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Abstract. Making effective use of the vast amounts of data gathered by large-scale sensor networks (sensornets) will require scalable,
self-organizing, and energy-efficient data dissemination algorithms. For sensornets, where the content of the data is more important than
the identity of the node that gathers them, researchers have found it useful to move away from the Internet’s point-to-point communication
abstraction and instead adopt abstractions that are more data-centric. This approach entails naming the data and using communication
abstractions that refer to those names rather than to node network addresses [1,11]. Previous work on data-centric routing has shown it to be
an energy-efficient data dissemination method for sensornets [12]. Herein, we argue that a companion method, data-centric storage (DCS),
is also a useful approach. Under DCS, sensed data are stored at a node determined by the name associated with the sensed data. In this
paper, we first define DCS and predict analytically where it outperforms other data dissemination approaches. We then describe GHT, a
Geographic Hash Table system for DCS on sensornets. GHT hashes keys into geographic coordinates, and stores a key–value pair at the
sensor node geographically nearest the hash of its key. The system replicates stored data locally to ensure persistence when nodes fail. It
uses an efficient consistency protocol to ensure that key–value pairs are stored at the appropriate nodes after topological changes. And it
distributes load throughout the network using a geographic hierarchy. We evaluate the performance of GHT as a DCS system in simulation
against two other dissemination approaches. Our results demonstrate that GHT is the preferable approach for the application workloads we
analytically predict, offers high data availability, and scales to large sensornet deployments, even when nodes fail or are mobile.
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1. Introduction

A sensornet is a distributed sensing network comprised of
a large number of small devices, each with some computa-
tional, storage and communication capability. Such networks
can operate in an unattended mode to record detailed infor-
mation about their surroundings. They are thus well suited
to applications such as location tracking and habitat monitor-
ing [5,21]. As these networks scale in size, so will the amount
of data they make available. The great volume of these data
and the fact that they are spread across the entire sensornet
create the need for data-dissemination techniques capable of
extracting relevant data from within the sensornet. More-
over, communication between nodes requires the expenditure

of energy, a scarce commodity for most sensornets. Thus,
making effective use of sensornet data will require scalable,
self-organizing, and energy-efficient data dissemination algo-
rithms.

The utility of a sensornet derives primarily from the data it
gathers; the identity of the individual sensor node that records
the data tends to be less relevant. Accordingly, sensornet re-
searchers have argued for communication abstractions that
are data-centric. Under this model, data are “named” and
communication abstractions refer to these names rather than
to node network addresses [1,11]. The directed diffusion [12]
data-centric routing scheme has been shown to be an energy-
efficient data dissemination method for sensornet environ-
ments.
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Herein, we propose a useful companion method, data-
centric storage (DCS). In DCS, relevant data are stored by
name at nodes within the sensornet; all data with the same
general name (e.g., elephant sightings) will be stored at the
same sensornet node (not necessarily the one that originally
gathered the data). Queries for data with a particular name
can then be sent directly to the node storing those named
data, without the flooding required in some data-centric rout-
ing proposals.

Several data-centric dissemination methods are conceiv-
able, each with different performance characteristics. The ap-
propriate data dissemination method for a task will depend
on the nature of the sensornet, its intended deployment envi-
ronment, and the expected workload. We make four principal
contributions in this paper:

• We propose a novel data dissemination method, DCS, and
show where it outperforms other approaches.

• We provide an organizing framework for comparing among
three canonical data dissemination approaches, and pre-
dict where each performs best.

• We identify design criteria for a robust and efficient DCS
system, and describe GHT, a Geographic Hash Table sys-
tem for DCS whose design is motivated by these criteria.

• We evaluate GHT’s performance using detailed simula-
tions of networks of up to 200 nodes, and abstract sim-
ulations of networks of up to 100,000 nodes.

Our claim is not that DCS is always the method of choice,
but rather that under some conditions it will be the most de-
sired option. In fact, we expect that future sensornets will
embody all of these (or similar) data-centric dissemination
methods, and that users will choose the appropriate method
based on the task at hand.

To understand the relative behavior of each dissemination
method under different conditions, one must, in turn, under-
stand the context in which these algorithms will be deployed.
For this reason, we begin our paper with a description (in sec-
tion 2) of the role played by data dissemination in a complete
sensornet system. This material also provides the needed con-
text for later comparative simulations.

