of (a) simulation ensembles of arbitrary physics-based phenomena created by
sampling animation parameters, such as (Top) the rigid-body interactions of a “bowling die” launched at card “pins,” or (Bottom) the behavior of JELL-O®
thrown in a bowl. (b) A user can navigate ensembles at interactive rates by defining and dragging exploratory spatiotemporal queries (blue and red moving
boxes) to find interesting and distinct scenarios such as (c, Top) only knocking down particular card pins, or (c, Bottom) keeping all JELL-O® in the bowl.

Manually tuning physics-based animation parameters to explore a simula-
tion outcome space or achieve desired motion outcomes can be notoriously
tedious. This problem has motivated many sophisticated and specialized
optimization-based methods for fine-grained (keyframe) control, each of
which are typically limited to specific animation phenomena, usually com-
plicated, and, unfortunately, not widely used.

In this paper, we propose Unified Many-Worlds Browsing (UMWB), a
practical method for sample-level control and exploration of physics-based
animations. Our approach supports browsing of large simulation ensembles
of arbitrary animation phenomena by using a unified volumetric WoRLD-
PACK representation based on spatiotemporally compressed voxel data as-
sociated with geometric occupancy and other low-fidelity animation state.
Beyond memory reduction, the WORLDPACK representation also enables
unified query support for interactive browsing: it provides fast evaluation
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of approximate spatiotemporal queries, such as occupancy tests that find
ensemble samples (“worlds”) where material is either IN or NOT IN a user-
specified spacetime region. WORLDPACKs also support real-time hardware-
accelerated voxel rendering by exploiting the spatially hierarchical and
temporal RLE raster data structure. Our UMWB implementation supports
interactive browsing (and offline refinement) of ensembles containing thou-
sands of simulation samples, and fast spatiotemporal queries and ranking.
We show UMWSB results using a wide variety of physics-based animation
phenomena—not just JELL-O®.
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1 INTRODUCTION

Tuning parameters of physically based animations is a notoriously
tedious task required to either explore a motion outcome space or
achieve desired behaviors, such as “what goes where” scenarios, e.g.,
tossing pieces of JELL-O® into a bowl. Manual exploration of the
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Fig. 2. Overview: Given (1) a parameterized physics-based animation, (2) the user samples a simulation ensemble, ideally in parallel. To reduce storage
costs and support efficient processing, each simulation sample is summarized by (3) performing volumetric rasterization of quantized simulation state, such

as binary occupancy data, then (4) performing temporal run-length encoding (RLE) of each voxel, followed by (5) spatially hierarchical decorrelation. The
resulting (6) compressed WorLDPAck simulation summaries are then used at runtime in (7) our Unified Many-Worlds Browser to perform GPU-accelerated

ray tracing of coarse simulation state, and accelerate spatiotemporal user-interaction queries and ranking.

parameter space, such as by sampling many possible cases (a.k.a.
“wedging”), can be tedious and difficult, but, regrettably, it is standard
practice for animators everywhere.

Simultaneously, decades of advances on physics-based motion
control by the computer animation community has enabled sophis-
ticated numerical methods for enabling fine-level motion control,
such as keyframing and sketching. Formulated as multi-objective
optimization problems, the desired animations are estimated using
sampling- and/or derivative-based optimization techniques. These
methods can achieve surprising and sometimes delightfully im-
probable animation results for a wide range of animated physical
phenomena, such as particles, rigid bodies, articulated characters,
cloth and shells, smoke, liquids, etc. Alternately, coarser sample-
level motion control can be achieved using interactive browsing
techniques, e.g., for rigid bodies, and avoid the need for specify-
ing detailed keyframe constraints and sophisticated optimization
methods.

Unfortunately, the current state of the art in motion control is that
completely different methods are required to support different ani-
mated phenomena (rigid bodies, cloth, fluids, etc.) and accommodate
the inherent complexities of simulation control (kinematics, dynam-
ics, discretization, solvers, optimization, control specification, user
interface, etc.). Furthermore, even if a system did have integrated
motion controllers for every phenomenon, there exists no simple
framework for unifying these approaches into one system that is
easy and fun to use by practitioners. Moreover, motion controllers
generally require an artist to have a clear goal in mind to target
their specialized solvers, optimizers, and keyframes towards, rather
than enabling curiosity-driven exploration of a simulation’s range
of possibilities. So, we ask, is there a simple approach for data ex-
ploration and motion control that can unify arbitrary physics-based
phenomena, or do we need a different method for every single flavor
[Heckbert 1987]?

In this paper, we propose Unified Many-Worlds Browsing (UMWB)
for sample-level control and exploration of arbitrary physics-based
animations—a reimagining of Twigg and James [2007] for rigid-body
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animations. Please see Figure 1 for a preview of our results, and
Figure 2 for an overview of our technique. Our approach begins
by sampling (and optionally refining) animations in parallel from
a distribution of possible input parameters (initial conditions, geo-
metric and design variations, material properties, control forces,
stochasticity, etc.) to create an animation ensemble. Simulation sum-
marization is performed to support unified browsing of arbitrary
animations. We volumetrically rasterize and quantize 3D animation
state, such as geometry and fields of interest, to create binary occu-
pancy and low-fidelity attribute value grids. These fields are further
compressed using temporal run-length encoding (RLE), followed by
spatially hierarchical decorrelation, and then stored in a compressed
format, a WORLDPACK, for unified browsing. For further scalability,
the original high-fidelity simulations can be discarded—most are
never used—then recomputed later, if needed, using their sample
parameters, thereby resulting in significant storage reductions.

The compressed volumetric WORLDPACK sample representation
provides just enough information to summarize the animation, while
also enabling fast unified query support for interactive browsing.
Given user-specified spatiotemporal regions, e.g., a mouse-drawn
bounding box, we can perform fast spatiotemporal occupancy tests
to find ensemble samples (“worlds”) where material is either IN or
NOT IN a specific spacetime region, and thus enable “what goes
where” animation queries. The compressed representation enables
fast evaluation of general query and ranking predicates, such as
spatiotemporal integrals.

We further leverage WoRLDPACK’s spatially hierarchical and tem-
poral RLE raster representation to perform hardware-accelerated
ray tracing. Although of a greatly reduced visual fidelity compared
to production quality animations, our system can display hundreds
of multi-physics simulation summaries at interactive rates with
modest in-core memory footprints.

Finally, we demonstrate our prototype UMWB implementation
with physics-based animation content generated by a wide vari-
ety of phenomena and simulators. Our system can support inter-
active browsing (and offline refinement) of ensembles containing



thousands of simulation samples, efficiently perform spatiotem-
poral queries at interactive rates, and rank and display selections
interactively in a browser for easy use by animators. Our browser
demonstration and data are available at https://github.com/stanford-
gfx/umwb.

