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Abstract

In sensor networks we aim to achieve global objectives

through local decisions at each node, based only on data

available in the node’s neighborhood. In this paper, we dif-

fuse information away from source nodes holding desired

data, so as to establish information potentials that allow net-

work queries to navigate towards and reach these sources

through local greedy decisions, following information gra-

dients. We compute these information potentials by solving

for a discrete approximation to a partial differential equation

over appropriate network neighborhoods, through a simple

local iteration that can be executed in a distributed manner

and can be re-invoked to repair the information field locally

when links fail, sources move, etc. The solutions to this equa-

tion are classical harmonic functions, which have a rich al-

gebraic structure and many useful properties, including the

absence of local extrema, providing a guarantee that our lo-

cal greedy navigation will not get stuck.

Unlike shortest path trees, which can also be used to

guide queries to sources, information potentials are robust

to low-level link volatility as they reflect more global prop-

erties of the underlying connectivity. By exploiting the al-

gebraic structure of harmonic functions such potentials can

be combined in interesting ways to enable far greater path

diversity and thus provide better load balancing than is pos-

sible with fixed tree structures, or they can be used to an-

swer range queries about the number of sources in a cer-

tain regions by simply traversing the boundary of the region.

Potentials for multiple information types can be aggregated

and compressed using a variant of the q-digest data struc-

ture. The paper provides both analytic results and detailed

simulations supporting these claims.

1. Introduction and Motivation

Recent advances in wireless sensor networks reveal the

potential of such embedded networked systems for revolu-

tionizing the way we observe, interact with, and influence the

physical world. Early applications on distributed data collec-

tion systems have already identified the advantages of inex-

pensive networked sensors over more traditional centralized

sensing systems. As technologies become mature and as sen-

sor networks grow large in size and become inter-connected,

we expect that sensor networks will move beyond military

deployments and the monitoring of animal or other natural

habitats to the places where humans work and live: homes,

cars, buildings, roads, cities, etc. Note that in these human

spaces a sensor network serves users embedded in the same

physical space as the network, not a community of scientists

remote from the observation site. Furthermore, there is often

the need to deliver relevant information with very low la-

tency, in order to allow users to act in a timely manner, as for

example with first responders in disaster recovery scenarios.

In this work we explore the potential of using a network of

embedded sensors to aid information discovery and naviga-

tion through a dynamic environment. This includes the navi-

gation of packets (answering user queries from any node), as

well as the navigation of physical objects (people or vehicles)

moving in the same space — such as users with hand-held

devices communicating with nearby sensor nodes to get real-

time navigation information. For example, road-side sensors

can monitor local traffic congestion; empty parking lots in

downtown areas can be detected and tracked by sensors de-

ployed at each parking spot. A real-time navigation system

in such a dynamic environment is quite useful — for finding

an empty parking spot, for guiding vehicles to road exits in

an emergency, for diverting cars to alleviate and avoid traffic

jams, etc. The embedded sensors serve two purposes: dis-

covering/detecting the events of interest (e.g., a parking spot

is left empty); and forming a supporting infrastructure for

users to navigate towards or around and act on the detected

events. In this setting, the events of interest or the destina-



tions to which the users want to navigate to are modeled as

sources and the users (or the nodes in which the query is gen-

erated) are modeled as sinks.

These emerging application scenarios have a few char-

acteristics that differentiate them from traditional scientific

monitoring applications. First, the environment can be dy-

namic: parking spaces are freed up or occupied over time;

road conditions are changing at different periods of the day.

Thus the navigation system needs to accommodate these

environmental changes. Second, an event of interest may

emerge anywhere in the network and a node typically does

not have prior knowledge of when and where the event may

appear. Third, a data source is often of the most interest to the

users in its immediate neighborhood. For example, cars near

a traffic jam may look for navigation suggestions to avoid the

jammed area; or an empty parking space is of the most value

to cars within a few blocks. Fourth, multiple queries may be

arise at once seeking the same source, as in disaster recovery.

Fifth, unlike scientific monitoring applications in which data

is gathered to the base station for post processing at a later

time, in these scenarios low latency in answering queries is a

major quality-of-service requirement.

These application characteristics and new QoS require-

ments demand a radically different system design for infor-

mation discovery and routing. Existing work has focused on

infrequent queries of long duration (i.e., for streaming data).

Thus information discovery phase takes a reactive approach

and allows the query node to flood its interests in the net-

work searching for relevant data [11]. Data aggregation can

also be performed on the way back to the sink [19]. Little

preprocessing is done; as a result information discovery may

require high delay. To avoid flooding, a logical brokerage

structure can be imposed in the network, enabling queries

to rendez-vous with data in the network. For example, ge-

ographical hash tables [22] use a content-based hash func-

tion that maps the event type to a geographical location so

that sensors near the geographical location store the data and

serve as render-vous for later queries. But the separation of

the logical structure from the physical structure introduces

awkward triangular routing — a user may need to visit a dis-

tant rendez-vous first to learn the way to the data source, even

if the latter is very close. This further exacerbates traffic bot-

tlenecks at rendez-vous nodes holding popular data.

1.1. Overview

In this paper we explore an information diffusion scheme

that maintains a potential field and establishes information

gradients in the entire network, or appropriate neighbor-

hoods of it, depending on the application. Hints left on

sensor nodes on the existence of data sources will smoothly

guide queries or mobile users towards desired sources. The

construction and maintenance costs of these information po-

tentials are justified by and amortized over the expected high

frequency of queries about the data sources. As long as en-

vironmental changes occur at a slower rate than the time it

takes to establish or repair these information potentials in

relevant source neighborhoods, our mechanism will success-

fully guide queries to their destination.

Information-guided routing has been explored before as a

scalable approach for settings with high query frequency [3,6,

7,18,27]. Most of these gradient-based approaches [3,6,7,18]

use the natural gradients of physical phenomena, since the

spatial distribution of many physical quantities, e.g., temper-

ature measurements for heat, follows a natural diffusion law.

However, gradients imposed by natural laws can be far from

perfect guides, as witnessed by the existence of local extrema

or large plateau regions, forcing information-guided routing

to deteriorate to a random walk.