Our scalable and robust DCS system, GHT, builds on
two recent advances: (1) a new generation of efficient peer-
to-peer lookup systems such as Pastry, CAN, Chord, and
Tapestry [7,24,26,29] and (2) the GPSR geographic routing
algorithm [15]. In these peer-to-peer lookup systems, a data
object is associated with a key and each node in the system is
responsible for storing a certain range of keys. A name-based
routing algorithm allows any node in the system to locate the
storage node for an arbitrary key. Nodes can put and get
files based on their key, thereby supporting a hash-table-like
interface. GHT uses GPSR as the underlying routing system
to provide a similar hash-table-like functionality in sensor-
nets.

Our paper has 8 sections. We start with a discussion of
the context for data dissemination in sensornets in section 2.
Continuing in section 3, we describe three canonical dissemi-
nation methods and use a simple analytical model to compare

their costs. We identify DCS system design requirements in
section 4. Section 5 presents the detailed design of GHT,
which we evaluate in section 6. We discuss related work in
section 7 and conclude by summarizing our findings and dis-
cussing future work in section 8.

2. Context

In this section, we first briefly review sensornet architecture.
We then state our assumptions about the class of sensornets
we consider. Having set the full context for our work, we then
describe basic concepts used in organizing sensornet data, and
outline possible approaches to data dissemination in sensor-
nets.

2.1. Sensornet architecture

We organize this discussion in “layers” ordered from bottom
to top. These layers are used only to clarify the presentation
and convey a sense of the role of data dissemination in a com-
plete sensornet system; we do not mean to imply that sensor-
net architecture is organized into clean, well-separated layers.
We begin our review at layer three (packet routing), as we are
concerned with data dissemination, which interacts directly
with layer three and above. Layers one (physical and OS)
and two (low-level communication and self-configuration) are
comparatively orthogonal to data dissemination.

L3. Packet routing
Packet routing algorithms are required to deliver packets be-
tween nodes that are not in mutual radio range. Packet routing
systems based on node identifiers are ill-suited to sensornets,
where communication is not addressed to node identifiers. It
is expected that sensornets will instead implement geographic
routing systems that deliver packets to nodes based on their
location. Below we describe several types of geographic rout-
ing systems, each with its own communication abstraction
and energy cost. In the following, we let n be the number
of nodes in the sensornet, and assume that the diameter of the
sensornet is approximately O(

√
n).

Strongly geographic routing algorithms, like GPSR [15],
allow nodes to send to a particular location. To go from
one random location to another requires O(

√
n) packet trans-

missions, which is our (approximate) metric for total en-
ergy consumption. Weakly geographic routing algorithms like
GEAR [28] allow a node to send packets to a region and
then distribute the packet within that region. The transmission
costs here are O(

√
n) packet transmission to reach the region

and O(r) packet transmissions within the region, where r is
the number of nodes in the region.

In addition to geographic routing, two other packet rout-
ing primitives are likely to be available in sensor networks.
Scoped flooding algorithms flood to a limited region around
the sending node. Their transmission cost is O(r) where r is
the number of nodes in the region. Flooding sends a packet to
the entire sensornet, and requires O(n) packet transmissions.
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L4. Local collaborative information processing
Event detection sometimes requires synthesizing results from
several different sensors. The algorithms in this class only
require collaboration between local nodes; i.e., those that can
be reached by a tightly-scoped flood. An example of such
algorithms is described in [27].

L5. Wide-area data dissemination
Under the data-centric architecture for sensornets, data are
named. The data dissemination methods we refer to here al-
low nodes and users to access data by name across the sen-
sornet. Note that, in contrast, the local collaborative infor-
mation processing only used data that could be found nearby;
these wide-area data dissemination methods are needed to do
collaborative processing in the wide area, as we describe be-
low.

The most commonly mentioned wide-area data dissem-
ination technique is directed diffusion [11,12], an example
of data-centric routing: routing decisions are based on the
name of the data rather than on the identity of the send-
ing and receiving nodes. We discuss directed diffusion at
greater length in section 3.3. In this paper we propose
another data dissemination approach: data-centric storage,
whereby event information is stored by name within the sen-
sornet.

