
WaveBlender: Practical Sound-Source Animation in Blended Domains
KANGRUI XUE, Stanford University, United States of America
JUI-HSIEN WANG, Adobe Research, United States of America
TIMOTHY LANGLOIS, Adobe Research, United States of America
DOUG JAMES, Stanford University, United States of America and NVIDIA, USA

Synthesizing sound sources for modern physics-based animation is chal-
lenging due to rapidly moving, deforming, and vibrating interfaces that
produce acoustic waves within the air domain. Not only must the methods
synthesize sounds that are faithful and free of digital artifacts, but, in order
to be practical, the methods should be easy to implement and support fast
parallel hardware. Unfortunately, no current solutions satisfy these many
conflicting constraints.

In this paper, we present WaveBlender, a simple and fast GPU-accelerated
finite-difference time-domain (FDTD) acoustic wavesolver for simulating
animation sound sources on uniform grids. To resolve continuously moving
and deforming solid- or fluid-air interfaces on coarse grids, we derive a novel
scheme that can temporally blend between two subsequent finite-difference
discretizations. Our blending scheme requires minimal modification of the
original FDTD update equations: a single new blending parameter 𝛽 (defined
at cell centers) and approximate velocity-level boundary conditions. Sound
synthesis results are demonstrated for a variety of existing physics-based
sound sources (water, modal, thin shells, kinematic deformers), along with
point-like sources for tiny rigid bodies. Our solver is reliable across different
resolutions, GPU-friendly by design, and can be 1000× faster than prior
CPU-based wavesolvers for these animation sound problems.

CCS Concepts: • Computing methodologies → Physical simulation.

Additional Key Words and Phrases: Sound synthesis, Computer animation,
Finite-difference time-domain method

ACM Reference Format:
Kangrui Xue, Jui-Hsien Wang, Timothy Langlois, and Doug James. 2024.
WaveBlender: Practical Sound-Source Animation in Blended Domains. In
SIGGRAPH Asia 2024 Conference Papers (SA Conference Papers ’24), December
03–06, 2024, Tokyo, Japan. ACM, New York, NY, USA, 10 pages. https://doi.
org/10.1145/3680528.3687696

1 Introduction
Sound sources in computer animation and virtual environments
are often abstracted as “canned sound sources” or geometrically
idealized as points or isolated rigid bodies. However, many staples of
physics-based animation sound fundamentally involve motion and
shape change that must be resolved to model the sound-radiation
process. Important examples include: (i) deformable solids (such as

Authors’ Contact Information: Kangrui Xue, Stanford University, United States of
America, kangruix@stanford.edu; Jui-Hsien Wang, Adobe Research, United States
of America, juiwang@adobe.com; Timothy Langlois, Adobe Research, United States
of America, tlangloi@adobe.com; Doug James, Stanford University, United States of
America and NVIDIA, USA, djames@cs.stanford.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SA Conference Papers ’24, December 03–06, 2024, Tokyo, Japan
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1131-2/24/12
https://doi.org/10.1145/3680528.3687696

Begin EndHalfway

Fig. 1. Candy Shake in Blended Hands: Twelve hard candies are (Left to
Right) bounced in (Top) open cupped hands, then shaken between (Middle)
nearly closed hands. (Bottom) Given the rasterizations of two subsequent
60Hz animation frames, “Begin” & “End” (corresponding roughly to the
top right image), WaveBlender simulates acoustic waves while continu-
ously blending between these two discretizations, here shown resolving the
acoustic emissions of excited Smarties modeled using point-like accelera-
tion noise sources. The resulting candy-clicking sounds have a distinctly
different character depending on hand pose due to the changing near-field
wave scattering and cavity resonances.

noisy thin shells or occluders such as human hands), (ii) sloshing
and splashing liquids (which emit sound differently depending on
the shape of their liquid-air interfaces), and (iii) changes in acoustic
scattering and diffraction from objects moving in close proximity
(such as multibody systems, contacting solids, granular media, etc.).
The time-varying shape of the air-domain acoustic medium, and the
boundary excitations, produce interesting transients and reflections
that are effectively captured using finite-difference time-domain
(FDTD) wave simulations [Wang et al. 2018].

Unfortunately, capturing changes in the air domain due to bound-
ary movement and deformation complicates time-domain acoustic
wave simulations. First, the motion of boundaries through the grid
and their vibration-specific boundary conditions must be handled
in a perceptually plausible way for general sound-source anima-
tions. The scheme must be free from discretization artifacts over
long durations, such as millions of audio time steps, which leads to
the final design goal: the method should be simple, efficient, and
suitable for GPU parallelism.
In this paper, we present WaveBlender, a simple and fast GPU-

accelerated FDTD-based method for simulating animation sound

SA Conference Papers ’24, December 03–06, 2024, Tokyo, Japan.

HTTPS://ORCID.ORG/0000-0003-0222-1993
HTTPS://ORCID.ORG/0000-0002-9210-8718
HTTPS://ORCID.ORG/0000-0002-5043-8698
HTTPS://ORCID.ORG/0000-0003-3532-8383
https://doi.org/10.1145/3680528.3687696
https://doi.org/10.1145/3680528.3687696
https://orcid.org/0000-0003-0222-1993
https://orcid.org/0000-0002-9210-8718
https://orcid.org/0000-0002-5043-8698
https://orcid.org/0000-0003-3532-8383
https://doi.org/10.1145/3680528.3687696

2 • Kangrui Xue, Jui-Hsien Wang, Timothy Langlois, and Doug James

sources on convenient uniform grids (see Figure 1). At each anima-
tion keyframe, the boundary surfaces (e.g., solid or liquid inter-
faces) are rasterized onto the grid, and simple first-order accurate
boundary conditions are imposed. In order to support moving and
deforming boundaries, we introduce the notion of a blended do-
main wherein an additional blending field (centered on cells and
varying in time) 𝛽 ∈ [0, 1] is introduced to blend air (0) or solid (1)
states between two animation keyframes. We construct a novel 𝛽-
blended FDTD discretization of the pressure-velocity acoustic wave
equations, which can be seen as a specific blending between the dis-
cretizations at two keyframes, along with approximate velocity-level
vibration boundary conditions based on one-way source coupling.

Like prior FDTD acoustic wavesolvers that assume one-way
source coupling [Wang et al. 2018], WaveBlender trades numerical
accuracy for compatibility with existing animation sound-source
models. TheWaveBlender scheme is based on a first-order boundary
handling scheme with staircased geometry, further trading accuracy
for uniform grids and fully explicit timestepping. Nonetheless, we
observe that WaveBlender synthesizes plausible low-noise sounds
suitable for sound rendering applications. Examples include rigid-
body modal sound sources, vibrating thin shells, coupled-bubble
liquid sound sources, and kinematically deforming occluders with
pre-recorded input audio. In addition to substantial speedups, we
observe improved robustness on challenging examples compared
to prior state-of-the-art animation sound techniques for dynamic
interfaces [Wang et al. 2018]: the 𝛽-blended domains are more ro-
bust to topological changes in the air domain, such as when cavities
open or close in liquid or solid simulations.
For scenes involving many small sound sources on coarse grids,

WaveBlender supports user-generated point sources. In particular,
we describe a point-like model for tiny acceleration noise sources
(for impact-related “clicks”), such as those associated with granular
or debris simulations, using equivalent wave-field forcing. We also
introduce an auxiliary 𝛽-field for user-modeled occluders, such as
to model changing cavity resonance when a container fills up with
tiny grain-like rigid-bodies (see Figure 9).

2 Related Work
Sound rendering has a long history in computer graphics, animation,
and movie post-production [Takala and Hahn 1992], such as creative
use of studio recordings (e.g., Foley techniques), or procedurally
generated audio effects and music (e.g., in interactive environments
such as video games) [Cook 2002; Smith 1992]. However, within
computer graphics, physics-based sound modeling techniques have
only been developed in the last two decades [James et al. 2016].