The novelty of our construction is to create an artificial

information potential field that is guaranteed to be free of

local maxima and minima. Specifically, we mimic an infor-

mation diffusion process by using harmonic functions [16].

A harmonic function Φ(x) defined in a domain Ω satisfies
the Laplace’s equation ∇2Φ(x) = 0, familiar from the heat
equation. With boundary values specified, a harmonic func-

tion is uniquely determined. In a discrete sensor network,

we can specify the potential of a source node as the maxi-

mum value1 and construct the potential field for the rest of

the nodes by solving for the harmonic function. This con-

struction is possible by a simple local iteration on the nodes,

akin to gossiping with one’s neighbors. Harmonic functions

bring us a number of benefits, due to their nice algebraic

properties, as shown in the following.

Support for local greedy routing. Most importantly, the

potential field induced by the harmonic function has no local

maxima. On each non-source node u, our discrete harmonic
function Φ satisfies a condition analogous to the mean value
property of continuous harmonic functions: Φ(u) is the av-
erage of the Φ values of its neighbors. From this it immedi-
ately follows that we cannot have a node with higher infor-

mation strength than all of its neighbors, unless it is a source

node. Thus the information gradients support an efficient lo-

cal routing algorithm by simply ascending the potential field.

The query messages, or the physical objects navigating with

the information gradients, will in each case eventually reach

the data source/destination of interest. The set of all links

from each non-source node to its neighbor with the highest

information strength implicitly defines a routing tree towards

the source.

Aggregating coherent gradients. The rich algebraic prop-

erties of harmonic function support an efficient way to

aggregate gradients for different sources. For two data

types PAIDPARKINGLOT, FREEPARKINGLOT with infor-

mation strength fields, ΦP and ΦF , respectively, we can use

the summed value ΦP + ΦF to guide queries that search

for any PARKINGLOT — either a PAIDPARKINGLOT or a

FREEPARKINGLOT. By the definition of harmonic func-

tions, any node that does not detect PAIDPARKINGLOT or

1We also fix some other nodes, e.g., a few on the network boundary, as

having potential 0, to enforce an information gradient throughout the net-

work. The nodes with preassigned potentials form the Dirichlet boundary

conditions for the harmonic function.



FREEPARKINGLOT cannot be a local maximum of the func-

tion ΦP + ΦF . Thus queries for a range of data types can be

guided simply by the sum of the individual potential fields

and will eventually reach a source node within the specified

range. More generally, gradient aggregation can be exploited

to compress the potentials and save storage space. We show

how the q-digest data structure of [24] can be used to do so

for any tree-structured set of information potential types.

Routing diversity and traffic balancing. Both in the case

of navigation in the presence of traffic jams, as well as in

the case of finding empty parking spaces, multiple queries

may simultaneously ask for navigation information towards

sources of the same type (freeway exits or empty parking

lots). Thus it is extremely important to distribute evenly the

traffic among the multiple destinations and along the paths to

these data sources. If multiple queries follow the same po-

tential field for the same source, the routing paths are likely

to converge as they come near the source. This subsequently

introduces load accumulation for packet routing, and traffic

congestion for navigation of physical objects. But with har-

monic potentials, the query from each user can choose a set

of random linear coefficients λi and ascend the potential field
∑

i λiΦ(si), where Φ(si) is the potential field for source i.
The linear combinations of harmonic functions are still har-

monic, thus each query follows its ‘personalized’ potential

field towards one of the sources. We show that this will uni-

formly distribute the users among different destinations, and

furthermore spread out the routing paths that the users take

to these destinations. Such routing diversity and traffic bal-

ancing can be appealing features for emergency evacuation.

Answering counting range queries. A counting range

query asks for the number of sources inside a given (ar-

bitrary) geographical region, such as the number of empty

parting spots within a given set of blocks. With the poten-

tial field, a counting range query can be answered by simply

touring the boundary of the range and summing up the dif-

ference of the potential values on the edges across the region

boundary. This summed difference is precisely the number

of sources in the interior of the range by the divergence-free

property of harmonic gradients and Faraday’s law of induc-

tion.

The information potentials are particularly suitable for

sensor networks due to their inherent robustness to both en-

vironmental changes as well as wireless link dynamics and

quality fluctuations. This robustness comes from a simple,

gossip-style local algorithm for the potential construction, as

well as from the global properties of the harmonic potentials

themselves.

Distributed gradient construction The gradient construc-

tion is accomplished by the classical Jacobi iteration. The

data sources fix their values at the global maximum and the

rest of the nodes iterate setting their value to the average

of those of their neighbors. The process stops when cer-

tain local convergence criteria are met. We remark that this

construction and maintenance algorithm is completely dis-

tributed and ‘blind’. A node does not need to know about

environmental changes or the emergence/disappearance of

data sources, thus enabling the algorithm to automatically

adapt to environmental and topological changes of the net-

work — the same reason why gossip-style algorithms are

favored in dynamic networks. The construction and main-

tenance of the gradient field is often within a local neighbor-

hood of the events of interest (thus reducing the total com-

munication cost) and aims to support answering a large num-

ber of simultaneous queries in a certain region surrounding

the source. Thus the construction and maintenance costs are

amortized over the subsequent queries.

Robustness to low-level link variations A standard way

to guide queries towards a specific node in a network is to

build a shortest path tree rooted at that node — that guaran-

tees greedy routing towards the root from any node. Trees,

however, are fragile structures. A single failed link can dis-

connect the tree and make the root inaccessible from a large

subset of nodes. As we have discussed, our potentials also

define implicitly a routing tree to the source. However, each

node is not committed to a single parent — rather, the node’s

parent is only determined when the query arrives at the node.

Of course a classical shortest-path tree can also be imple-

mented in this fashion, by giving each node a ‘potential’

which is its hop count distance to the source. But the real

benefit of the harmonic potentials is that they can be thought

of as normalized hop counts which have been smoothed via

the global effects of the Jacobi iteration. Due to the discrete-

ness in the hop count definition, link variations and node fail-

ures create many more irregularities and disturbances in hop

count values than those in the harmonic strength fields. Ef-

fectively the harmonic potential creates a smooth ‘mountain’

with a single peak at the source; almost all nodes on this

mountain side are likely to have several ascending neighbors,

and thus greater capacity to reach the source. The robustness

of the harmonic potentials over hop counts is supported by

simulations we present later on, as well as by a theoretical

analysis on link asymmetry. This trick of smoothing out the

discrete hop counts by a harmonic function can also be ap-

plied in other settings where smooth vector fields of informa-

tion flow need to be maintained [25].