It should be noted that directed diffusion (and most other
data-centric routing proposals) do not require any packet for-
warding methods other than flooding. In contrast, the data-
centric storage proposal we present here requires strongly ge-
ographic routing. Thus, the data dissemination method choice
may be limited by the nature of the underlying packet routing
mechanisms.

L6. Wide-area collaborative information processing
These methods are akin to the local collaborative information
processing methods mentioned above, except that the collab-
orating nodes need not be local. An example of such a col-
laboration is that required for tracking an object across a sen-
sor field. In this case, scalable collaborative methods must
be built on efficient wide-area data-dissemination algorithms.
Zhao et al. [30] describe a collaborative tracking application
built on top of directed diffusion.

L7. User-level tasking and querying
The highest layer is where users insert their tasking and
querying commands. An example of an approach that fits here
is work that has been done on defining database semantics for
queries on sensor networks [2,10,19].

2.2. Assumptions and metrics

Projected sensornet designs in the literature [6] differ greatly
in their characteristics and intended use. In this paper, we
focus on a class of sensornets that is most relevant to the data
dissemination issues we address.

We consider large-scale sensornets with nodes that are
spread out over an area whose approximate geographic

boundaries are known to the network operators. We as-
sume that nodes know their geographic location. This can be
achieved through the use of GPS or some other approximate
but less burdensome localization technique [4,9,22,23,25].
This assumption is critical for our proposed data-centric stor-
age algorithm. However, we think it is a reasonable assump-
tion because in many cases the sensornet data are useful only
if the location of their source is known.

We assume that the sensornet is connected to the outside
world through a small number of access points, hence getting
data from a sensornet node to the outside world requires rout-
ing the data through the sensornet to the access point. This
assumption is not required by our DCS mechanism per se but
is key to our comparison of the different dissemination mech-
anisms.

Finally, we assume that energy is a scarce commodity for
sensornet nodes [21] and so the data dissemination algorithms
should seek to minimize communication in order to extend
overall system lifetime. While the mapping between commu-
nication and energy consumption is complicated – depend-
ing greatly on the precise hardware involved and the packet
transmission pattern – in what follows we will focus on two
simplified metrics of energy consumption:

Total usage. The total number of packets sent in the sensor-
net.

Hotspot usage. The maximal number of packets sent by any
particular sensornet node.

While in the rest of the paper we treat all nodes as hav-
ing the same capabilities, it is likely that real sensornets will
have a tiered architecture, where some nodes have very lim-
ited data storage capacity and others have much more signif-
icant storage (and perhaps also more battery power and bet-
ter communication facilities). Our discussion applies to this
tiered approach as well, as long as the these “macronodes”
are numerous and widely dispersed [5].

2.3. Sensornet data

The preceding assumptions describe the physical environ-
ment of the sensornet. We next discuss how these sensornets
might be used.

2.3.1. Observations and events
The purpose of sensornets is to provide detailed sensing capa-
bilities across a wide geographic area. The low-level readings
from these sensors, which we call observations, are named
(as described, for example, in [1,11]). While sensornets give
unprecedented access to detailed observations of the physical
world, sending this overwhelming volume of observations di-
rectly to the access point(s) would quickly exhaust the energy
reserves of the sensornet. Fortunately, in most cases users do
not want the complete set of raw unprocessed data, but rather
are more interested in specific events, such as earthquakes or
animal sightings.

We use the term events to refer to certain pre-defined con-
stellations of low-level observations. For example, detailed
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temperature and pressure readings might constitute observa-
tions, while a particular combination of temperature and pres-
sure might define an “elephant-sighting” event. A sensornet
system will be designed to detect several well-defined types of
events. Typically, the large volume of observations prohibits
communicating them directly to the outside world. Events are
thus derived by processing the low-level observations within
the sensornet through collaborative information processing
techniques.

Events can be defined not only in terms of low-level ob-
servations but also in terms of other events. For instance, de-
tecting an animal migration would involve many individual
animal sightings. In general, there will be a web of events,
with some events defined in terms of others. These events
are not necessarily in a strict hierarchy, but in the context of
a particular application there is some sense that some events
are lower-level than others, and could be used to define the
higher-level events.

2.3.2. Tasks, actions, and queries
The preceding discussion identified the various types of infor-
mation – observations and events – that might be provided by
sensornets. We now describe the operations used to manipu-
late these data.