One line of work focuses on modeling vibrational sound sources
at the object or scene level, such as rigid and deforming solids [Chad-
wick et al. 2012a; O’Brien et al. 2001, 2002; Pai et al. 2001; van den
Doel et al. 2001], fractured or crumpled solids [Cirio et al. 2016;
Zheng and James 2010], thin shells [Chadwick et al. 2009; Cirio et al.
2018; Schreck et al. 2016], and water sounds [Langlois et al. 2016;
Moss et al. 2010; Xue et al. 2023; Zheng and James 2009]. Oftentimes,
these works employ simpler source-to-ear acoustic transfer mod-
els such as the popular frequency-domain precomputed acoustic
transfer (PAT) method [James et al. 2006; Wang and James 2019].

[Wang et al. 2018]

WaveBlender

Fig. 2. Avoiding Popping Artifacts: A procedural “Glass Pour” animation
is simulated using coarse cells (Δ𝑥 =12.5 mm) with both the [Wang et al.
2018] wavesolver and WaveBlender. While the [Wang et al. 2018] result
suffers from repeated “popping” artifacts visible in the spectrogram’s low fre-
quencies (here, a few instances are highlighted), WaveBlender’s 𝛽-blending
scheme helps avoid discontinuities even when geometry is under-resolved.

On the other hand, a huge body of work is dedicated to model-
ing acoustic transfer: the physical process by which sound travels
through and interacts with the surrounding environment until it
reaches the listener. For larger scenes and band-limited sources,
or when computational resources are severely limited, geometric
acoustics methods [Chandak et al. 2008; Funkhouser et al. 1998, 1999;
Kuttruff 2016; Savioja and Svensson 2015] are a popular choice.
Wave-like diffraction effects can be added to these methods, as
shown in [Schissler et al. 2014, 2021; Tsingos et al. 2001; Yeh et al.
2013]. Wave-based methods, on the other hand, are widely used due
to their excellent broadband characteristics and higher accuracy
[Mehra et al. 2012; Raghuvanshi et al. 2009, 2010]. For real-time
applications, previous work has explored efficient precomputation-
based representations, such as equivalent sources and multipole
expansions [James et al. 2006; Mehra et al. 2013]. To reduce stor-
age costs and speed up run-time field evaluation, other work has
explored perceptual and parametric encoding [Raghuvanshi and
Snyder 2014, 2018]. However, all these methods require either the
precomputed objects to be in free-space isolation or the scenes to
be static. This limits the application and realism in more complex
near-field scenarios where waves scatter off other interfaces, similar
to global illumination in visual rendering.
Recently, Wang et al. [2018] proposed a wave-based general-

purpose acoustic transfer solver capable of simulating a wide range
of animation sound effects. By abstracting sound sources as acoustic
shaders, they showed how FDTD methods could capture percep-
tually important sound characteristics of objects deforming and
interacting in the environment. Unfortunately, their wavesolver
suffers from robustness issues and “popping” artifacts (see Figure 2),
particularly when the topology of the involved thin interfaces is
complex, such as in two-phase bubbly fluid simulations [Xue et al.
2023]. Moreover, the sparse matrix solution involved in resolving
pressure updates is not GPU friendly. The sample-and-hold GPU
wavesolver introduced in [Xue et al. 2023] alleviated robustness
issues by freezing the geometry over regular time intervals, but
its parallel-in-time approach incurs re-simulation overhead and
lacks smoothly animated domains. In contrast, we introduce a new

SA Conference Papers ’24, December 03–06, 2024, Tokyo, Japan.

WaveBlender: Practical Sound-Source Animation in Blended Domains • 3

blended domain FDTD wavesolver inspired by Allen and Raghu-
vanshi [2015], which developed a time-varying perfectly matched
layer (PML) that can blend geometries – for example, tone holes – in
and out to support dynamic 2D wind instrument simulations. Wave-
Blender was motivated by the fact that the original time-varying
PML formulation performs poorly for continuously deforming in-
terfaces and especially when Neumann boundary conditions must
be applied, such as for vibrating sound sources.

Beyond computer graphics, acoustic methods for dynamic inter-
faces remain an active research topic; for example, see immersed
boundary methods for acoustic scattering [Bilbao 2022], as well
as dynamic grid models for the trombone in 1D [Willemsen et al.
2021] and thin plates in 2D [Willemsen et al. 2022]). Although the
underlying theory is similar, our work differs in that we seek a
unified “sound rendering” pipeline for simulating a wider range
of animated acoustic phenomena, albeit with less source-specific
modeling accuracy and without two-way source coupling.

3 Background
Acoustic Wave Equation. Consider a scene with objects O, sur-

rounded by an acoustic medium Ω, and let Γ denote the boundary
of O. Within the surrounding acoustic medium, x ∈ Ω, sound propa-
gation is well-described by the set of coupled linear wave equations:

𝜕𝑝 (x, 𝑡)
𝜕𝑡

= −𝜌0𝑐
2
0∇ · v(x, 𝑡), (1a)

𝜕v(x, 𝑡)
𝜕𝑡

= − 1
𝜌0

∇𝑝 (x, 𝑡), (1b)

where 𝑝 is the pressure perturbation, v the particle velocity, and 𝜌0
and 𝑐0 are the acoustic medium’s density (1.204 kg/m3 for air) and
speed of sound (343.2 m/s for air) at rest. Here, 𝑝 and v are both
functions of position and time and initialized to zero.
Normal surface accelerations, 𝑎𝑛 on Γ generate outgoing waves,

and this is usually modeled using Neumann boundary conditions
using the normal component of (1b):

𝜕v(x, 𝑡)
𝜕𝑡

· n̂ = − 1
𝜌0

n̂ · ∇𝑝 (x, 𝑡) =⇒ 𝑎𝑛 = − 1
𝜌0
𝜕𝑛𝑝 (x, 𝑡), (2)

where n̂ denotes the unit normal vector. In velocity-level discretiza-
tions, we can specify the normal boundary velocity directly:

v(x, 𝑡) · n̂ = 𝑣𝑏 (x, 𝑡), x ∈ Γ. (3)

Discretizing the Equations. We simulate the wave equation using
the finite-difference time-domain (FDTD) method [Inan and Mar-
shall 2011]. We use a staggered MAC grid, where pressure is defined
at cell centers (integer indices) and velocity on cell faces (fractional
indices), as is standard in acoustics and graphics [Bridson 2008].

Before timestepping, we rasterize the object O onto the grid using
a conservative rasterizer based on the triangle-box overlap test in
[Akenine-Möller 2005]. We then identify “air” cells (entirely within
the acoustic medium Ω) and “solid” cells (either entirely within the
interior of O, or that intersect the boundary Γ).

Air Cell
Solid Cell

Fig. 3. Scene Setup: Given a sound-source object, our solver begins by
rasterizing it onto a uniform staggered grid. Cyan lines indicate cell faces
on the solid-air boundary where v𝑏 is specified.

The FDTD update rule for step 𝑛 gives the pressure at the center
and the velocity on the faces of an air cell at (𝑖, 𝑗, 𝑘):

𝑝𝑛+1 = 𝑝𝑛 − 𝜌0𝑐
2
0

(
∇̃ · v𝑛+1/2

)
Δ𝑡, (4a)

v𝑛+1/2 = v𝑛−1/2 − 1
𝜌0

(
∇̃𝑝𝑛

)
Δ𝑡 . (4b)

Here, ∇̃ denotes the discrete gradient operator. For example, in the
x-component of the velocity update:

∇̃𝑝𝑖+1/2, 𝑗,𝑘 =
𝑝𝑖+1, 𝑗,𝑘 − 𝑝𝑖, 𝑗,𝑘

Δ𝑥
. (5)

For faces on the solid boundary, the velocity is prescribed directly
by the boundary conditions (3).