Lastly, we note that others have also used protocols moti-

vated by the solution to partial differential equations in sen-

sor networks. For example, [12–14, 26] use routing based on

an electrostatic potential field; but in those papers the empha-

sis is on network capacity and not on dynamic and efficient

information discovery, the topic explored in this paper.

We introduce harmonic information potentials in Sec-

tion 2, and present their main applications in Section 3. In

Section 4 we describe a simple local method for computing

harmonic potentials and updating them after small changes in

network connectivity or source positions. Section 5 contains

experimental evaluation by extensive simulation, aimed at

better understanding the suitability and performance of these

techniques.



2. Harmonic Information Potentials

Before the formal description of information potentials,

we introduce the following terminology. The raw sensor

readings are processed into high-level events, which are cat-

egorized into a set of data types. These data types might be

chosen from a fixed universe, such as the parking spots or

road exits. The nodes holding data with a particular type are

called sources. The nodes that search for data of this type are

called sinks. We explore in this section information diffusion

schemes for pushing information about data sources into the

network, so as to later facilitate information discovery. We

establish an information potential field, that indicates the in-

tensity of the diffused strength at any node, for an existing

data type.

2.1. Harmonic functions

The key to our information gradient scheme is the notion

of harmonic functions. On a domain Ω ⊆ R2, a harmonic

functionΦ is a real function whose continuous second partial
derivative satisfies Laplace’s equation [16]: ∇2Φ(x, y) = 0.
If the value of the function is specified on all boundaries,

referred to as Dirichlet boundary conditions, the solution to

the Laplace’s equation is unique.

A dense sensor network can be viewed as a discrete ap-

proximation of the underlying continuous geometric domain.

Given certain boundary conditions, Laplace’s equation in the

discrete form becomes

Φ(u) =
1

d(u)
Σv∈N(u)Φ(v) ,

where u is a node in the discrete network, N(u) is the set of
u’s neighbors, and d(u) denotes the degree of u. This natu-
rally leads to a relaxation method for computing the discrete

harmonic function Φ, namely, the Jacobi iteration method
(also called the rubber band algorithm). Each non-boundary

node performs the iteration

Φk+1(u) ←
1

d(u)
Σv∈N(u)Φ

k(v) ,

where Φk(u) is the value of node u in the k-th iteration. The
sources are fixed at a maximum potential value say 1. We

also fix some other nodes, typically nodes on the network

boundary, with information strength 0 to enforce a gradient

throughout the network. The rest of the nodes perform Ja-

cobi iterations to compute the information strength field. The

Jacobi iteration method converges to the harmonic function

with the pre-specified boundary values. Figure 1 gives some

examples of the strength fields with different boundary con-

ditions.

The algorithm can be intuitively understood by imagining

that all the edges in the network are rubber bands. Sources

or boundary nodes are pinned at their fixed values. The al-

gorithm converges to the minimum energy state where each

node is placed at the center of mass of all its neighbors. No-

tice that in this iterative algorithm only local neighborhood
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Figure 1. Examples of the potential field. The boundary conditions are

specified as follows. Top left: the center node is maximum and all perime-

ter nodes are minima; Top right: maximum and minimum are fixed at two

internal nodes, respectively; Bottom left: the center node is maximum and

4 corner nodes on perimetry are minima; Bottom right: two internal nodes

are maxima and all perimeter nodes are minima.

information is needed, so that the algorithm can be easily re-

alized in a distributed sensor network.

2.2. Information potential & greedy routing

A solution to Laplace’s equation has the property that the

average value over a spherical surface is equal to the value

at the center of the sphere (Gauss’s harmonic function theo-

rem). In other words, harmonic functions are guaranteed to

be free of local minima or maxima within the solution region,

also referred to as the min-max principle. Because of this

prominent property, harmonic functions have been applied to

many fields such as robot path-planning [4, 15], virtual coor-

dinate construction in sensor networks [21] and many others.

For a potential function where the goal is to find the source by

local greedy routing, the min-max principle ensures that no

matter where the source and the minima are located, greedy

routing will succeed: starting from any node, by repeatedly

ascending to the node in the neighborhood with the greatest

information strength we are guaranteed to eventually hit the

source.

Theoretically, the information gradient may encounter a

plateau region, where all the neighbors have the same infor-

mation strength. This may be due to saddle points in the

harmonic function or to narrow necks such as bridges in the

connectivity graph. Flat regions caused by saddle points can

be easily dealt with by local discovery. By searching the

local neighborhood through either a random walk or flood-

ing, we can reach a nearby non-stationary point and continue

greedy routing. Plateaus created by irregular network topol-

ogy such as narrow bridges or cuts can be avoided by the

placement of additional boundary nodes with minimum in-

formation strength inside the plateau regions. See also the

discussion of this issue in [25].

This scheme can be easily extended to multiple sources

of the same type by simply fixing the maximum information

strength for all the source nodes and running the same itera-

tive algorithm at all other nodes. Since all the maxima in the

harmonic function are realized on the boundaries, a gradient

path always leads to one of the sources.



2.3. Linearity of information gradients

The rich algebraic properties of harmonic functions en-

able a number of possibilities for aggregation and compres-

sion of coherent data types, as well as navigation in the po-

tential field. For two data types e1 and e2 with information

strength fields, Φe1
and Φe2

, respectively, we can use the

summation Φ = λ1Φe1
+ λ2Φe2

to guide queries that search

for either e1 or e2, where λ1, λ2 are positive constant coeffi-

cients. It is easy to check, using the definition of harmonic

function, that Φ is the harmonic function under the bound-
ary condition Φ(w) = λ1Φe1

(w) + λ2Φe2
(w), where w is

a source for e1 or e2. Hence Φ cannot have local extrema
except at the source nodes for data type e1 or e2. In the next

section we will exploit this feature to achieve routing diver-

sity and gradient aggregation.