2 RELATED WORK

Tuning Parameters and Design Spaces. A fundamental problem
in physics-based animation is the tuning of many simulation and
control parameters. Manual exploration of parameter spaces is often
done using tedious online interactive tuning, or offline brute-force
(parallel) sampling of so-called parameter “wedges” (e.g., in SideFX
Houdini [SideFX 2021]) or animation ensembles (c.f. “Design Gal-
leries” [Marks et al. 1997]). Our query-driven exploration scheme
is inspired by a larger body of work on user-guided exploration of
high-dimensional, highly varied design spaces. Some design spaces
can be sampled in real time: the solver or model can instantly pro-
duce an outcome from a set of input parameters, in such domains as
parametric BRDFs [Talton et al. 2009], color grading of photographs
[Koyama et al. 2020], and 2D particle systems [Shimizu et al. 2020].
Fast solvers are conducive to a fast, interactive user exploration ex-
perience. In order to support interactive browsing when solvers do
not run at interactive rates, such as in this paper, prior work relies
on computing an ensemble of simulation samples in an offline step,
such as work on Design Galleries [Marks et al. 1997]. This pipeline
was applied to fire and smoke volumes at low resolutions [Bruckner
and Moller 2010]. Our browsing approach enhances exploration of
arbitrary animation ensembles, e.g., using spatiotemporal queries.

Rigid-body Animation Control. Many methods for control and
steering have emerged in response to the often unintuitive, finicky,
and time-consuming process of tuning rigid-body animation pa-
rameters to produce a desired outcome. These techniques introduce
algorithms that work in tandem with users, solving, searching, or
optimizing for a set of initial conditions that produce a user-specified
desired simulation end state or outcome. The dream of fine-level
keyframe control of physics-based simulations led to several ad-
vances. Witkin and Kass [1988] expressed keyframe control as the
solution to a constrained spacetime optimization problem, and ex-
plored how to programmatically imbue physics-based animations
with anticipation, follow-through, squash-and-stretch, and timing
[Lasseter 1987]. Later work explored genetic algorithms [Tang et al.
1995], interactive spacetime control using a prototype interface for
sketching motion edits [Cohen 1992], and entire rigid-body motions
using multiple-shooting optimization [Popovi¢ et al. 2003].

Idealized simulation models are commonly enriched using (sto-
chastic) parameter variations, e.g., perturbed contact normals, to
produce more varied yet visually plausible dynamics by virtue of
realistic statistical variations [Barzel et al. 1996] and the limitations
of human perception [O’Sullivan et al. 2003]. Producing richer an-
imation ensembles enables opportunities for sample-level control
wherein animation control is achieved by selecting desired outcomes
from available ensemble samples, for example, to produce a plausi-
ble yet desirable pool break in virtual billiards [Barzel et al. 1996],
or to impose spatiotemporal object constraints or steer ensemble
refinement [Twigg and James 2007].
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In pioneering work, Popovi¢ et al. [2000] explored interactive
gradient-based optimization (with sampling to avoid local minima)
and was able to find a number of plausible yet exciting motions
in real time for smaller examples. Chenney and Forsyth [2000]
expressed desirable animations using mathematical objective func-
tions that were then optimized using statistical sampling techniques
based on Markov Chain Monte Carlo (MCMC) to achieve interest-
ing sample-level control, e.g., of bowling outcomes. Sample-level
optimization was also used for audio-constrained synthesis of rigid-
body motions in [Langlois and James 2014]. While these fine-level
(keyframe) approaches produce many promising results, the opti-
mization problems can be very difficult and the solvers can struggle,
e.g., fall into unsatisfying local minima, be extremely slow on larger
problems (which interferes with interactive user experiences), suffer
from physical infeasibility, e.g., due to collisions, and, ironically, be
difficult for practitioners to use and tune parameters for.

To avoid fine-level keyframe control and its inherent optimization
difficulties, Many-Worlds Browsing (MWB) [Twigg and James 2007]
only provides coarser sample-level control on a (precomputed or
refineable) simulation ensemble. MWB leverages human intelligence
and interactive tools to let the user explore and query the space of
all ensemble samples. While user-specified spatial queries were able
to find needle-in-a-haystack rigid-body simulation outcomes, the
method was limited to a single phenomenological domain—rigid
body dynamics. UMWB generalizes to other simulation domains of
importance to computer animation (deformation, fracture, smoke
and fire, liquids, etc.), and provides a practical unified, interactive
browsing framework for arbitrary animations. The original MWB
approach only used approximate, compressed center-of-mass for
inexact spatial queries, whereas we use approximate volumetric
WorldPack representations with good memory performance for
modern multi-physics simulations.

Beyond Rigid Bodies. There are several works that have explored
simulation control and specialized guiding techniques for domains
other than rigid bodies. Examples include fluid animation controllers
[Foster and Metaxas 1997] and keyframe-based smoke control [Fattal
and Lischinski 2004; Treuille et al. 2003]. Adjoint control methods
assist with many control parameters for fluids [McNamara et al.
2004] and particle systems [Wojtan et al. 2006]. Other methods for
fluids include guide-based techniques [Sato et al. 2021; Shi and Yu
2005]; neural style transfer [Guo et al. 2021; Kim et al. 2019] for
indirect control; strategically placed control forces and interactive
local edits [Pan et al. 2013; Schoentgen et al. 2020; Thiirey et al.
2006]; methods for stylizing fluids with neural networks [Kim et al.
2020; Yan et al. 2020]. Unfortunately methods for calculating control
forces to carefully guide simulations are domain-specific and, for
instance, formulations tuned to controlling smoke do not trivially
generalize to controlling rigid bodies or elastic objects. For example,
specialized methods exist for coarse-to-fine control of thin shells
using moment-based constraints [Bergou et al. 2007].

Control techniques for multiphysics simulations that can gener-
alize to several physical models are less common. Some attempts
include controllers for reduced-order dynamical systems [Barbi¢
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and Popovi¢ 2008]. Recently, Ma et al. [2018] trained a controller us-
ing deep reinforcement learning for coupled fluids and rigid bodies,
but only offers control on the fluid in the domain.

Volumetric Data Structures. Our work on browsing-specific com-
pression formats is closely related to several previous papers on
data structures optimized for storing large, sparse volumes. Sparse
regular grids are common in computer animation applications, for
representing everything from scenes to vector fields. As a result, a
great number of papers explore different ways to handle common is-
sues with these grids, such as high memory footprints and expensive
data access, including VDB [Museth 2013], DT-grid [Nielsen and
Museth 2006], SPGrid [Setaluri et al. 2014], and DB+grid [Museth
2011]. Several methods are inspired by volumetric octrees [Samet
2006] for exploiting spatial sparsity, such as sparse paged grids
[Aanjaneya et al. 2017] and wide-branching tile trees [Nielsen et al.
2018]. However, most of these data structures target dynamic data
using instantaneous, per-frame representations; in contrast, our
work targets browsing of precomputed simulation ensembles where
simulation samples are not modified at browsing time. In this con-
text, NanoVDB [Museth 2021], which stores immutable simulation
snapshots with static topology, is more similar to our WorLDPACK
representation. One key difference is that NanoVDB and its prede-
cessors store a separate serialized data structure for each timestep,
independent of data at other timesteps. However, many simulations
contain both temporal and spatial sparsity and redundancy, espe-
cially when quantized heavily. Therefore, rather than storing a data
structure per-timestep, our proposed WoRLDPACK data structure
leverages both in-space and in-time compression to further reduce
the memory footprint and accelerate queries.