Assuming a uniform grid cell sizeΔ𝑥 , stability holds if the timestep
sizeΔ𝑡 satisfies the Courant-Friedrichs-Lewy (CFL) condition, 𝑐Δ𝑡 ≤
Δ𝑥/√𝜂, where 𝜂 is the number of spatial dimensions (e.g., 3 for 3D).

Blending Schemes from Prior Work. Our work is inspired by that
of Allen and Raghuvanshi [2015], which models interactive wind
instruments in a 2D wavesolver. To support dynamic instrument
geometry (e.g., opening and closing tone holes), the authors intro-
duce a time-varying blending parameter 𝛽 at each cell. As important
background, we first introduce how their blending scheme works.
Consider the following modification to the velocity component of
the wave equation (1) applied over the entire domain:

(1 − 𝛽) 𝜕v(x, 𝑡)
𝜕𝑡

+ 𝛽v(x, 𝑡) = −(1 − 𝛽)2 1
𝜌0

∇𝑝 (x, 𝑡) + 𝛽v𝑏 (x, 𝑡) (6)

where 𝛽 ∈ [0, 1]. This modification essentially blends between the
momentum equation1 (1b) (when 𝛽 =0) and the enforcement of the
normal boundary velocity v=v𝑏 (when 𝛽 =1). When 𝛽 varies in time
from 0 to 1, the cell’s velocity field shifts from being entirely affected
by pressure gradients to being prescribed by boundary conditions.
Using a semi-implicit scheme, this equation can be discretized to
give the following velocity update:

v𝑛+1/2 =

(1 − 𝛽)v𝑛−1/2 − (1 − 𝛽)2
(
∇̃𝑝𝑛/𝜌0

)
Δ𝑡

(1 − 𝛽) + 𝛽Δ𝑡 +𝑤𝛽v𝑛+
1/2

𝑏
. (7)

The first term on the right corresponds to the original momentum
equation, while the second term is contributed by the boundary
condition v𝑏 with weight𝑤𝛽 =

𝛽Δ𝑡
(1−𝛽)+𝛽Δ𝑡 .

1The square term was empirically chosen by Allen and Raghuvanshi [2015] for produc-
ing natural-sounding transients in wind instrument modeling applications.

SA Conference Papers ’24, December 03–06, 2024, Tokyo, Japan.

4 • Kangrui Xue, Jui-Hsien Wang, Timothy Langlois, and Doug James

4 Our Blending Scheme
In this section, we derive a new blending scheme resulting in smoother
updates that are better suited for dynamically moving sound sources.

4.1 WaveBlender FDTD Formulation
To motivate our formulation, we take a closer look at (7). Consider
increasing 𝛽 linearly from 0 to 1 over some normalized time win-
dow 𝑡 ∈ [0, 1) (as in [Allen and Raghuvanshi 2015]). We show in
Figure 4 that the velocity update weight 𝑤𝛽 is quite steep. Thus,
even when v𝑏 is prescribed by a simple translating monopole source
(see Figure 5), such blending introduces unwanted distortion.

[Allen and Raghuvanshi 2015]
Our Method

Fig. 4. Velocity update weight 𝑤𝛽 plotted against normalized blending
time 𝑡 shows that our method smoothly blends in the boundary conditions,
whereas the original “Aerophones scheme” (FDTD step rate at 128 kHz,
blending over 10 ms windows) suffers from rapid changes near the end.

Based on this observation, we propose a modification: instead of
blending in the continuous formulation, we blend in the discrete
formulation. Intuitively, since we want the velocity updates to come
smoothly from the boundary conditions, we should ease in𝑤𝛽 . Our

Naïve FDTD

WaveBlender

“Aerophones”

Fig. 5. Comparison of uniform-grid methods on a moving monopole
source demonstrates clear grid-related artifacts (Δ𝑥 = 0.01 m). (Top) A
small cube (2 cells wide) pulsating at 1 kHz translates to the right at a
constant speed (1 m/s) and is rasterized every 0.01 s. The listener is located
0.25 m to the right and travels with the cube at the same velocity. Naïve
FDTD suffers from artifacts when boundaries discontinuously change, while
these are mitigated by WaveBlender’s 𝛽-blending scheme. Finally, direct
application of the “Aerophones scheme” (7) also produces artifacts, in part
because their method was not designed to support moving sound sources.

proposed blending scheme for the FDTD update rule is therefore:

𝑝𝑛+1 = 𝑝𝑛 − 𝜌0𝑐
2
0

(
∇̃ · v𝑛+1/2

)
Δ𝑡, (8a)

v𝑛+1/2 = (1 − 𝛽)
(
v𝑛−1/2 − ∇̃𝑝𝑛

𝜌0
Δ𝑡

)
+ 𝛽v𝑛+

1/2
𝑏

. (8b)

As before, when 𝛽 = 0 (air cell), the velocity update comes from
the momentum equation, and when 𝛽 =1 (solid cell), it comes from
the boundary conditions. Contrasting this formulation with the
previous one, we are now setting𝑤𝛽 =𝛽 , and therefore the choice
of 𝛽 (𝑡) directly controls the smoothness of the velocity updates.
For all our results, we use the piecewise cubic smoothstep function:
when blending from air to solid, we set 𝛽 (𝑡) = 3𝑡2 − 2𝑡3 over the
normalized time window 𝑡 ∈ [0, 1); when blending from solid to air,
we simply reverse the direction, i.e., 𝛽 (𝑡) = 3(1 − 𝑡)2 − 2(1 − 𝑡)3.
Under this formulation, harmonic distortion is significantly reduced
for the translating monopole source test case (see Figure 5).
Concretely, given the rasterized cell states at 𝑡1 and 𝑡2, we first

normalize the blending window [𝑡1, 𝑡2) to [0, 1) before computing 𝛽 .
We store 𝛽 at cell centers. For velocity updates, which are calculated
on cell faces, we take the maximum 𝛽 of the two adjacent cells.

4.2 Properties of Blended Domains
The modified WaveBlender FDTD update equations (8) are defined
over the entire domain. However, the choice of v𝑏 can be ambiguous
when cell faces do not coincide with the solid-air boundary (such as
the faces indicated by dots in Figure 6). In these cases, we prescribe
v𝑛+

1/2
𝑏

= v𝑛−1/2 to prevent abrupt changes in the velocity field and
to ensure impedance consistency. To see this, first note that (8b)
can be rearranged in the following form with a term intentionally
omitted (shown(((((crossed out):

v𝑛+1/2 = v𝑛−1/2 + 𝛽
�������(

v𝑛+
1/2

𝑏
− v𝑛−1/2

)
− (1 − 𝛽) ∇̃𝑝

𝑛

𝜌0
Δ𝑡 . (9)

In the continuous form, this represents the wave equation on an
altered acoustic medium (the “𝛽-medium”):

𝜕v(x, 𝑡)
𝜕𝑡

= − (1 − 𝛽)
𝜌0

∇𝑝 (x, 𝑡) ≜ − 1
𝜌𝛽

∇𝑝 (x, 𝑡), (10)

where 𝜌𝛽 = 𝜌0/(1 − 𝛽) is the boosted effective density. For the
pressure update to remain as in (8a), this increase in density implies
a corresponding decrease in the speed of sound, 𝑐2

𝛽
= (1 − 𝛽)𝑐2

0 .

Stability and Impedance of the 𝛽-Medium. Following the above
analysis, we note two additional observations:
• Since 𝑐𝛽 ≤ 𝑐0, the CFL condition for the modified WaveBlender
FDTD update is always satisfied if the original CFL condition is
satisfied, so the WaveBlender FDTD update remains stable.