2.4. Robustness to lowlevel link variations

In practice, wireless links can be asymmetric. Thus

we can model the network by a directed communication

graph. Following the same distributed protocol as in

the symmetric case results in a potential function whose

value at any node u is the average of the values which
u can receive — these correspond to u’s incoming edges.

1 N u v 0

Figure 2. Trivial potential function in a

large part of the network as a result of

poor connectivity.

Of course, when

links are directed, not

every node is reach-

able from any other, in

general. It is easy to

see that this can result

in potential functions

which are not mean-

ingful. For example, in Figure 2, the source cannot be

reached from the boundary. As a consequence, an arbitrar-

ily large subnetwork N may have the same potential as the
source, which is trivial and useless. In other words, even

though there might be an abundance of paths leading from

some node in N to the source, gradient paths are not helpful
in finding any of them. Notice that this would not happen

if the link (u, v) were symmetric. However, we will show
that our method does not require full symmetry in the links,

but only a much weaker condition: bi-directional reachabil-

ity between any two nodes, possibly along a multi-hop path.

In the ideal case of fully symmetric links, for any two

nodes the shortest paths in both directions have equal lengths.

Intuitively, the difference between the two shortest path

lengths (the ratio of the longer one to the shorter one) is

a measure of link asymmetry. The performance of our

gradient-based method degrades gracefully with respect to

this measure.

Theorem 2.1. If the network is strongly connected, the po-

tential function described above is unique and can be com-

puted using the standard iterative method. Furthermore, if

for any two nodes u and v the shortest path lengths from u

to v and from v to u differ by at most a factor of r, then any
non-source node can find a node with a potential value no

higher/no lower than its value in its ⌊r⌋-hop neighborhood.

Proof: We define the system matrix M as follows: row i
corresponds to the interior node (i.e., a non-Dirichlet bound-

ary node) i, with the diagonal entry (i, i) equal to the in-
degree of i, and the entry (i, j) equal to −1 if there is an
edge from another interior node j to i, zero otherwise. This
is the Laplacian matrix of the directed network, with rows

and columns corresponding to the interior nodes.

The matrix-tree theorem for directed graphs (Chapter 9

of [2]) states that the determinant ofM is the number of di-

rected spanning forests (arborescences) all of whose directed

trees are rooted at (i.e. their edges pointing to) the boundary

nodes. Equivalently, this is the number of directed spanning

trees pointing to the node obtained by contracting the bound-

ary nodes. Because of our connectivity assumption, there

exists at least one such tree. Thus M has full rank, which

means the harmonic function is unique, as a solution to the

linear system Mv = 0, with v as the vector for all interior
nodes.

The convergence of the iterative method can be proved in

the same manner as in the undirected case (spectral radius

argument).

Finally, note that any node u has a neighbor v with a po-
tential value no higher/no lower, such that (v, u) is an edge.
As u can be reached from v in one hop, v can be reached
from u in at most ⌊r⌋ hops. This completes the proof. ¤

3. Applications of Information Potentials

3.1. Routing diversity

Consider an emergency evacuation scenario in which

many users are guided by the information gradients to build-

ing or road exits (each exit is modeled as a data source). It is

important to spread out uniformly the users along the paths

to these exits, to avoid traffic congestion. We abstract this

scenario as multiple queries or navigation requests for the

same set of sources si, and we would like to use local rout-

ing guidance to achieve global routing diversity and traffic

balancing.

Assuming that an information potential field Φi has been

constructed for each source (e.g., exit) si, we could simply

let each user choose uniformly at random among the set of

possible sources, and then use the potential for that source to

guide the way. However, traffic tends to accumulate on the

paths to the same source, as they are directed by the same

gradient function. Once two navigation requests converge at

one node, they are going to follow the same path from this

point on.

Instead, each query j can choose some random coeffi-
cients λij to form a ‘personalized’ potential field

∑

i λijΦi,

where Φi is the potential for source i. By the linearity of
information gradients, this linear combination of harmonic

functions is still harmonic. Thus routing will not get stuck



until it reaches a source node. However, each query is guided

by a different potential function, thus the query routes exhibit

spatial diversity and traffic load is more evenly spread out on

the routes to these sources.

To better understand this feature, we consider the follow-

ing scenario, in which there are k sources si and source i
fixes its potential as Φi(si) = 1, and Φi(sj) = 0, for j 6= i.
All the other nodes have a potential 0 < Φi < 1. Now we
form a configuration space as a k-dimensional vector space,
c(u) = (Φ1(u),Φ2(u), · · · ,Φk(u)), for each node u. The
vector of coefficients for query j is θj = (λ1j , λ2j , · · · , λkj).
The potential function Φj simply guides the query in the di-

rection θj ; the neighbor selected at each step is the node u
whose potential vector maximizes θj · c(u) It is easy to see
that, by linearity of potentials, all points c(u) are inside the
convex hull of the source points c(si), i.e. in the simplex
spanned by c(si), ∀i. In addition, the sources si are located

in uniformly spread directions around the simplex, and thus a

random direction θj will have equal probability to lead to any

one of the sources. To summarize, as each query chooses its

coefficients randomly, it will arrive at a source node with uni-

form probability, but the routing paths for different queries

will follow their respective individual potentials. We present

simulation results later to demonstrate the effectiveness of

this approach in load balancing.

3.2. Potential aggregation and compression

The linearity of harmonic functions immediately enables

an efficient implementation of queries for aggregated data

types. As illustrated in the introduction, queries for a range

of sources can simply ascend at each step to a neighbor with

higher summed information potential and they will eventu-

ally reach a source node within the specified range.

In many real world scenarios an event is only of inter-

est to the users within close proximity, i.e., the ‘strength’ or

‘importance’ of a detection is in many cases proportional to

proximity of the node to the event, or the ‘scale’ of the event.

For example, in the disaster relief scenario, an ambulance ve-

hicle moving through the network is more likely to respond

to a building collapse if it happens nearby, or if the building

in question is a highrise. As the total number of events in

the network may be large, nodes can simply ‘forget’ about

the less important ones, thus saving storage for new, more

important detections that may occur in the near future.