Run-length encoding (RLE), our temporal compression strategy,
has been widely applied to volume data in previous work, particu-
larly for representing sparse level sets [Houston et al. 2006, 2004],
and signed distance functions [Curless and Levoy 1996]. But these
methods use RLE solely for in-space compression; to our knowl-
edge, applying RLE compression in-time on volume data is a largely
unexplored direction, in part because of the pervasive nature of
per-frame animation processing. Coupled in-time and in-space com-
pression appears in common 2D video compression schemes like
GIF89a and H.264 [Sayood 2017], and can effectively reduce mem-
ory costs while preserving quality. In contrast, our data structure
is designed specifically for fast processing of spatiotemporal user
queries on low-fidelity volume animation data.

Finally, our WoRLDPACK queries exploit the fact that vector sets
compressed using RLE (or PackBits) can be used to accelerate vector
computations (dot products, summation, etc.) [Oyamada et al. 2018].

Animation Compression. Many-Worlds Browsing used rigid-body
trajectory compression to support larger in-core ensembles [Twigg
and James 2007], and the center-of-mass trajectory for fast, approx-
imate spatial queries. Rigid-motion compression rates are good for
ballistic trajectories, but degrade for objects undergoing many com-
plex collisions (c.f. [Jeruzalski et al. 2018]). In computer animation,
compression schemes exist for various animated content, such as
deforming mesh animations [Lengyel 1999; Sattler et al. 2005], char-
acter animation databases [Arikan 2006], fluid animation fields using
DCT-based compression [Jones et al. 2016], etc., however they tend
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to be domain-specific and not easy to integrate with approximate
browsing queries on arbitrary animated content. In contrast, we
exploit a unified low-fidelity representation to achieve compression,
fast rendering and approximate queries of arbitrary animations
during ensemble browsing. In other fields, the use of compressed
representations of data that allows for answering queries about that
data is referred to as “sketching” [Nelson 2011]. Lastly, low-fidelity
simulations for browsing are orthogonally related to the use of
adaptive precision simulation [Hu et al. 2021; Yeh et al. 2009].

3 SUMMARIZING SIMULATIONS WITH WORLDPACK
3.1 Design Goals

3.1.1  Simulation Summaries. Unfortunately, storing ensembles in
core for on-the-fly query evaluation can quickly become intractable
given the sheer amount of simulation data often dumped. For exam-
ple, a single smoke animation sample can contain several gigabytes
of simulation data, and we anticipate ensemble sizes on the order
of hundreds to thousands of samples. Furthermore, it is impractical
to use raw simulation ensemble data to support interactive query
performance and the visualization of selected results.

To this end, we require a data structure that can summarize simu-
lation data in support of the following UMWB design desiderata:

(1) ARBITRARY & UNIFIED: We desire support for arbitrary physics-
based animation models (solids, fluids, etc.) by using an ap-
proximate but unified data representation.

(2) Expressivi: We desire sufficient spacetime resolution to ex-
press spatiotemporal animation queries of practical interest.

(3) Low MEMORY: We desire in-core query processing and thus
require a low-memory footprint for the entire summarized
animation ensemble.

(4) Fast QUERIES AND RANKING: The data structure should be op-
timized for interactive evaluation of spatiotemporal queries.

(5) FAasT RENDERING: Since the original simulation data is unavail-
able, the summary must itself provide a fast visual substitute.

Design decisions made under these tenets resulted in WoRLDPACK, a
data structure for interactive exploration of large simulation ensem-
bles. With WoRLDPACK, users may interact with rasterized ensemble
data at interactive rates in order to explore hundreds to thousands
of ensemble samples and narrow down the outcome space to only
the samples they find interesting.

3.1.2  Simulation Data Quantization. Raw simulation data dumped
from solvers are often at the high precisions required for per-timestep
solves. We emphasize that the intention of the WorLDPACK data
structure is to store an expressive but lightweight sketch of an an-
imation over time; therefore, all simulation data that we store in
WorLDPAcKks will be quantized to lower precision.

Spacetime Occupancy: For what-goes-where queries that form
the bulk of our user interaction model, just knowing if a spatiotem-
poral region contains an object or not is generally sufficient to sift
through ensemble samples. We consider this a question of spacetime
occupancy in which simulated material of interest is identified by
the user using an indicator function I : (x,t) — {0, 1}. Specifically,
let the object material occupy the spacetime region Q ¢ R3 X Ry,



Fig. 3. Spatiotemporal Queries are drawn in world space with accompany-
ing temporal bounds and a predicate to be applied on the region. Common
predicates for what-goes-where queries test for geometric occupancy: IN
queries include simulations that include any occupancy of a given object-in
this case, the lava—in the region. NOT IN queries discard simulations with
occupancy in the region. The above thumbnails show four simulation sam-
ples tested against the same two queries. The samples evaluate from left to
right as false (lava is not present in the IN region), false (lava is present in
the NOT IN region), and true.

then the continuous indicator function is

1 if(xt)eQ
Io(x,t) = { 0 if (x,t) ¢ Q. W

Attribute Values: For attribute values that need to be stored at
higher fidelity than an indicator function (like color, normals, or
object IDs), we can quantize the range of values to save memory.
While we lose accuracy for these values, we gain the flexibility to
compare samples, store large ensembles in core, and identify relative
differences and trends.

3.1.3  Spatiotemporal Query Model. In our proposed system, a user
interacts with simulation ensemble data via spatiotemporal queries,
analogous to those used in relational databases. Queries fetch spe-
cific simulation data fields or keys (e.g., temperature, velocity, nor-
mals, boolean occupancy, etc.), apply a reduction (e.g., max, average,
sum, any, etc.) and evaluate whether an accompanying predicate is
true or false for a given spacetime region R. For example, a user may
ask for ensemble samples that satisfy various queries (see Figure 3):

o IN; QUERY: “There exists some geometric occupancy”in a re-
gion R. A simulation sample occupying Q must have QNR# 9
in order to satisfy an INgp query.

e NOT INg QUERY: “There is no geometric occupancy”in a region
R. A simulation sample occupying Q must have Q N R=@ in
order to satisfy a NOT INg query.

e ATTRIBUTE VALUE QUERIES: ‘Average temperature greater than
40”in a region R is an example of a more specific query with
attribute-value predicates.

Users may chain together queries to explore arbitrary physics-based
ensembles in a simple and unified manner. From our definitions,
it follows that evaluating if queries are true or false for a given
ensemble sample amounts to processing spatiotemporal operators,
e.g., repeatedly and efficiently applying data reduction operators
(such as min, max) to simulation data region R, to check the scalar
in a query predicate.