Users send instructions (by flooding or some other global
dissemination method) to sensornet nodes to run certain
local identification tasks. These tasks could be simple,
such as taking temperature readings, or complex, such as
identifying an animal from a collection of sensor read-
ings. In essence, one can think of tasks as downloaded
code.

Once an event has been identified, nodes can take one of
three actions: a node could send event information to exter-
nal storage, store the event information locally, or use data-
centric storage. Recall that data-centric storage involves stor-
ing the event information at a sensornet node that is chosen
based on the event’s name.1 These three possible actions –
external store, local store, and data-centric store – form the
core of the three canonical approaches we describe in sec-
tion 3.

Unless the information has been sent to external storage,
at this stage the event information is still not in the user’s
hands. Queries are used to elicit the event information from
the sensornet. How queries are executed will depend on the
actions nodes take upon event detection. If event informa-
tion is stored locally then queries must be flooded to all nodes
(unless the user has prior knowledge about the location of the
event). If event information is stored using data-centric stor-
age, the query can be sent to the sensornet node associated
with that event name.

1 This approach, like all data-centric approaches, requires a naming scheme.
We do not address this issue here, but merely note that the naming scheme is
part of the definition of events and is supplied by the globally disseminated
tasking instructions.

3. Data-dissemination methods

The main goal in a data-dissemination algorithm is to extract
relevant data efficiently from within the sensornet. We con-
sider three canonical methods that combine the pieces de-
scribed in the preceding section differently, yielding three
very different approaches to sensornet design. We first de-
scribe these methods and then compare their costs analyti-
cally.

All the dissemination methods begin by flooding the tasks
to the entire sensornet. The tasks are the set of identification
instructions, specifying which events to detect, how to detect
them, and what actions to take upon detection. We assume
that the tasking instructions remain in force for long periods
of time, so that the initial cost of issuing tasks is dominated
by the cost of the ensuing data processing.2

We also assume that event locations are not known in ad-
vance and are distributed randomly throughout the sensornet.
The case where this assumption does not hold is discussed in
section 3.3.

Finally, in evaluating communication costs we assume as-
ymptotic costs of O(n) message transmissions for floods and
O(

√
n) for point-to-point routing where n is the number of

nodes.

3.1. Canonical methods

Earlier we described three basic actions nodes could take
upon detecting an event. These lead directly to three canoni-
cal sensornet methods.

External Storage (ES). Upon detection of events, the rele-
vant data are sent to external storage where they are fur-
ther processed as needed. This entails a cost of O(

√
n) for

each event. There is no cost for external queries since the
event information is already external; queries generated by
internal nodes in the process of event detection will incur
a cost of O(

√
n) to reach the external storage.

Local Storage (LS). Event information is stored locally (at
the detecting node) upon detection of an event; this incurs
no communication costs. Queries are flooded to all nodes
at a cost of O(n). Responses are sent back to the source of
the query at a cost of O(

√
n) each.

Data-Centric Storage (DCS). Here, after an event is de-
tected the data are stored by name within the sensornet.
The communication cost to store the event is O(

√
n).

Queries are directed to the node that stores events of that
name, which returns a response, both at a cost of O(

√
n).

These three canonical methods have very different cost
structures; we next compare them analytically.

2 In situations where tasks are short-lived, the cost of flooding tasks domi-
nates all other costs, and it does not matter much which of the approaches
below is used.
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3.2. Approximate communication costs

This section uses a simple analytical model to derive approx-
imate formulae for the communication costs for the three
canonical methods; these formulae suggest which method is
best suited for a particular sensornet workload. We verify the
validity of these approximations through simulation in sec-
tion 6.

The cost structure for the canonical methods is described
by several parameters. We consider a sensornet with n nodes
equipped to detect T event types. We let Dtotal denote the
total number of events detected, Q denote the number of event
types for which queries are issued, and Dq denote the number
of events detected for each event queried for. We assume there
is no more than one query for each event type, so there are Q

queries in total.
In comparing costs, we also consider the case where users

only care about a summary of the events rather than a listing
of each one; e.g., one might just want a count of the number of
elephants seen rather than a listing of each elephant sighting.

We compare costs using approximations for both the total
number of packets and the packets arriving at the access point.
The packet count at the access point is a good estimate of the
hotspot usage, since we expect the access point to be the most
heavily used area of the sensornet.

External Storage:

• Total: Dtotal
√

n;

• Hotspot: Dtotal.