In this section we show that our approach naturally sup-

ports this notion of event importance. The idea is to have

the nodes estimate the importance of an event using their lo-

cal value of its potential. A potential is lumped with other

small potentials, if it is smaller than some threshold. Large

scale events generate a lot of sources, which can then com-

bine their potentials. As a result, more significant events

will be detected at larger distances, because the combined

potential will be above the threshold further away from the

sources. This kind of compression and potential aggregation

save on-board storage without losing much of the navigation

capability.

We use the idea of q-digest, developed by Shrivas-

tava et al. [24] for answering approximate quantile queries

with fixed memory requirement. In particular, suppose there

are n different types of data sources that form a logical hi-
erarchy, i.e. correspond to leaf nodes in a (balanced) binary

tree. The hierarchy can be arbitrary, but many applications

have a natural classification of types (e.g. big vs. small an-

imals, dogs vs. cats, etc.). Instead of storing the n potential
values separately, each node stores these potentials in a local

q-digest data structure, constructed as follows.

Start with a binary tree describing the hierarchy of types.

At each leaf node i record the potential Φi for source of type

i. Small values will be lumped together into internal nodes
of the tree so that for each node in the tree two properties

will hold: (i) the value of a node is at most ε; (ii) the sum of
the values of a node, its parent and sibling is at least ε. To
achieve this, examine the nodes bottom up. If a node does

not satisfy (ii), lump its value and the value of its sibling into

the parent. The storage needed is the number of non-empty

values at the nodes in this tree.

Suppose that at a sensor node u the sum of the potentials
isM(u) =

∑n

i=1 Φi(u). If the leaf node i has a non-empty
value, this value is precisely Φi(u), i.e., no compression is
done for source i. Otherwise, its value is lumped into the
value of the lowest ancestor with non-empty value and is at

most ε. Denote the value of a node x in the tree as Vu(x),
its parent as p(x), its sibling as s(x), and Su(x) as the set
of sources that contribute to the potential at x. To count the
number of non-empty values of the digest, denoted bym, we
calculate the following sum: M =

∑

x[Vu(x) + Vu(p(x)) +
Vu(s(x))] ≤ 3

∑

x Vu(x) = 3M(u).At the same time,M ≥
∑

x ε = mε. Thus we have m ≤ 3M(u)/ε. That is, the
storage requirement at a node is only dependent on the total

potential value, but not the number of sources present in the

network.

Since the potentials are ‘compressed’ when they are

smaller than ε, gradient routing from a node with a small po-
tential value may need to do a local flooding until it encoun-

ters a node with a visible potential value (i.e., higher than

ε), from where the standard gradient routing is adopted. Al-
ternatively to avoid the local flooding, we can also ‘decom-

press’ the aggregated potentials by distributing uniformly the

non-empty value of an internal node x to all the leaf nodes
that have contributed to x, i.e., those in Su(x). Routing for a
particular source can be guided by this lossily decompressed

potential (and may get into a local minimum in the worse

case).

This compression scheme with the q-digest can be inte-

grated nicely with the gradient update scheme, in particular,

with the Jacobi iteration for computing the harmonic values.

Notice that each internal node will have its value as the sum

of the potential of a subset of sources. By the linearity of

harmonic functions, one can directly perform the Jacobi it-

eration on this bucket at a node u if at node u and all its
neighbors the bucket x contains the potential values of the
same subset of sources — in other words, if Su(x) = Sv(x)
for all neighbors v of u. In this case, we simply take the av-



erage of the values at bucket x of u’s neighbors as the new
value at Vu(x). In a more complicated scenario, the bucket
x at node u is non-empty but the bucket x at its neighbor v
is lumped into an ancestor y of x— we will let node v also
keep the value at bucket x. Then the Jacobi update can be
performed at node u. Symmetrically, when we update the
value at bucket y of node v, we will take the sum of the val-
ues of sources in Sv(y) at sensor node u, by taking the sum
of appropriate buckets at node u.
To summarize, each node maintains the non-empty buck-

ets of its own q-digest, as well as the values at the buckets

corresponding to the non-empty buckets at the q-digest of its

neighbors. The storage requirement is at most a constant fac-

tor more, as a non-empty bucket at a node u in the worst case
causes its neighbors to also keep the value at this bucket be-

yond what they have already maintained in the q-digest. In a

network with bounded node degree, this modification at most

increases the storage requirement by a constant factor.

When we perform a Jacobi iteration, we also check the

properties of q-digest to make sure they still hold. Two pos-

sibilities can happen:

• If the sum of the values Vu(x) with Vu(p(x)) and
Vu(s(x)) is smaller than ε, then the value of x and its
sibling is lumped to the parent p(x). The value at Vu(x)
is still maintained unless all the neighbors of u do not
have non-empty bucket x.

• If the value Vu(x) is larger than ε, we will need to ‘de-
mote’ this bucket. The insight here is that for at least

one of u’s neighbors v,
∑

i∈Vu(x) Φi(v) > ε— if oth-

erwise the new value Vu(x) is the average of its neigh-
bors’ values and can not be larger than ε. Thus u has al-
ready been maintaining the buckets (lower than x) cor-
responding to the non-empty buckets in the q-digest at

v. Thus we will demote bucket x to those non-empty
buckets in its subtree.

One more advantage of this setup is that it supports am-

biguous event detections. Sometimes a node cannot deter-

mine the basic type, but only a higher-level class of its de-

tection (cannot tell a cat from a dog, but knows it is a small

animal). Such a detection can then be associated with an in-

ternal node in the ontology tree of types, just like in the case

of a composition of several basic potentials.

3.3. Counting range queries

A range query asks for the value of certain attributes in-

side a given geographical range. Previous approaches for

range queries either choose to flood the region for computing

the attributes of interest, or preprocess the sensor data into

partial aggregates that are later assembled properly for the

correct answer [8–10,23]. For the later approach, the shape of

the geographical range affects the assembly cost: the more

complicated the geographical range is, the more partial ag-

gregates are to be used.

The algebraic property of harmonic function allows an ef-

ficient algorithm for counting query in an arbitrary range.