• The specific acoustic impedance 𝑧𝛽 = 𝜌0𝑐0/
√︁

1 − 𝛽 determines
the ratio between reflected and transmitted waves. By having a
medium with uniform 𝛽 and thus uniform impedance, acoustic
waves are guaranteed to move around freely in the blended cells.
When 𝛽 approaches 1, the impedance asymptotically approaches
infinity, reflecting waves perfectly as one would expect for a rigid
boundary.

SA Conference Papers ’24, December 03–06, 2024, Tokyo, Japan.

WaveBlender: Practical Sound-Source Animation in Blended Domains • 5

Begin (t=0) End (t=1)(t=0.25) (t=0.5) (t=0.75)

Fig. 6. Blended Domains: An object translates down and to the right,
blending between two rasterized keyframes (“Begin” and “End”). Within
the blended domain, cyan lines indicate cell faces on the solid-air boundary,
while dots indicate cell faces where the choice of v𝑏 is ambiguous.

We emphasize that modifying the density and speed of sound
is nonphysical and strictly a byproduct of our blending scheme.
When v𝑏 does not have any ambiguity, we simply use the boundary
condition. How this can be connected with various animation sound
sources is illustrated next in §5.

5 Incorporating Sound Sources
With the blended domains wavesolver framework in place, we now
discuss the computation of v𝑏 for various sound-source phenomena.
We adopt the acoustic shader abstraction first introduced by Wang
et al. [2018] to represent specific sound source models and their
physical properties. At runtime, WaveBlender queries each acoustic
shader for the velocity v𝑏 (x, 𝑡) at each boundary point.

5.1 Zoo of Acoustic Shaders
Unlike Wang et al. [2018], however, we prescribe surface velocities
(instead of accelerations) and implement our acoustic shaders on
GPU (instead of CPU).We defer the modeling details to their original
paper and instead focus on our changes.

5.1.1 Pre-Recorded Sounds. Perhaps the simplest application of our
solver involves playing a pre-recorded sound through a planar area
patch (i.e., a small speaker) to capture acoustic interactions with
animating objects in the scene. Given an input audio signal 𝑎0 (𝑡)
and a designated surface patch Γ0, we set the normal surface acceler-
ation a𝑛 (x, 𝑡)=𝑎0 (𝑡), x ∈ Γ0. v𝑏 (x, 𝑡) is then obtained by numerical
integration (trapezoidal rule) and copied to device memory.

5.1.2 Rigid Bodies. Using the modal sound pipeline, the dynamics
of vibrating rigid bodies can be approximated by 𝑀 uncoupled
oscillators, ¥q(𝑡) +𝐶 ¤q(𝑡) + �̃�q(𝑡) = 𝑈𝑇 𝑓 (𝑡), where q ∈ R𝑀 denotes
the vector of modal displacements,𝐶 and �̃� are the reduced damping
and stiffness matrices, and 𝑈 is the constant eigenmode matrix.

To compute v𝑏 , we first compute the projection of the modal ma-
trix𝑈 onto the boundary faces. Specifically, for each boundary face,
we locate the closest point on the object’s surface mesh and barycen-
trically interpolate the modal matrix weights from the vertices. This
yields a “modal-to-boundary” transfer matrix, which we compute at
the start and end keyframes of the blend and linearly interpolate at
all times in between. v𝑏 (x, 𝑡) is obtained by multiplying the transfer
matrix with the vector of modal velocities ¤q(𝑡) on the GPU.
Acceleration noise profiles are computed during runtime identi-

cally to [Wang et al. 2018]. The velocity is numerically integrated
(trapezoidal rule) from the acceleration profiles. This results in a
single velocity vector for the rigid body, which is projected onto
each boundary face’s normal and added to v𝑏 (x, 𝑡).

5.1.3 Thin Shells. We adopt the harmonic shells model [Chadwick
et al. 2009]. From Wang et al. [2018], we have a dataset of precom-
puted vertex displacements and accelerations for a given animation.
To compute v𝑏 (x, 𝑡), for each boundary face, we locate the closest
point on the object’s surface mesh and take the average acceleration
of the triangle’s vertices, once at the start of the blend. The veloc-
ity is numerically integrated (trapezoidal rule) from the averaged
accelerations and projected onto the boundary face’s normal.

5.1.4 Bubble-Based Water. We use the analytical monopole model
from [Xue et al. 2023], where each bubble’s additive contribution to
the boundary velocity is treated as a point source:

v𝑏 (x, 𝑡) =
(x − xbub) · n̂

4𝜋 ∥x − xbub∥3 ¤𝑣bub (𝑡) = 𝐴bub (x) ¤𝑣bub (𝑡). (11)

Here, ¤𝑣bub denotes the bubble’s volume pulsation velocity. The spa-
tial factors, 𝐴bub (x), are computed on the GPU and combined to
produce a “bubble-to-boundary” transfer matrix, which we sample
and hold at 1 ms intervals. v𝑏 (x, 𝑡) is obtained by multiplying the
transfer matrix with the bubble volume velocities (collected into a
vector) on the GPU. Unlike prior approaches from [Xue et al. 2023]
and [Wang et al. 2018], we compute 𝐴bub (x) on the boundary faces
directly, instead of on an intermediate water surface mesh.

5.2 Point Sources
Rasterizing geometry and imposing Neumann (or other) boundary
conditions is one way to model sound sources, but it requires suffi-
ciently fine grids and can be overkill for many simple sources used
in graphics, especially particle systems and numerous small rigid
bodies. Alternately, we can use generalized point-like models for
both momentum (F) and divergence (𝑞) sources.

Here we consider the special case of a spherical acceleration noise
source. Adding a force density term to the momentum equation,

𝜕v(x, 𝑡)
𝜕𝑡

= − 1
𝜌0

∇p(x, 𝑡) + 1
𝜌0

F(x, 𝑡), x ∈ Ω (12)

we can introduce the point-like force density, F=−f (𝑡) 𝛿 (𝑥 − 𝑥) to
model a point-like acceleration noise source centered at 𝑥 . From
Howe [2002], an equivalent forcing for a small sphere of radius 𝑟 , vol-
ume𝑉𝑟 , undergoing acceleration a(𝑡) is given by f (𝑡)=2𝜋𝜌0𝑟3 a(𝑡)=
3
2𝜌0𝑉𝑟 a(𝑡); in our implementation, for small nonspherical objects,
e.g., ellipsoidal candies, we use this formula with𝑉𝑟 replaced by the
object volume. The force at 𝑥 is then distributed to nearby MAC
grid velocity locations using trilinear interpolation weights.

For stiff and tiny objects, the rapid linear acceleration profile a(𝑡)
is reasonably approximated using Hertz-like contact models for
acceleration noise (see [Chadwick et al. 2012a,b] for details). Follow-
ing (11) from [Chadwick et al. 2012b] we use a(𝑡)= 𝜋

2𝜏 ∆v 𝑆 (𝑡 ; 𝑡0, 𝜏),
where the collision begins at time 𝑡0, 𝜏 is the Hertz contact time
scale, and ∆v𝑖 is the body’s resulting velocity change. Here 𝑆 (𝑡 ; 𝑡0, 𝜏)
is the acceleration “bump” profile, which we take to be a half-sine
pulse, 𝑆 =sin (𝜋 (𝑡−𝑡0)/𝜏) on 𝑡 ∈ [𝑡0, 𝑡0 + 𝜏] [Johnson 1985].

6 GPU Implementation
By blending between fixed rasterizations over coarse rates, Wave-
Blender eliminates the need to re-rasterize the scene at every time

SA Conference Papers ’24, December 03–06, 2024, Tokyo, Japan.