Local Storage:

• Total: Qn + Dq
√

n;

• Hotspot: Q + Dq.

Data-Centric Storage:

• Total: Q
√

n + Dtotal
√

n + Dq
√

n (list);

• Total: Q
√

n + Dtotal
√

n + Q
√

n (summary);

• Hotspot: Q + Dq (list) or 2Q (summary).

In the above, (list) indicates a full listing of events is re-
turned (requiring a packet for each event) and (summary) in-
dicates only a summary of events is returned (requiring only
one packet).

These calculations suggest a few straightforward observa-
tions. First, if all other parameters are held fixed, then as
n increases the local storage method incurs the greatest total
packet count. Second, external storage always incurs a lesser
total message count than data-centric storage, but the ratio
1 + (Q + Dq)/Dtotal is unlikely to be great if there are many
events detected (and, if there is at least one event detected of
each type, this ratio is bounded by 3). Third, if Dq � Q

and events are summarized, then data-centric storage has the
least load (of all three methods) on the access path. Fourth,
if events are listed and Dtotal � Dq then data-centric storage
and local storage have significantly lesser access loads than
external storage.

These observations in turn suggest that data-centric stor-
age is preferable in cases where (a) the sensornet is large,
(b) there are many detected events and not all event types
are queried, so that Dtotal � max[Dq,Q]. This performance
advantage increases further when summaries are used. How-
ever, if the number of events is large compared to the system
size, Dtotal > Q

√
n, and event lists (rather than summaries)

are used, then local storage may be preferable.

3.3. Additional dissemination methods

The three canonical methods described in the previous section
certainly do not exhaust the design space; combinations of
them yield hybrid methods specialized for particular needs.
Examples of such combinations include:

Using Data-Centric Storage for location guidance. For
certain applications, one might combine LS and DCS by
storing detailed event information locally and using DCS
to inform a querier of an event’s location so that subse-
quent queries can be directed to the proper local store.

Using Data-Centric Storage for context. In the course of
processing local data, nodes may find it useful to have
some context about global parameters. For instance, data-
centric storage could give nodes access to the number of
other animals sighted when a node is trying to determine
if a migration is underway.

Geographically targeted queries. The canonical methods
are designed for cases where one does not a priori know
the event location. If one already knows the location of the
event through out-of-band techniques, then one can direct
queries to that location using geographic routing methods
(see [28]). This LS variant stores data locally, and queries
are sent (at cost O(

√
n)) to the relevant locations to re-

trieve the desired data. It avoids the cost of flooding in the
canonical LS approach, and the cost of storing each event
in the canonical DCS approach.

4. The DCS problem

We have argued for the utility of a DCS service for sensornets.
Now we will define the data-centric storage problem in more
detail: the storage abstraction DCS provides, the design goals
a robust, scalable DCS system must meet, and our geographic
hashing approach to DCS architecture that meets these design
goals.

4.1. Storage abstraction

Like the many distributed hash table systems before it [7,24,
26,29], DCS provides a (key, value)-based associative mem-
ory. Events are named with keys. Both the storage of an
event and its retrieval are performed using these keys. DCS
is naming-agnostic; any naming scheme that distinguishes
events that users of the sensornet wish to identify distinctly
suffices. The two operations DCS supports are:
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Put(k, v) stores v (the observed data) according to the key k,
the name of the data.

Get(k) retrieves whatever value is stored associated with
key k.

4.2. Design criteria for scalable, robust DCS

The challenge in any design for a DCS system is to meet scal-
ability and robustness criteria despite the system’s fundamen-
tally distributed nature. Sensornets represent a particularly
challenging environment for a distributed storage system:

Node failures may be routine; exhaustion of battery power
and permanent or transient failure in a harsh environment
are problems in any realistic sensornet deployment.

Topology changes will be more frequent than on traditional
wired networks. Node failures, node mobility, and re-
ceived signal strength variations in real radio deployments
each independently cause neighbor relationships among
nodes to change over time.

System scale in nodes may be very great. Sensor nodes may
be deployed extremely densely (consider the limit case of
smart dust [13]), and may be deployed over a very wide
physical region, such that the total number of devices par-
ticipating in the DCS system may be on the order of 106 or
more nodes.

Energy constraints will often be severe; nodes will operate
from battery power.