In particular, suppose we would like to count the number of

sources inside a simple closed curve (a Jordan curve). We

simply tour along the curve and sum up the difference in

the potential values on the edges across the region bound-

ary. In particular, say an edge uv is crossing the region
boundary with u inside the range. Then the signed difference
Φ(u) − Φ(v) is added to the sum. The summed difference
will give precisely the number of sources in the interior of

the range, assuming that the same signed difference, evalu-

ated for the set of edges adjacent to each source, is equal to

1. However, the latter can be guaranteed by a simple modi-
fication to the basic Jacobi iteration described in Section 2.1

– the sources previously had their values fixed at 1, whereas
now they perform the following iteration

Φk+1(u) ←
1

d(u)

[

Σv∈N(u)Φ
k(v) + 1

]

.

To better understand this, one can imagine that each source is

equipped with an ‘external’ constant inflow of value 1 with
one node fixed to the ground with voltage 02. The signed
difference Φ(u) − Φ(v) is the electrical flow on the edge uv
from interior to the exterior. If the range contains no sources,

then the amount of flow entering the range must be the same

as the amount of flow leaving it, by Kirchoff’s current law.

Beyond its simplicity, this approach also compares favor-

ably with other approaches for answering counting range

queries, in terms of the communication cost. For exam-

ple, the quad-tree/fractional cascading approach [9] incurs a

query cost proportional to O(h log h) for a rectangular range
with perimeter h. Our query only incurs a communication
cost of h and it works for ranges of arbitrary shape.

4. Construction & Maintenance

The establishment of information strength field is

achieved by on-demand Jacobi iterations. The source nodes

and some boundary nodes always fix their information

strength as the maximum and minimum value, respectively.

A non-source node u, upon the receipt of strength values
from its neighbors, takes the average of the neighbors’ val-

ues, i.e., Φ′(u) =
∑

v∈N(u) Φ(v). If the new strength value

Φ′(u) is sufficiently different from the old strength value
Φ(u), the new value is updated and broadcast to its neigh-
bors. Otherwise, nothing is changed at node u. The update
criterion can be selected to provide a tradeoff between up-

date cost and gradient quality. We provide two basic update

criteria as follows.

• Relative difference threshold: The update stops if the
relative difference is below a threshold δ. In other
words, |Φ′(u) − Φ(u)| ≤ δ · max{Φ(u),Φ′(u)}.

• Stable relative ordering: The update stops if the rel-
ative ordering of the strength values between u and

2Technically, the equation being solved in this case is the discrete Pois-

son (‘nonhomogeneous Laplace’) equation, where the sources are no longer

boundary nodes, but nonhomogeneous terms. The theory of Jacobi method

is essentially the same, however.



all neighbors of u stabilizes. In other words, for all
w ∈ N(u), Φ′(u) < Φ(w) if and only if Φ(u) < Φ(w).

In the relative difference threshold condition, the thresh-

old δ bounds the relative difference of the current strength
field from the harmonic function. The smaller δ we choose,
the better strength field approximates the harmonic function

and the higher construction cost we pay.

The stable relative ordering criterion is a more relaxed

condition. In fact, the stable relative ordering is obviously

sufficient to guarantee that non-source nodes do not form a

local maximum or minimum of the strength values. Thus

greedy routing never gets stuck at a non-source node.

The update condition can also be a combination of the

stable relative ordering and the relative difference thresh-

old conditions, so that the orderings stabilize and the rela-

tive error is below the specified threshold. The convergence

condition controls the quality of the information gradients,

which consequently affects the query quality and query path

lengths. The convergence condition is a system parameter

that can be tuned in an application specific fashion to trade

preprocessing for query time.

We remark that the gradient construction and maintenance

is performed in an on-demand and asynchronous way. Upon

the appearance of data sources, information diffuses to the

network. The closer a node is to the data sources, the less

delay a node experiences in encountering a visible gradi-

ent. The delay it takes for this information diffusion usu-

ally depends on the network diameter. However, with on-

demand computation, the amount of iterations each node per-

forms, and thus the energy consumption at each node, de-

pends mainly on the convergence condition and are relatively

independent of the network size. This scalability is verified

by simulations (Figure 3(iii)).

Gradient maintenance can also be triggered by user

queries. Before the information gradients stabilize or when

the convergence condition is too loose (e.g., δ is large in the
relative difference threshold case), a user query may reach a

local maximum and get stuck at a non-source node u. This
may trigger further improvements of the gradients, by initiat-

ing Jacobi iterations at u (possibly with a tighter convergence
condition).

5. Evaluation by Simulations

We evaluate information gradients by simulation in the

following aspects: the construction and maintenance costs of

the information strength field, robustness to network dynam-

ics, the tradeoff of query qualities versus gradient mainte-

nance cost, as well as the applications of the potential fields

in Section 3.

5.1. Simulation setup

We use two sets of network topologies. One is a grid net-

work with radio range of 1 unit and exact node degree of 4.
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Figure 3. The boot-up phase with preset approximations: (i) The conver-

gence rates with relative difference threshold model, ε = 0.2%, 0.5%, 1%.
(ii) The average number of iterations each node experiences. The mainte-

nance phase: (iii) The network and per node convergence iterations for link

toggles at different positions in a 50× 50 grid network. (iv) The cumulative

distribution function of the number of updated nodes at different distances.

The other is sensor nodes deployed uniformly randomly in a

rectangular region.

We model wireless transmission using the same radio

models as in TOSSIM [1, 17]: simple mode and lossy mode.

In the simple mode, all nodes within the transmission range

can communicate perfectly without data corruption. In the

lossy mode, each link has a bit error rate reflecting the prob-

ability that a bit is flipped, according to the distance between

the two communicating parties. We feed in our node loca-

tions in the TOSSIM radio model and obtain connectivity

and link quality for each pair of nodes. To model link fail-

ure, at any particular time slot we also set a percentage of

randomly selected links to be not available, throughout all

the experiments.

The maintenance of the information strength field is on-

demand. We build the gradient scheme upon a neigh-

bor discovery protocol, which notifies the gradient mainte-

nance component about the appearance and disappearance of

neighbors. Gradient maintenance and routing are in the net-

working layer, and can be integrated with existing protocols

that maintain a neighbor list for each node [5, 20].