3.2 WorLbpPack Concepts

3.2.1 Exploiting Spacetime Structure. While simulation spatial di-
mensions can grow to intractable sizes, we generally do not need
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to store data for every single spacetime point in the domain. First,
we observe that for many artist animations, quantized simulation
data contains a large amount of spatiotemporal redundancy: values
in a given spatial neighborhood are often relatively consistent over
portions of time—an extreme case of this redundancy is with the
rasterized, boolean (0 or 1) occupancy indicator function where
changes between frames only occur on the object’s boundary. Sec-
ond, relevant data exhibits sparsity, as it is usually constrained to
compact regions within the domain. This sparsity may manifest
itself as empty space (“density is 0 in region R”) interspersed with
static geometry (“occupancy exists in region R”). Many popular data
structures like VDB[Museth 2013] exploit the spatial sparsity of
simulation domains for better compression and efficient sampling.
However, these data structures are generally stored as snapshots for
per-frame processing, e.g., an artist may dump a sparse volume for
each frame of an animated sequence. While popular data represen-
tations can vastly improve memory footprints for a given timestep,
storing per-timestep volume representations over hundreds or thou-
sands of timesteps can quickly get out of hand. It is not uncommon
for a cache of per-timestep sparse volumes for a single animated
sequence to demand gigabytes of memory.

Because sparse volumes are customarily compressed using strate-
gies that leverage spatial redundancy and dumped per-timestep, they
fail to exploit spatiotemporal redundancy. We observe that simula-
tion data is often both consistent in space and time. To reference
our previous example, spatiotemporal redundancy can appear as
“density is 0 within region R for a span of T timesteps.” Utilizing re-
dundancy in both space and time is a largely unexplored space, but
in order to store ensembles with sizes on the order of thousands of
samples in core, we must look further than compression with just a
spatial hierarchy.

3.3  WorLDPAck Construction

3.3.1 Quantization. As discussed earlier, we start by quantizing
simulation data to lower-precision values in a field-type-specific
manner. For spacetime occupancy, 1-bit quantization is already
performed by the indicator function, Ig (x, t).

For a scalar attribute value, v € R, we discretize the continuous
interval [Umin, Umax] into b, bins, where vy, (Or vpmin) are the
maximum (or minimum) value that the v attribute ever takes for a
simulation sample. Let the length L = v;,4x —0min be divided into b,
distinct bins. Every attribute value v thus falls into a value bin with
integer index i, € [0, by). Rather than storing the higher-precision
v attribute value itself, we instead store i,.

For all following steps, we act on quantized simulation data using
ordinal values, e.g., 8-bit value-bin indices, rather than the raw
values.

3.3.2  Rasterization. In order to support unified data exploration for
arbitrary simulations, regardless of solver-specific representations
(e.g., particles, grids, meshes, etc.), we rasterize per-sample, per-
timestep simulation data onto coarse, uniform voxel grids, with
user-specific cell size, h. All relevant attribute values (e.g., occupancy,
temperature, density, etc.) are rasterized onto separate uniform grids.
A simulation domain that has a spatial height, width, and depth of
H, W, and D, respectively, is then converted into a 3D uniform voxel
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Spatiotemporal Sparsity Spatiotemporal

Redundancy

Spatial Sparsity

Fig. 4. Spatiotemporal Redundancy: (Top left) Spatial sparsity and (Top
middle) spatiotemporal sparsity can be exploited to compress 3D and 4D
gridded data, respectively. However, for physics-based animations where
objects move continuously through time, we also observe (Top right) spa-

tiotemporal redundancy wherein local neighborhoods may have the same
value while not necessarily being empty. (Bottom) An XZ slice from a Jell-
O-Bowl simulation shows Jell-O pieces moving through time. While some
regions are certainly sparse, many areas are redundant: they are not empty,
but they are constant within local spacetime neighborhoods.

grid of dimensions Ny X Ny X N = [H/h| X |W/h] X | D/h|. We refer
to the ijk‘" cubical cell as a raster block, and denote its spacetime
region as Q;jx C R3 X [0, Trnax]. The projection of simulation data
to a single raster block value can be done via standard reductions.
For example, spacetime occupancy is rasterized by approximating a
conservative max reduction of the indicator function:

Lijk= max Ig(xt). (2)

(x,t) €Qyjx

Discussion. Rasters only need to be coarse summaries of simula-
tion data, so for browsing, a large h is preferable and enables effi-
cient inspection of simulation-data trends across coarse spacetime
chunks. Additionally, because WoRLDPACKS are built as summaries
of already-dumped simulation data, the finer resolutions required for
simulation computations or high-quality rendering are unnecessary.

3.3.3  Temporal Compression. Let us consider a single ensemble
sample at a time. For every timestep in this sample S, we have ras-
terized relevant attribute values into summaries composed of raster
blocks. Because quantized simulation state is usually temporally
redundant, we observe that, for a given attribute value, a raster
block can have the same or similar values for significant stretches
of time. Therefore, we use run-length encoding (RLE) of the raster
block’s values in time for the length of the simulation. RLE converts
repeated data values into a sequence of <count, value> pairs, e.g.,
given the sequence of values: (2, 2,2,0,4, 4,4, 4, 4, 4, 4, 4), RLE would
produce the following <count, value> tuples, commonly referred to
as runs: <3, 2>, <1, 0>, <8, 4>. Notice how RLE has exploited the
sequence’s temporal redundancy, to reduce the number of values
being stored from 12 to 6.
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Fig. 5. Rasterization: Raw simulation data can be high in spatial resolution,
making for expensive storage and processing. We start by rasterizing data
from each timestep onto a coarsened uniform grid to create a lightweight
summary. Here, we show a sample from our Jell-O ensemble. We project
quantized data—such as the I (x, t) indicator function (“there is some Jell-O
in this raster block” vs. “there is no Jell-O in this raster block”—onto a coarse
uniform grid. In this example, coarsening is done using a max reduction on
0/1 occupancy values.

While strictly-repeating values are rare in floating-point sim-
ulation data, quantization creates redundancy in sequences that
are very close in value. As a result, temporally encoded sequences
usually have a smaller memory footprint in practice. Processing
RLE-encoded sequences when evaluating temporal integrals is also
often faster than storing a series of individual values because there
is usually a) less to process, and b) processing does not require de-
coding the entire sequence (c.f. [Oyamada et al. 2018]). We discuss
specifics of RLE-in-time operations in §4.

3.3.4 Spatial Compression. Next, we exploit the spatial consistency
of simulation data: spatiotemporal neighborhoods often exhibit
similar behavior. So, we build a shallow, wide octree on the RLE-
in-time signals. Starting from the root, we only subdivide a node
if the RLE sequences contained in the node’s raster blocks vary.
Otherwise, storing a single RLE sequence for the node’s region is
sufficient. The maximum depth for a hierarchy Depth;,qx is chosen
to be a small constant; because all RLE-in-time sequence data is
stored at leaf nodes, a shallow structure allows us to traverse from
root to leaf in a bounded number of steps.

Node Representation. Because octrees are regular hierarchies,
we only need to store the dimensions and position of the root node.
After that, as long as we store node children in a fixed order, the
location and size of internal and leaf nodes can be inferred from
depth [Samet 2006].