These challenges suggest several specific, important de-
sign criteria for ensuring scalability and robustness in the dis-
tributed storage system we envision:

Persistence: a (k, v) pair stored in the system must remain
available to queriers, despite sensor node failures and
changes in the sensor network topology.

Consistency: a query for k must be routed correctly to a node
where (k, v) pairs are currently stored; if this node changes
(e.g., to maintain persistence after a node failure), queries
and stored data must choose a new node consistently.

Scaling in database size: as the number of (k, v) pairs stored
in the system increases, whether for the same or different
ks, storage should not concentrate at any one node.

Scaling in node count: as the number of nodes in the sys-
tem increases, the system’s total storage capacity should
increase, and the communication cost of the system should
not grow unduly. Nor should any node become a concen-
tration point of communication.

Topological generality: the system should work well on a
broad range of network topologies.

4.3. GHT: a Geographic Hash Table

The DCS system architecture we describe in this paper to
meet the above-enumerated design criteria is GHT, a Geo-
graphic Hash Table. The core step in GHT is the hashing of
a key k into geographic coordinates. Both a Put() operation
and a Get() operation on the same key k hash k to the same

location. A key–value pair is stored at a node in the vicinity
of the location to which its key hashes. Choosing this node
consistently is central to building a GHT. If we assume a per-
fectly static network topology and a network routing system
that can deliver packets to positions, such a GHT will cause
storage requests and queries for the same k to be routed to the
same node, and will distribute the storage request and query
load for distinct k values evenly across the area covered by a
network.

The service provided by GHT is similar in character to
those offered by other distributed hash table systems [7,24,
26,29]. However, as is the case with those systems, much
of the nuance to the GHT system design arises specifically
to ensure robustness and scalability in the face of the many
sorts of failures possible in a distributed system. GHT uses a
novel perimeter refresh protocol to provide both persistence
and consistency when nodes fail or move. This protocol repli-
cates stored data for key k at nodes around the location to
which k hashes, and ensures that one node is chosen con-
sistently as the home node for that k, so that all storage re-
quests and queries for k can be routed to that node. Yet the
protocol is efficient; it typically uses highly local commu-
nication, especially on networks where nodes are deployed
densely. By hashing keys, GHT spreads storage and commu-
nication load between different keys evenly throughout the
sensornet. When many events with the same key are stored,
GHT avoids creating a hotspot of communication and storage
at their shared home node by employing structured replica-
tion, whereby events that hash to the same home node can be
divided among multiple mirrors.

5. Algorithms

We proceed now to describe the algorithms that comprise
GHT. GHT is built atop GPSR [14–16], a geographic rout-
ing system for multi-hop wireless networks. After briefly re-
viewing the features of GPSR’s design relevant to GHT, we
identify a previously unexploited characteristic of GPSR that
allows all packets destined for an arbitrary location (unoccu-
pied by a node) to be routed consistently to the same node
in the vicinity of that location. GHT leverages this charac-
teristic to route storage requests and queries for the same key
to the same node, despite the ignorance of the hash function
that maps keys into locations of the placement of nodes in the
network. We then describe algorithms and implementations
of the perimeter refresh protocol and structured replication,
which allow GHT to achieve the DCS design criteria for scal-
ability and robustness discussed in the previous section.

5.1. GPSR

Under GPSR, packets are routed geographically. All packets
are marked with the positions of their destinations. All nodes
know their own positions, and the positions of the nodes a
single hop away from them. Using only this local knowl-
edge, GPSR can route a packet to any connected destination.



DATA-CENTRIC STORAGE IN SENSORNETS WITH GHT 433

Figure 1. Greedy forwarding example: x forwards to y, its neighbor closest
to D.

Figure 2. Void example: x has no neighbor closer to D.

There are two distinct algorithms GPSR uses for routing: a
greedy forwarding algorithm [8] that moves packets progres-
sively closer to the destination at each hop, and a perimeter
forwarding algorithm that forwards packets where greedy for-
warding is impossible.

The greedy forwarding rule is simple: a node x forwards
a packet to its neighbor y that is closest to the destination D

marked in the packet, so long as that neighbor is closer to
D than x. Figure 1 shows an example of greedy forwarding;
the dotted line represents the radio range of node x, and the
dashed line the circle centered at D with radius xD.