6 • Kangrui Xue, Jui-Hsien Wang, Timothy Langlois, and Doug James

step. This feature, along with the use of uniform grids and fully ex-
plicit timestepping, unlocks an efficient GPU implementation. Here,
we discuss implementation details of our WaveBlender system.

6.1 Batched FDTD Wavesolver
Given a simulation of length 𝑇 , we divide it into fixed-size 𝑇 /𝐵
batches, where 𝐵 denotes the length of the batch. The batch length
determines the rasterization (and hence blending) rate, and there
is a trade-off between rasterization and overhead costs and the
level at which we can resolve motion and limit blending-related
discretization error. Larger batch lengths improve performance, but
can also result in large volumes of cells blending at once.

At the start of each batch [𝑡1, 𝑡2), given the rasterized state at 𝑡1,
we compute the next rasterized state at 𝑡2 using the process outlined
in Figure 3. For each rasterization, we identify boundary points as
the positions of cell faces that lie between solid and air cells. The
complete set of boundary points B for the current batch is then
given by the union of the boundary points at 𝑡1 and at 𝑡2. From here,
all that remains is for the acoustic shaders to precompute v𝑏 (x, 𝑡)
at all sampled times 𝑡1 ≤ 𝑡 ≤ 𝑡2 and sampled positions x ∈ B. Shader
samples are stored as a contiguous block of linear memory and
mapped to their corresponding cells.

Minimizing Host-Device Memory Transfer. Since our shader mem-
ory footprints are small (several MB), the advantage of this approach
is that all data transfer for the batch occurs upfront, reducing stalls.
To further minimize data transfer, we precompute acoustic shader
samples at a slower rate of 44.1–48 kHz, which is sufficient to cap-
ture all audible frequencies. Since our FDTD timestep rate is often
higher (88.2 kHz and above for our target grid resolutions—as de-
termined by the CFL condition), we linearly interpolate between
shader samples in time.
Before rasterizing geometry, we check if each object has moved.

If not, then rasterizing the object can be skipped, and if all objects
have remained stationary, raster-related data transfer and shader
memory management can be skipped altogether.

6.2 Per-Batch Overhead
In addition to rasterization and shader precomputation, the follow-
ing procedures are performed at the start of each batch:

6.2.1 Fresh Cell Extrapolation. When solid cells become air cells
after rasterization changes, the immediate pressure and velocity
fields are undefined. This is commonly known as the “fresh cell
problem” [Mittal and Iaccarino 2005], and the missing field values
must be extrapolated from local boundary conditions and the field
values of neighboring cells.

Begin () Fresh cellsEnd ()

Similar to Wang et al.
[2018], we compute fresh-
cell pressures locally by
enforcing the Neumann
boundary conditions (2).
Given a fresh cell cen-
tered at x𝑓 and a neighboring air cell centered at x𝑖 with pressure
𝑝𝑖 , we require that the unknown fresh cell pressure 𝑝 𝑓 satisfies:

𝑝 𝑓 − 𝑝𝑖 = −𝜌0 a𝑛 · (x𝑓 − x𝑖) (13)

where a𝑛 denotes the normal acceleration on the boundary. For
fresh cells where multiple neighboring cells are air cells, we take
the average of the computed 𝑝 𝑓 values.

Additionally, our staggeredMAC grid requires fresh cell velocities
to be filled in. We find that setting each fresh cell velocity to the
closest boundary velocity (as in [Cheny and Botella 2010]) can create
spurious divergence sources. Instead, we perform a more expensive
global minimization of fresh cell divergences. We set up a least-
squares problem with one constraint per fresh cell, treating fresh
cell velocities as unknowns, and solve it via QR decomposition; in
our examples, we typically observe 10-1000 fresh cells per batch.

6.2.2 Shader Velocity Re-initialization. Shader samples for v𝑏 (x, 𝑡)
are computed in the sound-source object’s local frame, assuming
that the object is acoustically isolated. When objects move into
regions with nonzero velocity field buildup (e.g., from other sound
sources), overriding the existing value of v(x, 𝑡1) at the start of the
batch with the incompatible v𝑏 (x, 𝑡1) introduces a discontinuity.
Thus, it is desirable to reinitialize vb (x, 𝑡) to start at v(x, 𝑡1):

vb (x, 𝑡) := [vb (x, 𝑡) − vb (x, 𝑡1)] + v(x, 𝑡1) (14)

in order to align with the global velocity field. Note that an FDTD
scheme using Neumann (acceleration) boundary conditions (2) will
implicitly have boundary velocities initialized at v(x, 𝑡1).

6.2.3 Runtime Cavity Detection. In cases where the geometry of
objects is under-resolved on coarse grids, closed cavities can ar-
tificially form in the rasterization. Over time, large nonphysical
pressures can accumulate inside, which are then released into the
simulation once these closed cavities happen to re-open. To address
this, we perform a flood fill to detect grid regions that are discon-
nected from our listening position. These regions are treated as solid
and 𝛽-blended as usual. However, since these cell volumes can be
large, we exclude them from the fresh cell extrapolation when they
re-open and initialize their pressure and velocity fields to zero.

6.3 Perfectly Matched Layer
When outgoing acoustic waves reach the edge of the simulation do-
main, special treatment is required to prevent them from reflecting
back into the domain. As is common in FDTD wave simulations, we
implement a perfectly matched layer (PML) at the domain boundary
to artificially attenuate outgoing waves. Our implementation uses
the split-field PML from [Liu and Tao 1997] (we found the non-split
PML from [Allen and Raghuvanshi 2015] ill-suited for some of our
examples due to significant null-space buildup of the velocity field).
For all of our examples, we use a PML width of 8 cells.

Performance Considerations. Given how small our domains are,
the PML can occupy a significant portion (for instance, in an 803

grid, nearly half of the cells belong to the PML). Instead of launching
separate kernels for the interior region and the more arithmetic- and
memory-intensive PML region (as in [Mehra et al. 2012; Wang and
James 2019]), we find that fusing the kernels achieves higher per-
formance on our hardware—especially for single-precision floating
point. To reduce memory accesses [Micikevicius 2009], we enforce
that the PML contains no objects (i.e., 𝛽 = 0) and only compute the
split pressure field for warps intersecting the PML.

SA Conference Papers ’24, December 03–06, 2024, Tokyo, Japan.

WaveBlender: Practical Sound-Source Animation in Blended Domains • 7

Table 1. Example Statistics: Using identical cell sizes, step rates, and similar dimensions as [Wang et al. 2018], we compare our WaveBlender GPU timings
with their original parallel-in-time CPU timings. The parallel-in-time method splits a simulation temporally into batches and distributes the batches across
multiple machines, each running a CPU wavesolver instance; the number of machines is shown in parentheses (fourth-to-last column). In contrast, our
WaveBlender implementation runs serially on a single machine. We show the full runtime, including example-specific data I/O and pre-processing costs (e.g.,
loading vertex accelerations from disk for thin shells and computing coupled-bubble velocities for bubble-based water), as well as the “core” WaveBlender
timings (FDTD, shader, rasterization, and per-batch overhead). Here, “Real-time Factor” is defined as simulation runtime (core-only) divided by audio length
and represents the remaining speedup needed to achieve real-time performance. For the “2016 Pouring Faucet” runtime comparison, where the [Wang et al.
2018] wavesolver was also run serially on a single machine, WaveBlender achieves a 1000x speedup.