At every node, we store a flag indicating if the node has children
or not; a flag value of true indicates that a node has 8 children, while
a flag value of false indicates that a node has 0 children. Nodes store
RLE-in-time data differently depending one of three cases, as in
Figure 7:

e Internal nodes do not store RLE-in-time sequences, and only
need to store a reference (either through pointers or memory



Red Channel
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Time

RLE-in-time:
<3, 0><1, 5><1,11><3,34><1,46><1,75><1,105><2,128><1,139><6,157><5 4>

Fig. 6. RLE-in-time Compression: WorLDPAck utilizes RLE-in-time to
reduce the behavior in a single raster block over the course of hundreds
of timesteps. Following this step, each raster block will have a single RLE
encoded signal. (Top Left) Some attribute values are represented in simula-
tors with higher-precision floating point numbers, which may be close in
value but do not strictly repeat. (Top Right) Similarly to how we coarsened
space, we quantize the attribute value axis so that values relatively near in
time and value fall into the same value bin. Finally, we RLE-in-time encode
lower-precision bin IDs rather than higher-precision floating point values
(Bottom) into <count, value> pairs. In the case of geometric occupancy, we
use just two bins: occupancy either exists, or does not exist, within a raster
block. For attribute values requiring finer-grained storage like angles or
color, we use 256 bins.

offsets) to the node’s children. (Nodes marked in light purple
in Figure 7)

o Leafnode at a smaller hierarchy depth than Depthpmax: In this
case, we only store the single RLE-in-time sequence since
all descendent raster blocks are identical. (Nodes marked in
green in Figure 7)

o Leafnode at Depthpayx: In this case, some raster blocks within
the node’s bounds have differing RLE-in-time sequences. So,
the node stores RLE-in-time sequences for each of its raster
blocks. (Nodes marked in yellow in Figure 7)

3.3.5 Linear Representation. A final, optional step is to linearize the
data structure. Because the data structure is static and read-only, we
replace all pointers between parent and children nodes with 32-bit
memory offsets. Linearized WORLDPACKs are stored in breadth-first
order in a contiguous, unbroken block of memory.

Linearized WoRLDPACKs can be transferred rapidly from disk
to memory, and from CPU to GPU. The latter enables accelerated
processing of computationally intensive algorithms like volume
rendering, which is relevant for visualizing WoRLDPACKs in our
browser (see §4).

4 ACCELERATED BROWSING FUNCTIONALITY WITH
WORLDPACKS

4.1 Spatiotemporal AABB Queries

Users may define query regions as AABB spacetime bounding boxes,
after which the octree-based spatial hierarchy is used to perform
efficient processing of WorLDPACK-AABB intersections. Processing
a query uses three steps described in §4.1.1-§4.1.3 (see Figure 8).
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Fig. 7. WorRLDPACK Structure: We show a WorLDPAck constructed for
geometric occupancy on a domain with one spatial dimension, x, and a
temporal dimension t. More complex domains are too large to be shown here,
but even this toy example contains similar features to our examples: large
areas of spatiotemporal redundancy interspersed with areas of distinctness.
(Top) Both axes are partitioned into spacetime raster blocks; raster blocks
occupied at (x, t) are shown in blue. Every raster block has an associated
RLE-in-time sequence. (Bottom) We build a shallow, wide octree on the
raster blocks. If any raster blocks within an internal octree node O;pternal
have different RLE-in-time sequences, we split O into child nodes: these
internal nodes are shown in purple. If O is at the hierarchy’s Depthpax
and has any spatiotemporally distinct raster blocks, O is a leaf, and stores
an RLE-in-time sequence for each of its raster blocks: such nodes O are
shown in yellow. If O is not at the hierarchy’s Depth;,ax, and all raster
blocks in O have the same RLE-in-time sequence, then O does not branch
and only stores a single RLE-in-time sequence for the entire region: such
nodes Depthpmax are shown in green.

4.1.1  AABByy./Octree Intersection (Step 1/3). First, we need to lo-
cate the WoRLDPACKED data falling within the AABB spatial co-
ordinates. Because WORLDPACK represents spatial data with an
octree-inspired hierarchy, we can simply traverse the hierarchy
in depth-first order to quickly collect all leaf octants that overlap
with the AABB spatial bounds [Samet 2006]. WORLDPACKED data is
laid out in a pointerless, linear fashion, so the traversal is performed
using stored memory offsets from parent to children nodes.

As discussed in §3 and illustrated in Figure 7, each leaf octant
Oleqs can either store a single RLE-in-time sequence if the entire
region is spatiotemporally redundant (indicated by the green nodes
in Figure 7), or an RLE-in-time sequence for each raster block within
the region if Ojqf contains any spatiotemporally distinct raster
blocks.

In the latter case, we check all individual raster blocks in Oje, ¢
for intersection with the AABB spatial bounds, in case the AABB
region only partially overlaps with the octant.

ACM Trans. Graph., Vol. 41, No. 4, Article 156. Publication date: July 2022.
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Fig. 8. Query Evaluation on WoRLDPACK : Query evaluation is com-
posed of three high-level steps. (Left) First, using a familiar AABB-octree
intersection, we locate the leaf nodes in the WoRLDPAcK spatial hierarchy
that lay within the spatial bounds of the query. (Right) Second, we find
which RLE-in-time units stored at these leaf nodes fall within the query’s
temporal bounds. Finally, we apply the predicate to overlapped sequences.
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4.1.2 AABB;/RLE-in-time Intersection (Step 2/3). Once we have the
leaf octants and raster blocks that are completely encapsulated by
the spatial bounds, we need to find which parts of their full RLE-
in-time sequences fall into the AABB region’s temporal interval
Tquery- Every RLE-in-time <count, value> unit constitutes a single
interval with length count. An RLE-in-time sequence is thus a se-
ries of intervals that, by construction, do not overlap with each
other. We can treat the operation as a search for overlapping ranges
between Tgyery and the RLE-in-time interval sequence and apply
a 1D sweeping method. We might find overlapping ranges faster
with, e.g., a non-overlapping interval tree, though, in practice, more
advanced structures are unnecessary because the number of <count,
value> units composing our RLE-in-time sequences is quite small;
we report the average number of <count, value> units per raster
block for WoRLDPACKS storing geometric occupancy in Figure 9.

RLE-in-time Runs Per Frame (Geometric Occupancy)
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Fig. 9. We calculate RLE-in-time Runs-Per-Frame (RPF) as the number of
RLE-in-time <count, value> runs per dense non-empty raster block, divided
by the number of total frames compressed with RLE-in-time. We show
the RPF for each WoRLDPACcK storing geometric occupancy data, and plot
the average for each ensemble. As the boxplot shows, the RPF is quite
small, generally around 0.1: given an RPF of 0.1 results in about 10x more
compression than data not compressed with RLE-in-time. Because the
number of runs per raster block is small, in-time processing generally occurs
quite fast, and does not require advanced data structures.

4.1.3  Evaluate Predicate (Step 3/3). Once we have determined which
RLE-in-time runs overlap with Tyyery, we process their values based
on the query’s predicate. These operations are conducted directly
on the RLE-in-time compressed representation, without need for
decompression: an RLE-in-time sequence implies that a value occurs
at a raster block over count consecutive timesteps. For example, if
the predicate asks to sum all values in spatiotemporal region Rgyery,
perhaps for later ranking of ensemble samples by total density in
Rquery, we aggregate the (count x value) products for all RLE-in-
time runs within Rgyery:

plock
SuMplock = n; Vi (3)
i=0
where £pj,ck is the length of the RLE-in-time sequence for a given
raster block, n; is the count of the ith RLE unit, and V; is the value of
the i*h RLE unit. If the predicate instead performs an IN query for



spatiotemporal region Rgyery, we check for RLE-in-time sequences
in Rguery with value 1, the single-bit indicator for occupancy:

IN : max V; >0, (4)
0<i<{lplock

NOT IN : max V;==0. (5)
0<i<lplock

Early exits are used to speedup query evaluation. We refer read-
ers to [Oyamada et al. 2018] and [Ding-tao et al. 2008] for a more
detailed discussion of accelerated primitive operations on RLE se-
quences. Like Oyamada et al. [2018], we find that operating on RLE
sequences is usually faster than iterating and processing individual
values at every timestep; we show an ablation in Figure 10.