5.2. Gradient construction

A critical system parameter is how fast the information

strength converges. In the boot-up phase, gradients are ini-

tially set up for newly introduced data sources. In the mainte-

nance phase afterwards, gradients are updated at link changes

and repaired upon source motion.

We first study the boot-up phase behavior. In the grid

topology with increasing size from 20 × 20 to 100 × 100,
we fix a source at the center of the network and set the maxi-

mum value as 1000. We use a simple radio model with com-



munication range 1. We evaluate the number of relaxation

iterations (i.e., the delay) it takes for the whole network to

stabilize under different convergence criteria, as shown in

Figure 3 (i). The total number of iteration steps is propor-

tional to the network diameter. We also observed that the

convergence threshold ε affects the coverage scope of the
potential field. Correspondingly, the convergence rates are

missing in case of incomplete coverage. We also evaluate

the number of Jacobi iterations each node performs. The av-

erage number of actual iterations each node experiences is

much smaller, as shown in Figure 3 (ii). In these experiments

we adopted a simplified pre-set scheme for the information

strength field. We pre-set the strength field as a field that

linearly decays from the source in the boot-up phase. The

decaying amount at each step is set by as S = MAX/D,
where MAX is the maximal strength value at sources and D
is the network diameter. In practice, the estimated decaying

step S can be preloaded on all sensor nodes. When a node
first receives a positive strength value from a neighbor, it di-

rectly sets its strength value to be the neighbor’s value minus

S. Standard Jacobi iterations are performed afterwards. This
linear approximation is shown by simulation to be very ef-

fective. Most of the numbers are below 10 iterations. For

ε = 0.5%, 1%, the average number of iterations is even less
than 1. Another interesting behavior observed is that the ap-

proximation favors large networks, in the sense that the num-

ber of iterations per node decreases with network diameter.

This is because both the gradient and the preset approxima-

tion functions are less steep. Thus only a few adjustments

are needed.

5.3. Robustness to link dynamics

After the establishment of information gradients, the

strength field is maintained to accommodate various types of

dynamics. When one link toggles (appears or disappears),

the gradient maintenance component will be notified with

the lost (or new) neighbor and perform a Jacobi iteration.

If the convergence condition is violated, gradient update will

be triggered and new values are broadcast to the neighbors.

We evaluate the update convergence rates and update scopes

(how far the updates span). We first study whether the prox-

imity of the link dynamics to source matters. In a 50 × 50
grid network, the potential field is constructed with 0.1%

convergence threshold and maintained by 1% threshold. We

sample nodes at different distances from the source and ran-

domly fail one of the attached links. Figure 3 (iii) shows

the number of iterations for the network to stabilize. The

number of iterations per node is about 10. Figure 3 (iv)

describes the cumulative distribution function about the per-

centage of updated nodes within a certain distance threshold.

The nodes updated are all within vicinity. Nearly 90% of

them are within 6 hops from the triggering node.

We also test the algorithm for scalability. By varying the

diameter of the grid network from 20 to 80, we observe that

both the average convergence rates (the total and per node

number of iterations), as shown in Figure 4(b), and the up-
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Figure 4. Gradient maintenance cost under link dynamics and source mobil-

ity. (a) the average number of hop counts of updated nodes to the triggering

node with a link failure, (b) the average convergence iterations (both total

and per node) for link failure reparation, All the simulations are conducted

on a grid network with the simple radio

date scope, as shown in Figure 4(a) with 1% convergence

threshold, do not change much when the network size in-

creases. Thus information gradients updates for link dynam-

ics are completely local.

5.4. Packet loss and query quality

In these experiments we incorporate the lossy wireless

communication model described in section 5.1 and study the

query success rate and path quality in this scenario. Under

the lossy radio model, message may get corrupted, which is

detected by the CRC checksum. For a corrupted gradient up-

date message, the receiver drops this message and skip the

Jacobi iteration that may be triggered. A missing Jacobi iter-

ation can be compensated in later iterations. If a query mes-

sage gets corrupted, the sender will retry. In the simulation

query messages are acknowledged implicitly by overhearing

retransmission from the receiver. If a sender does not hear

the transmission of the query message by its neighbor after

a certain period of time, it retransmits the query. In case of

a second-time failure, the sender then chooses the neighbor

with the second largest information strength (still higher than

its own strength value though). The process repeats in case

of consistent transmission failure and finally claims a query

failure when there is no qualified neighbor to proceed.

In Figure 5(a), we show the query success rates under the

lossy communication model initiating from increasing dis-

tance ranges. We compare it with the query success rate with

the DAG formed by hop count distance to source, by using

the same query routing algorithm as explained above (Fig-

ure 5(b)). In the experiments, we place a source randomly

in a uniformly distributed 4000 nodes network. A potential

field using 0.1% convergence threshold or a DAG according

to hop count distance is constructed next. We then collect

the query statistics for every non-source node. The results

show that greedy routing using the gradient field is much

more robust than shortest path trees. The horizontal axis in

Figure 5(a) and 5(b), ‘lossy model scaling factor’, is a pa-

rameter used in the TOSSIM radio model that controls the

loss rate. The higher this factor is, the more lossy the radio

links are.
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Figure 5. We place 4000 nodes uniformly randomly in a square of size

100 × 100. The communication range is 3. The link quality is generated

with the TOSSIM lossy radio model. (a) and (b) show the query success

rates of greedy routing with information gradients and a shortest path tree.

5.5. Improving routing diversity

To demonstrate the use of information gradients to

achieve routing diversity, we consider a perturbed grid net-

work of 625 nodes, with two sources in the upper-right and

lower-right corners of the network. We generate 300 queries,
each of them looking for any one of the 2 sources. Each

query originates from one of the three nodes along the left

boundary of the network (indicated by dark bars) chosen at

random among the three. To guide the query message, we

follow the ascending path of a function which is guaranteed

to have all its local maxima at the sources. We compare three

choices of such function, namely

• the potential which happens to be the strongest at the
point where the query originates,

• a potential chosen uniformly at random,

• a linear combination of the potentials, with positive co-
efficients3 λ and 1 − λ, where λ is chosen uniformly at
random from [0, 1].