Runtime: Full Comparison Runtime: Core-only

Example Length Cell Size Dim. Step Rate Blend Rate Wang et al. [2018] Ours Ours Real-time
(s) (mm) (kHz) (Hz) (Parallel-in-time) (Full) (Core) Factor

2016 Pouring Faucet 8.3 5 883 192 100 55 hrs (x1) 2.53 min 1.30 min 9.40x
2016 Water Step 4.2 5 903 192 100 – 4.61 min 0.87 min 12.39x
Glass Pour 5.32 12.5 483 48 50 – 0.82 min 0.20 min 2.26x
Paddle Splash 1.88 10 903 96 100 – 11.77 min 0.92 min 29.36x
Blue LEGO Drop 0.21 1 643 615 1000 32 min (x10) 0.33 min 0.30 min 85.71x
Spolling Bowl 2.5 5 643 120 1000 1.05 hrs (x8) 1.97 min 1.83 min 43.92x
Cymbal 2 10 803 88.2 1000 53 min (x1) 7.03 min 1.48 min 44.4x
Metal Sheet Shake 10 14.3 1003 44.1 2000 24 hrs (x1) 41.23 min 10.39 min 62.34x
Cup Phone 8 7 883 88.2 100 41 min (x20) 0.33 min 0.30 min 2.25x
Cup Phone (low-res) 8 12.5 483 48 50 – 6.05 sec 5.82 sec 0.73x
Talk Fan 10.5 10 853 88.2 1000 67 min (x20) 3.35 min 3.31 min 18.91x
Trumpet 11 10 803 88.2 1000 33 min (x20) 0.98 min 0.96 min 5.24x
Candy Fill’er Up 7 5 602 × 120 120 60 – 1.58 min 1.54 min 13.20x
Candy Shake 11 5 803 120 240 – 2.60 min 2.58 min 14.07x

7 Results
Please see our supplementary video for all results and comparisons
to previous methods from [Wang et al. 2018; Xue et al. 2023]. We
use the same mono auralization model as [Wang et al. 2018], with a
single-point pressure sample used to estimate the far-field radiated
sound. Despite the prototype nature of our implementation, we
achieve greatly improved performance over prior methods due to
GPU-accelerated FDTD and acoustic shaders. Example statistics are
shown in Table 1, with detailed timing breakdowns given in Figure 7
for an Intel Core i9-13900KS 24-Core 3.2GHz, NVIDIA RTX 4090.
Blend rates were empirically chosen to limit the blending layer to a
few cells wide.

Blending Cavities. Aside from per-
formance gains, we observe that the
𝛽-blending scheme along with our
runtime cavity detection provide im-
proved robustness and fewer “pop-
ping” artifacts, since cavities no longer
instantaneously open/close as in previous methods. For example, (i)
the “Spolling Bowl” cavities, which motivated [Wang et al. 2018]
to use grooved floors (see inset) were unnecessary, and (ii) “2016
Water Step” previously suffered from rapid resolution-dependent
thin-sheet cavity formation artifacts, but these can be avoided by
clamping water boundary 𝛽 values to 0.9.

Candy Examples. The examples “Candy Shake” (Figure 1) and
“Candy Fill’er Up!” (Figure 9) involve rigid-body hard candies simu-
lated using “Houdini Bullet” at 2400 Hz, with filtered impulses used
as acceleration noise point sources §5.2. Each candy is modeled as
an oblate spheroid after “Smarties.”

In the absence of acoustically absorbing boundary conditions
for human skin (“Candy Shake”) and wall losses (“Candy Fill’er
Up!”), we implement a simple air-domain damping model to tame
excessive resonances. Our model follows Equation 2 from [Allen
and Raghuvanshi 2015]. We use damping values of 𝜎 = 0.002/Δ𝑡
for “Candy Shake” and 𝜎 = 0.005/Δ𝑡 for “Candy Fill’er Up!”.
The “Candy Shake” demonstrates smoothly changing acoustic

transfer effects as the shape of the hands changes. The “Fill’er up”
shows 264 hard candies loudly filling a rigid container along with an
auxiliary 𝛽-field used to approximate the accumulating candy grains.
The time-varying container resonances can be seen in the spectro-
gram, and we also compare the simulated results without auxiliary
𝛽 (empty container) and without any geometry (see Figure 9).

8 Conclusion
We have introduced a new blended domain wavesolver framework
suitable for computer animation sound rendering applications, which
trades numerical accuracy for simplicity, robustness, and easily
parallelizable uniform-grid FDTD wave simulations. The method
temporally blends between FDTD discretizations of the acoustic
wave equation in pressure-velocity form, with support for approxi-
mate velocity-level boundary conditions. In addition, we introduced
idealized point source models for force-based modeling of subgrid
objects, such as debris, to avoid grid refinement.

Limitations and Future Work. Our method is both simple and prac-
tical, but it has a number of inherent limitations and opportunities
for future work. 𝛽-blending is fundamentally a heuristic approach,
and blended domains with nonphysical slower sound speeds can
adversely affect point sources placed inside. The scheme is based on

SA Conference Papers ’24, December 03–06, 2024, Tokyo, Japan.

8 • Kangrui Xue, Jui-Hsien Wang, Timothy Langlois, and Doug James

FDTD (GPU) Shader (GPU) Rasterization (CPU) Overhead (CPU/GPU) Misc. (CPU)

2016 Pouring Faucet
2016 Water Step

Glass Pour
Blue LEGO Drop

Spolling Bowl
Cymbal

Cup Phone
Talk Fan
Trumpet

Candy Shake
Candy Fill’er Up

Time (minutes)

4.61

7.03

Fig. 7. Timing Breakdowns: Different acoustic shaders feature unique performance considerations. Here, “Overhead” refers to per-batch overhead (§6.2)
and is largely dominated by fresh cell velocity QR solves on CPU, while “Misc.” refers to miscellaneous example-specific data I/O and pre-processing costs
excluded from the “core” WaveBlender timings. In examples where the blend rate is low (e.g., “2016 Pouring Faucet” and “Cup Phone”), GPU-based FDTD
timestepping is the bottleneck. For other examples, rapid interface movements (such as in “Spolling Bowl”, “Cymbal”, and “Talk Fan”) necessitate increased
CPU-based rasterization and overhead costs, as well as more frequent shader evaluation and memory management.

first-order accurate spatial discretizations (complete with numer-
ical dispersion and staircasing artifacts), and 𝛽-blending between
domains further degrades accuracy. Future work should investi-
gate discretizations with higher-order boundary handling and/or
adaptivity, which can also support domain blending.
Like Wang et al. [2018], our acoustic shaders assume a simple

one-way source coupling. For thin shells in particular, two-way
coupling between vibrating plates and the surrounding acoustic
field audibly affects the decay times [Chaigne and Lambourg 2001].

We introduce idealized point source models to model acceleration
noise from small objects, but some objects may still contribute
ringing content, and the objects they hit may also contribute other
acoustic emissions, e.g., ground sound [Qu and James 2019].
Future work should extend boundary handling to support wall

losses and absorption needed for more accurate modeling of reflec-
tions and taming of high-frequency parasitic resonant modes [Allen
and Raghuvanshi 2015], while we currently only support air damp-
ing. Our solver is designed with vibration-based sources in mind,
but other modeling applications, such as musical instruments, may
require nonlinear wave effects [Allen and Raghuvanshi 2015].
In our research implementation, we use software rasterization

and CPU geometry libraries to support a wide range of animation-
sound datasets. However, optimized pipelines should port these CPU
procedures onto the GPU. With FDTD timestepping no longer being
the bottleneck, future work should also investigate GPU-friendly
representations for sound sources themselves. Our implementation
uses rectangular domains with a fixed PML, which may result in
unnecessarily large volumes for some shapes. Future work should
support dynamic domains that adaptively determine and track the
sound source regions of interest. Finally, we hope that future re-
search will lead to real-time integrated animation-sound systems.