The overall speedup of query evaluation using our WorRLDPACK
data structure and WorLDPACK-AABB intersection algorithm is sig-
nificant; most IN and NOT IN queries across region sizes, positions,
and ensembles are processed within 10~ seconds.

Query Processing Times Across Data Structures

1000 T WorldPack o
Uniform RLE-in-time Grid —
~ .~-1] — Uniform (x,t) Grid
1

g /
310’2 /,,/ -
v y \
£ _ AL A / B
£ 10 3 ‘\/ ~ “\ . |
s “/% —
> 04 )

10 -
w “ \\ /

10-5 Y

0.0 02 0.4 0.6 08 10

Que|;y Region Vollume

Fig. 10. Query Processing We measure the processing time for 64 IN
queries on a sample from our Jell-O ensemble. Query spatial regions are all
placed at the center of domain, and have increasing region spatial volume,
shown on the x-axis. We evaluate these queries using three data structures:
(a) WorLDPAck (blue), (b) a uniform RLE-in-time grid ( ) which is
uses RLE-in-time compression but no spatial hierarchy, and (c) raw data
( ), which uses a spacetime uniform grid but no spatial or temporal
compression. We measure time in seconds and plot with a log-scale. As
these query regions increase in size, WoRLDPACKs keep a steady processing
time due to their spatial hierarchy. The dip in processing times at a query
volume of 0.4 is due to early exit: as the query regions grow, they eventually
encapsulate some new geometric occupancy that allows us to terminate
evaluation earlier.

4.2 WorLpPAck Rendering

As part of the browsing interface, users may explore 3D simulation
samples via a navigable, rendered interface with the ability to pan,
zoom, and rotate the camera around the scene. Users may compose
and visualize spatiotemporal queries from within this scene.

To avoid dumping large amounts of per-timestep scene geometry
for visualization, we chose to render the WorLDPACK data structure
from a fragment shader using a simple ray tracer. WORLDPACK’s
in-time compression allows us to render the scene at any timestep
from a single dumped file, enabling users to flexibly navigate the
scene without having to extricate, dump, and store extraneous per-
timestep simulation geometry. As we will discuss, WORLDPACK’s
spatial hierarchy, spatial sparsification, and support of low-precision
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attribute value storage are particularly beneficial for GPU ray casting
and shading.

4.2.1 Attribute Value Encoding. For basic material shading, we will
need to know for Iq (x, t) (a) whether Ig(x,t) == 1 (contains geo-
metric occupancy) and if so, (b) the diffuse color colorg(x,t) and
(c) the normal Nq (x, t) of the object at I (x, t). We need to export
this data per raster tile in a low-memory, low-precision format for
WORLDPACK to leverage spatiotemporal redundancy, while keeping
just enough information to enable rendering with these values.

We make several simplifications to reduce the amount of data that
needs to be WORLDPACKED. First, rather than storing a 32-bit RGBA
color for colorg(x, t), we instead rasterize an 8-bit color ID, which
we use to lookup in, e.g., a hash table, the full RGBA color value.
While this assumption gives us an upper bound of 255 separate
materials in the scene, our examples (see §5) do not strain this limit.
We parameterize Nq (x, t) with two polar coordinates 6 and ¢. Both
polar angles are binned into 0-255 buckets of size 27/256 radians,
for a total of a 16 bits per normal.

We thus reduce shading information (occupancy, color, and nor-
mals) per-raster-block into a 24-bit unit for a given timestep. We
pack these lower-precision units into our WorLDPACK format.

4.2.2  Ray casting. Our WoRLDPACK rendering algorithm is similar
to the volumetric rendering pipeline described by [Laine and Karras
2010], which similarly exploits the regular topology of spatial oc-
trees for efficient ray casting. We therefore refer readers to [Laine
and Karras 2010] for an in-depth description of ray casting voxel
octrees on the GPU; in summary, we perform ray casts into the
spatial hierarchy and incrementally traverse leaf nodes intersected
by the ray in depth-first order. Once a ray hits geometry, we lookup
shading attributes as inputs to a simple Phong shading model, and
the traversal is complete.

The key difference between the GPU-accelerated ray casts de-
scribed in [Laine and Karras 2010] and ours is the encoding of surface
geometry. Laine and Karras [2010] use a timestep-specific octree—
simulation data transferred to the GPU is from a single snapshot in
time (see Figure 11) so leaf-node occupancy tests can be performed
with a single lookup. In contrast, our WORLDPACKs use spatially
hierarchical RLE-in-time: each leaf node contains an RLE sequence
rather than a single occupancy value. So, we must also perform
a temporal traversal: simply checking the RLE intervals for occu-
pancy at the time-step that is currently being rendered. While the
extra step adds some computation, we can avoid an expensive data
transfer of a timestep-specific octree to the GPU for every frame.
In our examples, the number of units per RLE-in-time sequence is
small, and so the in-time traversal adds only a few extra shader op-
erations; rendering RLE-in-time is negligibly more expensive than
rendering a single frame. In Figure 12, we report the average number
of <count, value> units per raster block for WoRLDPACKS storing
shading information quantized in the manner discussed in 4.2.1.

4.2.3 Optimizations. To speed up data access of an individual raster
block’s RLE-in-time data, we augment the WorLDPACK format with
leaf node headers. For each raster block in the leaf node, headers
record a 16-bit offset value, or bookmark, from the start of the node’s
data to the beginning of the raster tile’s RLE-in-time sequence in

ACM Trans. Graph., Vol. 41, No. 4, Article 156. Publication date: July 2022.
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Fig. 11. Ray Casting WORLDPACKs: Rendering WoRLDPACK is reminiscent
of rendering a 3D octree. Similar to ray casting a purely spatial hierarchy,
a ray is cast from the eye location into the octree and traverses from leaf
node to leaf node until it either finds an occupied cell or exits the volume.
However, the occupancy test requires decoding the RLE stored at each
intersected leaf node to check for occupancy at the current timestep.

RLE-in-time Runs Per Frame (Shading Information)

Candles Card Fracture Jell-O Spilt Sand Mixing Lava Staircase
Bowling Analysis Rain Milk Castle Smoke
Ensemble

Fig. 12. We plot RPF for each WorLDPAck storing shading information,
and plot the average for each ensemble. While the number of runs per
raster block is higher in these WorLDPAcks than they were for WoRLDPAcks
storing geometric occupancy, it is still quite small: so, the in-time traversal
adds only a few extra GPU shader operations.

the data stream. Each offset has a set size of 2 bytes; offsets are laid
out in ZYX order. Given its location in 3D coordinates, the offset
of any raster block is accessed in constant time by converting 3D
coordinates to 1D. Rather than processing a stream of RLE-in-time
data linearly to find the start of a raster block’s block, we instead use
the offset to jump directly to the block’s position in the stream-also
a constant-time operation.