Greedy forwarding fails when no neighbor is closer than x

to the destination. Figure 2 shows an example topology for
greedy forwarding failure. Here again, the dotted line shows
x’s radio range and the dashed line the circle centered at D

of radius xD. The solid lines show the links that exist, as
dictated by radio range. Note that two paths to D exist, but
x cannot forward greedily on either of them because both in-
volve temporarily moving farther away than x from the des-
tination.

GPSR recovers from greedy forwarding failure using
perimeter mode, which amounts to forwarding packets us-
ing the right-hand rule. Figure 3 demonstrates the right-hand
rule: upon arriving on an edge at node x, the packet is for-
warded on the next edge counterclockwise about x from the
ingress edge. This process causes packets to tour enclosed
faces as shown; intuitively, it is useful for circumnavigating
regions where greedy forwarding fails, as in figure 2. GPSR
routes perimeter mode packets on a planar subgraph of the
network connectivity graph, in which there are no crossing
edges. A perimeter is a face of this planar graph. Bose et
al. [3] also present an algorithm that uses planar network sub-
graphs to recover from greedy forwarding failure.

GPSR originates packets in greedy mode, but changes
them to perimeter mode when no neighbor of the forwarding
node is closer to the packet’s destination than the forwarding
node itself. GPSR returns a perimeter-mode packet to greedy

Figure 3. Right-hand rule example: packets travel clockwise around the en-
closed region.

mode when the packet reaches a node closer to the destination
than that at which the packet entered perimeter mode (stored
in the packet). As will be shown in the next section, our GHT
algorithms use perimeter mode in another, novel, way to route
packets that refer to the same storage key to the same node.

5.2. The home node and home perimeter

GPSR was designed for a network model where a sender
wishes to transmit packets to a destination node with a known
non-geographic address; a sender must map the destination’s
identifier to its current location using a location database,
such as GLS [18]. Under GHT, however, the originator of a
Put() or Get() packet does not know the identifier of the node
that is the eventual destination of the packet. As sketched in
section 4.3, the originator of a Put() or Get() for a key k

hashes the name k into geographic coordinates that are the
destination of the packet for that operation. The hash func-
tion is ignorant of the placement of individual nodes in the
topology; it merely spreads the different key names evenly
across the geographic region where the network is deployed.
Thus, it is quite likely that there is no node at the precise coor-
dinates the hash function produces. We define the home node
for a GHT packet to be the node geographically nearest the
destination coordinates of the packet. The home node serves
as the rendezvous point for Put() and Get() operations on the
same key.

Because a GHT packet is not addressed to a specific node,
but rather only to a specific location, it is treated by GPSR
as a packet bound for a disconnected destination: no receiver
ever sees the packet addressed to its own identifier. We ob-
serve that GPSR will route such a packet to the appropriate
home node. GHT uses GPSR’s perimeter mode to find these
home nodes. Under GHT, the packet enters perimeter mode at
the home node, as no neighbor of the home node can be closer
to the destination. The packet then traverses the entire perime-
ter that encloses the destination, before returning to the home
node [15]. We name this perimeter the home perimeter. Un-
der GHT, the home node knows to consume the packet when
it returns after this tour of the home perimeter.

With only the home node binding mechanism we have de-
scribed thus far, GHT will work on static network topologies.
Note that when the network topology changes after node fail-
ures, deployment of new nodes, or mobility, the identity of
the home node and membership of the home perimeter may
change. But for any snapshot of the network topology, there
exist a home node and enclosing home perimeter for every
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location in the network. To offer persistence and consistency
under the topological dynamics that sensornets are sure to ex-
hibit, GHT needs a protocol to replicate key–value pairs, and
re-associate them with the appropriate home node when the
topology changes.

5.3. Perimeter refresh protocol

GHT uses the perimeter refresh protocol (PRP) to accomplish
replication of key–value pairs and their consistent placement
at the appropriate home nodes when the network topology
changes. Recall that GHT routes all packets on a tour of
the home perimeter that encloses a destination location. PRP
stores a copy of a key–value pair at each node on the home
perimeter.

PRP distinguishes between the home node and other nodes
on the home perimeter, the replica nodes. A node becomes a
home node for a particular key when the Put() packet arrives
after completing its tour of the home perimeter. (This con-
dition is detectable because GPSR writes the identity of the
first edge a packet takes on a perimeter into the packet; the
perimeter has been toured precisely when the packet arrives
in perimeter mode and would be forwarded next on the same
directed edge written in the packet as the first perimeter edge
taken.)