Acknowledgments
The authors thank the anonymous reviewers for their constructive
feedback, Paulius Micivekius and Guillaume Thomas Collignon at
Nvidia for GPU optimization assistance, Adobe and Meta for aca-
demic support, SideFX for donating Houdini licenses for academic

research, and Maxon Redshift. This material is based on work sup-
ported by the Department of Energy, National Nuclear Security
Administration under Award Number DE-NA0003968.

References
Tomas Akenine-Möller. 2005. Fast 3D triangle-box overlap testing. In ACM SIGGRAPH

2005 Courses (Los Angeles, California) (SIGGRAPH ’05). Association for Computing
Machinery, New York, NY, USA, 8–es. https://doi.org/10.1145/1198555.1198747

A. Allen and N. Raghuvanshi. 2015. Aerophones in Flatland: Interactive Wave Simula-
tion of Wind Instruments. ACM Transactions on Graphics (Proceedings of SIGGRAPH
2015) 34, 4 (Aug. 2015).

Stefan Bilbao. 2022. Immersed boundary methods in wave-based virtual acoustics. J.
Acoust. Soc. Am. 151, 3 (March 2022), 1627–1638.

Robert Bridson. 2008. Fluid Simulation for Computer Graphics. A K Peters, Ltd.
J. N. Chadwick, S. S. An, and D. L. James. 2009. Harmonic Shells: A Practical Nonlinear

Sound Model for Near-Rigid Thin Shells. ACM Transactions on Graphics (Aug. 2009).
J. N. Chadwick, C. Zheng, and D. L. James. 2012a. Faster Acceleration Noise for Multi-

body Animations using Precomputed Soundbanks. ACM/Eurographics Symposium
on Computer Animation (July 2012).

J. N. Chadwick, C. Zheng, and D. L. James. 2012b. Precomputed Acceleration Noise
for Improved Rigid-Body Sound. ACM Transactions on Graphics (Proceedings of
SIGGRAPH 2012) 31, 4 (Aug. 2012).

Antoine Chaigne and Christophe Lambourg. 2001. Time-domain simulation of damped
impacted plates. I. Theory and experiments. The Journal of the Acoustical Society of
America 109, 4 (04 2001), 1422–1432.

A. Chandak, C. Lauterbach, M. Taylor, Z. Ren, and D. Manocha. 2008. Ad-frustum:
Adaptive frustum tracing for interactive sound propagation. IEEE Transactions on
Visualization and Computer Graphics 14, 6 (2008), 1707–1722.

Yoann Cheny and Olivier Botella. 2010. The LS-STAG method: A new immersed
boundary/level-set method for the computation of incompressible viscous flows in
complex moving geometries with good conservation properties. J. Comput. Phys.
229, 4 (2010), 1043–1076.

G. Cirio, D. Li, E. Grinspun, Mi. A. Otaduy, and C. Zheng. 2016. Crumpling sound
synthesis. ACM Transactions on Graphics (TOG) 35, 6 (2016), 181.

Gabriel Cirio, Ante Qu, George Drettakis, Eitan Grinspun, and Changxi Zheng. 2018.
Multi-scale Simulation of Nonlinear Thin-shell Sound with Wave Turbulence. ACM
Trans. Graph. 37, 4, Article 110 (July 2018), 14 pages. http://www.cs.columbia.edu/
cg/waveturb/

P. R. Cook. 2002. Sound Production and Modeling. IEEE Computer Graphics & Applica-
tions 22, 4 (July/Aug. 2002), 23–27.

T. Funkhouser, I. Carlbom, G. Elko, G. Pingali, M. Sondhi, and J. West. 1998. A Beam
Tracing Approach to Acoustic Modeling for Interactive Virtual Environments. In
Proceedings of SIGGRAPH 98 (Computer Graphics Proceedings, Annual Conference
Series). 21–32.

T. A. Funkhouser, P. Min, and I. Carlbom. 1999. Real-Time Acoustic Modeling for Dis-
tributed Virtual Environments. In Proceedings of SIGGRAPH 99 (Computer Graphics
Proceedings, Annual Conference Series). 365–374.

M. S. Howe. 2002. Theory of Vortex Sound. Cambridge University Press.
Umran S. Inan and Robert A. Marshall. 2011. Numerical Electromagnetics: The FDTD

Method. Cambridge University Press.

SA Conference Papers ’24, December 03–06, 2024, Tokyo, Japan.

https://doi.org/10.1145/1198555.1198747
http://www.cs.columbia.edu/cg/waveturb/
http://www.cs.columbia.edu/cg/waveturb/

WaveBlender: Practical Sound-Source Animation in Blended Domains • 9

D. L. James, J. Barbic, and D. K. Pai. 2006. Precomputed Acoustic Transfer: Output-
sensitive, accurate sound generation for geometrically complex vibration sources.
ACM Transactions on Graphics 25, 3 (July 2006), 987–995.

Doug L. James, Timothy R. Langlois, RavishMehra, and Changxi Zheng. 2016. Physically
Based Sound for Computer Animation andVirtual Environments. InACMSIGGRAPH
2016 Courses (Anaheim, California) (SIGGRAPH ’16). ACM, New York, NY, USA,
Article 22, 8 pages. https://doi.org/10.1145/2897826.2927375

K. L. Johnson. 1985. Contact Mechanics. Cambridge University Press.
Heinrich Kuttruff. 2016. Room Acoustics. CRC Press.
T. R. Langlois, C. Zheng, and D. L. James. 2016. Toward Animating Water with Complex

Acoustic Bubbles. ACM Trans. Graph. 35, 4, Article 95 (July 2016), 13 pages. https:
//doi.org/10.1145/2897824.2925904

Qing-Huo Liu and Jianping Tao. 1997. The perfectly matched layer for acoustic waves
in absorptive media. The Journal of the Acoustical Society of America 102, 4 (10 1997),
2072–2082. https://doi.org/10.1121/1.419657

R. Mehra, N. Raghuvanshi, L. Antani, A. Chandak, S. Curtis, and D. Manocha. 2013.
Wave-based sound propagation in large open scenes using an equivalent source
formulation. ACM Transactions on Graphics (TOG) 32, 2 (2013), 19.

R. Mehra, N. Raghuvanshi, L. Savioja, M. C. Lin, and D. Manocha. 2012. An efficient
GPU-based time domain solver for the acoustic wave equation. Applied Acoustics
73, 2 (2012), 83 – 94.

P. Micikevicius. 2009. 3D Finite Difference Computation on GPUs Using CUDA. In
Proceedings of 2Nd Workshop on General Purpose Processing on Graphics Processing
Units (Washington, D.C., USA) (GPGPU-2). ACM, New York, NY, USA, 79–84. https:
//doi.org/10.1145/1513895.1513905

R. Mittal and G. Iaccarino. 2005. Immersed Boundary Methods. Annual Review of Fluid
Mechanics 37 (2005).

W. Moss, H. Yeh, J.-M. Hong, M. C. Lin, and D. Manocha. 2010. Sounding Liquids:
Automatic Sound Synthesis from Fluid Simulation. ACM Trans. Graph. 29, 3 (2010).

J. F. O’Brien, P. R. Cook, and G. Essl. 2001. Synthesizing Sounds From Physically Based
Motion. In Proceedings of SIGGRAPH 2001. 529–536.

J. F. O’Brien, C. Shen, and C. M. Gatchalian. 2002. Synthesizing sounds from rigid-body
simulations. In The ACM SIGGRAPH 2002 Symposium on Computer Animation (San
Antonio, Texas). ACM Press, 175–181.

Dinesh K Pai, Kees van den Doel, Doug L James, Jochen Lang, John E Lloyd, Joshua L
Richmond, and Som H Yau. 2001. Scanning physical interaction behavior of 3D
objects. In Proceedings of the 28th annual conference on Computer Graphics and
Interactive Techniques. 87–96.