5 RESULTS

We now describe our examples in more detail. Example statistics
are shown in Table 1. Please see the accompanying video for all
animated results.

Implementation Details. Our approach involves multiple compo-
nents: (1) physics-based simulation, (2) WorRLDPACK exporter, (3)
interactive browser with GPU renderer. To support our claim of
arbitrary simulation models, we created a diverse assortment of
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examples using a wide range of dynamics solvers in SideFX Houdini
v18.5 (example-specific details are below). We exported WORLD-
Packs straight from Houdini with a Python-based implementation.
Our runtime browser is implemented in Javascript and runs via
a local server; because they are quite lightweight, an ensemble’s
entire set of sample-specific WORLDPACKS storing geometric occu-
pancy can be stored comfortably in memory. This avoids the need
for expensive file IO of WoRLDPACKs when evaluating user queries;
WOoRLDPACKS can just be loaded once at the start of the browsing
session. WORLDPACKs that store shading information are loaded on
an as-needed basis: if the browser needs to display a new simulation
sample, we load the sample’s shading WorLDPACK and send it to
the GPU packed into a texture2D. We render WoRrLDPACKs with
shaders built using WebGL. The browser evaluates user queries at
interactive rates, updating the set of feasible samples immediately as
the user inserts or drags query regions or adjusts predicates. All fea-
sible samples are shown as representative images within a scrollable
menu on the right-hand side of the GUI (see video). Users examine
an interactive 3D view of individual WorldPacks by clicking on their
representative image. Users can avoid manually examining each
feasible sample by ranking using other metrics; we show examples
in Figures 14 and 15.

Fig. 13. Smashing Sand Castles: A sandbox ensemble is created by launch-
ing a ball with randomly chosen starting positions and velocities at a sand-
castle fashioned out of wet grain. Using exploratory queries we can effec-
tively say (Left) “give me samples where the front-left turret is smashed by
the final timestep,” or (Right) the top turret.

Smashing Sand Castles (Figure 13). Our rasterization-based ap-
proach supports a wide range of models, including this sand-grain
simulation example (simulated in Houdini using 180,000 grains).
By applying appropriate queries, the animator can find scenarios
where particular turrets are hit or not hit by a thrown object.

Card Bowling. WoRLDPACKS can be exported for a single simu-
lated subject, such as lava or JELL-O®, or for several. In this example,
we sample an ensemble where a 20-sided die with randomly-sampled
initial position and velocity is launched at 10 card “pins” arranged
like traditional Candlepin bowling. Dynamics are simulated in Hou-
dini using the Bullet rigid-body solver; each bowling pin is com-
prised of 585 cards. Queries can be applied to one subject, like the
die, or to several in combination, with subject-specific predicates
on both the dice and the cards to narrow down the ensemble to find
interesting bowling strikes (see Figure 1).
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Table 1. Example Statistics: For each ensemble, we report the number of ensemble simulation samples, the number of timesteps, the number of input
parameters that are randomly varied to create the ensemble. We list the T,;,4x chosen for WorLDPAcKs storing geometric occupancy and shading information;
we choose Ty,qx at a finer resolution for the latter. We also report the average size of each ensemble’s WorLDPAcks in MB. All WorLDPAcks used for evaluating
user queries are 128 X 128 x 128 raster blocks in spatial resolution, with a spatial hierarchy depth of 4. All WorLDPAcks displayed using hardware-accelerated
raycasting in our browser’s interface are 256 X 256 X 256 raster blocks in resolution, with a spatial hierarchy depth of 6. Finally, we report a rounded average
serial construction time for constructing a) each WorLDPAck individually, and b) each entire ensemble; the majority of the time is incurred by solvers, not
WoRLDPAcK construction. Note that the Staircase ensemble (final row) utilized several rounds of ensemble refinement, so we report statistics for the final stage
of refinement, but the total number of samples collected from the entire refinement process.

Example Samples | Num Timesteps | Num Params | Tpyax (Occ.;Shade) | Avg WorLDPACK Size, MB (Occ.;Shade) | Avg Construction Time (min/sample; min/dataset)
Sand Castle 104 70 4 5:;3 0.089 ; 1.692 25 ;1040

Card Bowling 51 155 4 1055 0.145 ; 2.190 15; 750

Fracture 300 24 1 3;2 0.075 ; 5.526 5;1500

Jello Rain 46 349 1 105 0.321; 13.04 205920

Smoke 99 164 1 10; 10 0.093 ; 3.083 10; 990

Candles 109 70 6 5:;3 0.259 ; 4.050 5;545

Lava Village 72 154 10 10; 10 0.103 ; 3.739 20 ; 1440

Spilt Milk 46 94 3 10; 10 0.088 ; 3.871 30 ; 1380

Staircase 484 92 6 5:;3 0.093 ; 1.861 3;1452

Browsing JeLL-O® Brand Gelatin (Figure 1). We sampled an en-
semble of 13 randomly oriented Jell-O cubes falling into a bowl,
with each cube simulated as a tetrahedral mesh (5530 tets, 1406
verts.) in Houdini Vellum. Unfortunately some pieces fly out of the
bowl. To eliminate simulation samples where Jell-O pieces fell out
of the bowl at any time, a user places a large NOT IN query region
under the bowl: this constraint allows only samples that do not have
geometric occupancy in the selected region.

N
N

Fig. 14. Fractured Heptoroid: We perform fracture analyses on a hep-
toroid by subjecting it to randomly sampled planar impacts and rasterize
WOoRLDPAcKks in the body-space of the main object. The user can place a
NOT IN query acting on the main object over the last few timesteps (Top),
to find samples with a specific impact response: “in which samples did this
part of the heptoroid fracture?” A different part of the outcome space is
explored (Bottom) by placing an IN query acting on the tiny detritus and
ranking samples to find outcomes with the most debris in the query region.

Material-Space Browsing of Fracture (Figure 14). The WORLDPACK
RLE-in-time representation enables us to evaluate spatiotempo-
ral queries over simulation domains at interactive rates. On our
largest ensemble, we perform 300 fracture analyses on a heptoroid
by subjecting it to random planar impacts, and rendering collected
WOoRLDPACKS in the body space of the main fragment. By dragging
IN and NOT IN queries around both the main object and the shat-
tered detritus, an analyst can quickly sift through the ensemble,
and explore different impact responses and degrees of destruction.
Metrics calculated on-the-fly from WoRrLDPAcKs, like density inte-
grals, help further sift through samples, such as allowing an analyst
to rank samples by the density of fragmented material in a query
region.

Fig. 15. Mixing Smoke a ranking query executed within the lower part
of the volume (with spatial bounds shown from an orthographic view in
blue/green) orders simulations by the amount of purple smoke within the
query region. The integral is calculated on-the-fly from WoRLDPACKED color
data. We show the samples with (Left) the lowest mixing—notice the single
blue vortex within the query bounds-and (Right) the highest mixing.