Figure 6 shows the results for the communication load.

We see that in the third case there is a significant improve-

ment in the nodes’ communication load distribution, as long

as they are not very close to the sources and query points (in

the latter case high load is unavoidable).

Because we diversify our paths, we may expect to pay

some penalty in terms of path stretch. Clearly, our approach

provides a way to trade off path diversity for path stretch by

restricting the domain from which random coefficients are

drawn. However, our results show that this penalty is not

too large even with the entire interval [0, 1]. In the above
experiment we obtained the stretch value of 1.22 for the third
approach, versus 1.14 and 1.15 for the first two approaches.

5.6. Potential influence zones

We tested the influence zone of aggregated gradients. In a

perturbed grid network of 400 nodes, we choose two sources

close to each other near the left boundary of the network. We

compute their individual potentials, but store the gradients

only if they are larger than ε. We want to see how many

3If we allowed negative coefficients, there might be local maxima at the

network boundary.

Figure 7. Nodes can adapt their potentials’ zone of influence based on the

importance and scale of detected events. In this example the significance

threshold is ε = 1/64. Top row: Influence of the individual potentials.

Bottom row: Influence of the combined potential.

more nodes will learn about the two events if the potentials

are combined.

Figure 7 shows the result for ε = 1/64. In the case of
individual potentials (Figure 7 top), the number of nodes un-

aware of the event is 182 and 183 for the lower and upper

source, respectively, and in the case of the combined poten-

tial the number is only 43 (Figure 7 bottom; as expected, the

number is the same in both cases).

5.7. Saving storage space using qdigests

In this section we test the idea of reducing the number of

stored potential values, but in such a way to be able to recon-

struct the original gradient with a guarantee on the additive

error. The q-digest data structure provides a way to do this,

as described in Section 3.2.

We consider the following simple example. Suppose we

have a perturbed grid network of size 20 × 20 nodes, with
two sources s1 and s2 near the left (resp. right) boundary,

and we want to have as many nodes as possible store only

one value instead of two.

If we try to compress using ε = 0.2, our approximate po-
tentials (after decompression) will have some local extrema.

In particular, the approximate potential of s1 will have local

maxima around s2 and vice versa (Figure 8 top left). This is

because in the region around s2 the potential of s2 is much

stronger than that of s1, so equal splitting results in under-

estimating s2 and overestimating s1. This effect is a lot less

pronounced if we use less compression (smaller ε). Figure 8
(middle) shows the results for ε = 0.05. Most nodes have
ascending paths to both sources even with approximate po-

tentials, but the storage savings are also smaller. The number

of nodes that decide to aggregate their potential is 380 (out
of 400) for ε = 0.2, and 185 for ε = 0.05.
Finally, notice that the aggregated potential (stored in the

internal node of the q-digest tree) is also a potential func-

tion whose domain is a subset of the nodes. Thus, if it is

not possible to route using approximate potentials, the ag-



Figure 6. Path diversity results. Left: using the strongest potential at the query origin. Middle: using a randomly chosen potential. Right: using a random

linear combination of potentials. Dark bars represent loads at query origins.

Figure 8. Compressing potential functions using q-digests. Sources are rep-

resented by black squares, empty circles represent the nodes that compress

their local potentials. Top: for ε = 0.2, some nodes in the vicinity of s1

have no ascending paths to s2, and vice versa. Middle: with less compres-

sion (ε = 0.05) the effect is less pronounced. Bottom: using the aggregate
potential (from the internal node of the q-digest tree) restores routability for

all nodes even for ε = 0.2.

gregate potential might provide a way out of the local min-

imum. In our case (Figure 8 bottom) it turns out that this

strategy (ascending the aggregate potential in the usual way)

restores routability for all nodes.

5.8. Counting sources inside a range

In this section we evaluate how many averaging iterations

(per node) are needed before the potential becomes accu-

rate enough to be used for counting sources inside a given

query region by examining only the boundary of the region

(Section 3.3). We place a single source in the middle of a

25 × 25-node perturbed grid network. The task is to decide
whether the source is inside or outside of the query region.

For any given number of iterations per node, we expect the

accuracy to depend on the distance of the query region from

the source. To measure this dependence accurately, we test

with the query regions for which this distance is as uniform

d

SOURCE

0.8d
d

SOURCE

≤ 0.1

Figure 9. Two types of circular query regions in our source counting simula-

tion, for a given distance parameter d. Regions are chosen to make d roughly
equal to the average distance between the region’s boundary and the source.

When the region does not contain the source (left), the radius of the region

is comparable to d. When the region contains the source (right), the region
is displaced with respect to the source by a small distance (compared to d).
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Figure 10. Source counting empirical error rate as a function of the number

of Jacobi iterations and the position of the query region. Left: false positives.

Right: false negatives.

as possible over the region boundary. Figure 9 shows the

kind of queries that we use.

Starting from a random initial values, we simulate Jacobi

iterations in small batches. After each batch of iterations,

for all distance values we compute an empirical estimate of

the error rate from a few hundred random trials (the random

quantity being the coordinates of the center of the query re-

gion).

The results are shown in Figure 10. In all cases, the er-

ror drops to zero after only 20-30 iterations per node. In the

case of false positives, convergence slows down as distance

parameter d grows. We believe that this is because in this
case the convergence speed is governed by the diffusion pro-

cess inside the region. As the size of the region grows, it

takes more time to eliminate local extrema inside the region

through local averaging. In the case of false negatives, the

flow has to become relatively large, which happens under

the influence of the source and boundary. Hence the nodes

roughly half way between the source and the boundary ex-

hibit the slowest error decay; the source/boundary informa-

tion needs to propagate furthest to these nodes, to make the

flow in their vicinity relatively large and reliably detectable.



6. Conclusion

In this paper we have shown that harmonic information

potentials, a lightweight structure that maintains and diffuses

information availability, can be very helpful in guiding infor-

mation flow and data-centric queries in sensor networks. The

rich structure of harmonic functions allows for great flexibil-

ity and adaptability in routing algorithm designs and we ex-

pect that many future applications of these techniques will be

possible.
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