Ante Qu and Doug L. James. 2019. On the Impact of Ground Sound. In Proceedings of
the 22nd International Conference on Digital Audio Effects (DAFx-19) (Birmingham,
UK).

Nikunj Raghuvanshi, Rahul Narain, and Ming C Lin. 2009. Efficient and accurate
sound propagation using adaptive rectangular decomposition. IEEE Transactions on
Visualization and Computer Graphics 15, 5 (2009), 789–801.

N. Raghuvanshi and J. Snyder. 2014. Parametric wave field coding for precomputed
sound propagation. ACM Transactions on Graphics (TOG) 33, 4 (2014), 38.

Nikunj Raghuvanshi and John Snyder. 2018. Parametric directional coding for pre-
computed sound propagation. ACM Transactions on Graphics (TOG) 37, 4 (2018),
1–14.

Nikunj Raghuvanshi, John Snyder, Ravish Mehra, Ming Lin, and Naga Govindaraju.
2010. Precomputed wave simulation for real-time sound propagation of dynamic
sources in complex scenes. In ACM SIGGRAPH 2010 papers. 1–11.

Lauri Savioja and U Peter Svensson. 2015. Overview of geometrical room acoustic
modeling techniques. The Journal of the Acoustical Society of America 138, 2 (2015),
708–730.

C. Schissler, R. Mehra, and D. Manocha. 2014. High-order diffraction and diffuse reflec-
tions for interactive sound propagation in large environments. ACM Transactions
on Graphics (TOG) 33, 4 (2014), 39.

Carl Schissler, Gregor Mückl, and Paul Calamia. 2021. Fast diffraction pathfinding
for dynamic sound propagation. ACM Trans. Graph. 40, 4, Article 138 (jul 2021),
13 pages. https://doi.org/10.1145/3450626.3459751

C. Schreck, D. Rohmer, D. James, S. Hahmann, and M.-P. Cani. 2016. Real-time sound
synthesis for paper material based on geometric analysis. In Eurographics/ACM
SIGGRAPH Symposium on Computer Animation (2016).

J. O. Smith. 1992. Physical modeling using digital waveguides. Computer music journal
16, 4 (1992), 74–91.

T. Takala and J. Hahn. 1992. Sound rendering. In Computer Graphics (Proceedings of
SIGGRAPH 92). 211–220.

N. Tsingos, T. Funkhouser, A. Ngan, and I. Carlbom. 2001. Modeling acoustics in virtual
environments using the uniform theory of diffraction. In SIGGRAPH ’01: Proceedings
of the 28th annual conference on Computer graphics and interactive techniques. ACM,
New York, NY, USA, 545–552.

K. van den Doel, P. G. Kry, and D. K. Pai. 2001. FoleyAutomatic: Physically-based
Sound Effects for Interactive Simulation and Animation. (2001), 537–544. https:
//doi.org/10.1145/383259.383322

Jui-Hsien Wang and Doug L James. 2019. KleinPAT: Optimal mode conflation for
time-domain precomputation of acoustic transfer. ACM Trans. Graph. 38, 4 (2019),
122–1.

Jui-Hsien Wang, Ante Qu, Timothy R. Langlois, and Doug L. James. 2018. Toward
wave-based sound synthesis for computer animation. ACM Trans. Graph. 37, 4,
Article 109 (jul 2018), 16 pages. https://doi.org/10.1145/3197517.3201318

Silvin Willemsen, Stefan Bilbao, Michele Ducceschi, and Stefania Serafin. 2021. A
Physical Model of the Trombone Using Dynamic Grids for Finite-Difference Schemes.
In 2021 24th International Conference on Digital Audio Effects (DAFx). 152–159. https:
//doi.org/10.23919/DAFx51585.2021.9768286

Silvin Willemsen, Stefan Bilbao, Michele Ducceschi, and Stefania Serafin. 2022. The
Dynamic Grid: Time-varying Parameters for Musical Instrument Simulations Based
on Finite-difference Time-domain Schemes. Journal of the Audio Engineering Society
70 (September 2022), 650–660. Issue 9.

Kangrui Xue, RyanMAronson, Jui-HsienWang, Timothy R Langlois, and Doug L James.
2023. Improved Water Sound Synthesis using Coupled Bubbles. ACM Transactions
on Graphics (TOG) 42, 4 (2023), 1–13.

H. Yeh, R. Mehra, Z. Ren, L. Antani, D. Manocha, and M. Lin. 2013. Wave-ray Coupling
for Interactive Sound Propagation in Large Complex Scenes. ACM Trans. Graph. 32,
6, Article 165 (Nov. 2013), 11 pages. https://doi.org/10.1145/2508363.2508420

C. Zheng and D. L. James. 2009. Harmonic Fluids. ACM Transactions on Graphics
(SIGGRAPH 2009) 28, 3 (Aug. 2009).

C. Zheng and D. L. James. 2010. Rigid-Body Fracture Sound with Precomputed Sound-
banks. ACM Transactions on Graphics (SIGGRAPH 2010) 29, 3 (July 2010).

SA Conference Papers ’24, December 03–06, 2024, Tokyo, Japan.

https://doi.org/10.1145/2897826.2927375
https://doi.org/10.1145/2897824.2925904
https://doi.org/10.1145/2897824.2925904
https://doi.org/10.1121/1.419657
https://doi.org/10.1145/1513895.1513905
https://doi.org/10.1145/1513895.1513905
https://doi.org/10.1145/3450626.3459751
https://doi.org/10.1145/383259.383322
https://doi.org/10.1145/383259.383322
https://doi.org/10.1145/3197517.3201318
https://doi.org/10.23919/DAFx51585.2021.9768286
https://doi.org/10.23919/DAFx51585.2021.9768286
https://doi.org/10.1145/2508363.2508420

10 • Kangrui Xue, Jui-Hsien Wang, Timothy Langlois, and Doug James

Pouring Faucet Cup Phone Cymbal Lego Drop Metal Sheet Spolling Bowl Talk Fan Trumpet

Fig. 8. Reference images for comparisons with [Wang et al. 2018]. See the supplementary video for other examples.

Fig. 9. Fill’er Up! A rigid-body simulation of 264 hard candies falling into a tube-like concrete container (3cm × 3cm × 20cm) generates 366832 contact
impulses that are approximated as point-like acceleration-noise sources. Our WaveBlender acoustic wave simulation framework approximates such scenes
on uniform grids but represents the changing air-domain shape using an auxiliary 𝛽 field, which can be used to model auxiliary scene geometry (in blue)
in addition to the container. WaveBlender timesteps modified finite-difference time-domain (FDTD) equations and boundary conditions to approximate
acoustic wave transport in smoothly blended domains. In addition to achieving robust, low-noise sound synthesis in dynamic scenes, its uniform grids ease
GPU parallelization. The blended auxiliary geometry here allows us to efficiently capture the resonant character of the container filling up (see WaveBlender
spectrogram). In contrast, without the auxiliary 𝛽 field (see “Container Only” spectrogram), only the empty container resonances appear. For reference,
(Bottom) spectrograms of a "dry sound" show the wavesolver’s response to point-source inputs without geometry and show strong impulse-like behavior.

SA Conference Papers ’24, December 03–06, 2024, Tokyo, Japan.

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Our Blending Scheme
	4.1 WaveBlender FDTD Formulation
	4.2 Properties of Blended Domains

	5 Incorporating Sound Sources
	5.1 Zoo of Acoustic Shaders
	5.2 Point Sources

	6 GPU Implementation
	6.1 Batched FDTD Wavesolver
	6.2 Per-Batch Overhead
	6.3 Perfectly Matched Layer

	7 Results
	8 Conclusion
	Acknowledgments
	References