Mixing Smoke (Figure 15). We recreated the colliding red teapot
and blue bunny smoke objects using the simulator in [Chern et al.
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2016] (their Fig. 6 example) in Houdini (1283 grid, i = 0.0451, +2 jet
speeds). We built an ensemble by randomly sampling the rotational
orientation of one of the objects and rasterizing smoke occupancy
and color; as listed in Table 1, our WorLDPACKs resolutions match
the resolution of the solver grid without need for aggressive spatial
coarsening while maintaining reasonable memory footprints, and
explored interesting variations and vortical structures. We could
also explore the degree of smoke mixing by browsing and ranking
based on the amount of purple smoke generated by a simple diffusive
mixing process.

Fig. 16. Browsing Lava Flows: (Left) We make an ensemble by varying
volcano vent deformations. (Right) Combining IN and NOT IN queries allows
the user to find a simulation sample where the lava flow branches in an
interesting way, and uses it to create a suspenseful animation: a house in
the shadow of the volcano is narrowly missed by an eruption’s lava.

Lava Village (Figures 3 & 16). We sampled an ensemble of volcanic
eruptions by varying parameters for a volcano’s vent shape that
affect the amount of flow and angular direction (see Figure 16). As
an example design goal, the animator explores where to place a
small house so it is safe from a volcano eruption. Unfortunately,
given the scale of this viscous FLIP-based fluid animation in Hou-
dini, the sheer amount of simulation data is difficult to load, inspect,
and query. As an estimate, dumping per-timestep snapshots of lava
geometry in VDB format produces roughly 1.5 GB of data for each
simulation sample; more than 100GB for a 72-sample ensemble. We
use this number not to compare our functionality with VDB-the
authors make design decisions with a different use case in mind-but
to highlight the intractability of exploring and querying multiple
simulation samples using current, popular data structures. In con-
trast, our 72 WORLDPACKS storing geometric occupancy can fit in a
total of 7.2 MB (see Table 1): comfortably in a web browser cache.
Naively evaluating queries to find samples where lava does not
flow through candidate house locations is expensive and can not be
computed at interactive rates on this much data. Using the UMWB
interface, the animator can easily find locations where the house is
hit (IN query) or not hit (NOT IN query) by the lava.

Spiral Staircase (Figure 17). Inspired by the articulated rigid-body
character falling down the stairs using ensemble refinement in [Twigg
and James 2007], we consider an animation where a squishy ar-
madillo falls all the way down a spiral staircase. It is quickly appar-
ent that this unlikely behavior is not present in the initial ensemble:
no samples reach the bottom stair. Instead, we create an ensemble
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Fig. 17. Don’t Fall Off! UMWSB enables ensemble steering to identify
needle-in-the-haystack scenarios. The animator’s goal is to generate an ani-
mation where a softbody character falls all the way down a spiral staircase
without falling off. This unlikely scenario is not present in the first ensemble,
so we instead identify a promising sample using the GUI, narrows down the
sampling range to generate character motions from there, and repeat the
process to steer the ensemble towards the desired result. The figure shows
stills from the final outcome.

in which the character is subjected to small, randomly applied im-
pulses that hope to keep it from preemptively tumbling off the edge.
The user identifies a promising outcome using the GUI, while easily
discarding samples where the character has fallen off the stairs or is
too close to the edge. The user then manually narrows the sampling
range around the chosen outcome’s parameters, and generates a
new ensemble of character motions starting from here, and repeats
the process. In situ ensemble refinement remains challenging for
many multi-physics animations due to high simulation costs, but
parallel simulator-in-the-loop refinement is likely in subsequent
works. The final result is shown in Figure 17.

Fig. 18. Candles: We create an ensemble of candles lit by a flurry of particle-
system sparks (Top). IN and NOT IN queries executed on the candle wicks
can find samples where candles ignite or didn’t ignite. Such functionality
allows the animator to explore and inspect different possible combinations of
lit and unlit candles (Bottom) without needing to manually tune parameters
of the particle system.



Candles (Figure 18). In this ensemble, we randomly perturb the
noise, size, and trajectory of sparks to light a set of candles. We
model the sparks as a turbulent particle system. At the start of the
simulation, candles wicks are coated in fuel. They require a signifi-
cant number of spark collisions to overcome a temperature threshold
for lighting, which is difficult to control due to the noisiness of the
spark particle system. We simulate fire spread in Houdini using
the Pyro Source Spread solver, and we WoRLDPAcK sufficiently hot
particles. Applying queries to candle wicks can search for samples
where candles—or combinations of candles—did or did not kindle.

Spilt Milk (Figure 19). In this FLIP-based fluid ensemble, a cup
of milk is spilled on a table setting by varying the cup’s angular
direction, its milk fullness, and its table position. Dragging an IN
query along the table, an animator can ask: “show me samples
where milk has spilled furthest down the table.” Including NOT IN
queries adds more specificity, such as “show me samples where
milk has spilled furthest down the table, given that selected place
settings stays dry” a means for interactive investigation of “what
if?” scenarios.

6 CONCLUSION

We have introduced a practical approach for exploring large datasets
of arbitrary physics-based animations, with the following compo-
nents: a) our WORLDPACK representation, a unified volumetric for
spatiotemporally compressed animation state optimized for data
browsing, b) a query-based browsing interface that responds inter-
actively to user input, and c) demonstrations of results on a diverse
assortment of animation phenomena.

6.1 Limitations and Future Work

Most of the design decisions made in our development of WoRLD-
Pack were made under the assumption that we could find and exploit
spatiotemporal redundancy in ensemble data. As we have shown,
many simulated phenomena in computer animation (multibody dy-
namics, fluids, fracture, etc.) exhibit suitable redundancy: simply
empty space, or repeated values, e.g., relatively constant temper-
ature values in a spatiotemporal location, consistent normals on
a piece of barely-moving scene geometry, etc. However, for sim-
ulated domains with large amounts of noise-like variations, e.g.,
snowstorms or sandstorms, WORLDPAcK’s RLE-in-time compression
will suffer (may even increase sizes), and more sophisticated loss-
less (or lossy) compression schemes may be required in such cases.
Although most of our ensemble animations are short, RLE-in-time
compression incurs per-octree-cell decoding overhead in the GPU
ray traversal that can increase for longer or “noisier” animations.

We have used fast spacetime-AABB vs. WORLDPACK intersec-
tions for interactive queries, but more general spacetime queries are
possible by encoding the query region using an WorLDPACK and
performing more expensive WORLDPACK-WORLDPACK intersection
tests.

Interactive ensemble refinement, which was possible for rigid-
body simulation-in-the-loop in [Twigg and James 2007], remains
a challenge for many multi-physics animations due to higher sim-
ulation costs and the lack of simulator integration in our proto-
type UMWB system. In addition, our WORLDPACK representation
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is immutable, and not designed to support simulation-in-the-loop
ensemble refinement.

Direct GPU-accelerated visualization of the WoRLDPACK uniform
raster geometry is fast in practice, but some animation tasks may
require higher visual fidelity. Alternatives could include adaptive
grids, or non-raster and hybrid geometric representations.
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