PRP generates refresh packets periodically using a simple
timer scheme. Every Th seconds, the home node for a key
generates a refresh packet addressed to the hashed location
of that key. The refresh contains the data stored for that key,
and is routed exactly as are Get() and Put() packets in GHT.
Thus, the refresh packet will take a tour of the current home
perimeter for that key, regardless of changes in the network
topology since that key’s insertion.

When a refresh packet arrives at a node, there are two pos-
sibilities: either the receiver is closer to the destination than
the originator, in which case the receiver consumes the re-
fresh packet and initiates its own; or the receiver is not, in
which case it forwards the refresh packet in perimeter mode.
In both cases, the receiver appends any additional key–value
pairs it has stored for that key to the refresh packet. When a
refresh packet returns to its originator, and that node was not
previously the home node for that key, it consumes the refresh
packet, and transitions to being the home node for that key.
That is, the new home node sets its own refresh timer, and
subsequently originates refreshes for that key. This mecha-
nism provides the design goal of consistency: it ensures that
the node closest to a key’s hash location will become the home
node for that key and store that key’s data after topological
changes.

When a replica node receives a refresh packet it did not
originate, it caches the data in the refresh, and sets a takeover
timer for that key, Tt. This timer is reset every time a re-
fresh for that key from another node arrives. Should the timer
expire, the replica node initiates a refresh for that key and
its data, addressed to the key’s hashed location. The replica
nodes and takeover timer provide persistence when nodes fail.
When the home node for a key fails, its replica nodes will note

the absence of refreshes for that key from its home node, and
step forward to initiate refreshes. A replica node may or may
not itself be the new home node; the GHT routing procedure
causes the refresh to reach the new home node.

All nodes that hold data for a key, both home nodes and
replica nodes, expire keys they cache when the death timer,
Td, expires. The death timer is reset every time a node re-
ceives a refresh message for that key, whether from itself or
from another node. Clearly, Td > Th and Tt > Th. That
is, a home node expires a key–value pair after failing to re-
ceive back multiple refreshes it originates, and a replica node
waits for multiple home node refresh intervals to elapse be-
fore stepping forward to send a refresh for it. These choices
of timer values make the PRP robust against episodic loss of
its refresh packets. In the GHT system we evaluate herein,
Td = 3Th, and Tt = 2Th.

Figures 4–6 show an example of the operation of the PRP.
Here, key k hashes to location L. After a Put() of (k, v), node
a becomes the home node, and sends a refresh to L containing
(k, v). Figure 4 shows the home perimeter enclosing L after
this refresh has returned to a. Suppose that node a fails. After
time Tt elapses, during which node d receives no refreshes
from node a, node d sends a refresh to L containing (k, v), as
shown in figure 5. This refresh is delivered to node f , which
becomes the new home node for (k, v). Figure 6 shows the
network after f has sent a refresh that has returned to it, and
the replicas it has recruited along the new home perimeter
about L.

It is important to note that the PRP typically generates very
local network traffic. On dense networks, perimeters are quite
short (most perimeters in a dense network are three hops in
length). When a home node moves, the refreshes it generates
will not have far to travel before reaching the home perimeter,
under reasonable assumptions of mobility rate and radio range

Figure 4. Key stored at location L, home node a, replicas d and e on the
home perimeter.

Figure 5. Time Tt after node a fails, replica d initiates a refresh for L.
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Figure 6. Node f becomes the new home node, and recruits replicas b, c, d,
and e.

(that is, that a node does not move many radio ranges in a
period shorter than Th).

The PRP also includes a join optimization, which improves
performance on dynamic topologies. When a node A senses
a new neighbor B, A sends B all those event entries from
its local database for which B is closer to the event destina-
tion than A, and for which A is the closest of its neighbors to
that event destination. This optimization trades off increased
communication for more rapid re-establishment of a consis-
tent home node when nodes fail or move.

5.4. Structured replication

Thus far, GHT stores all events with the same key in the same
place. If too many events with the same key are detected,
that key’s home node could become a hotspot, both for com-
munication and storage. GHT employs structured replication
(SR) to address this scaling problem. In SR we augment event
names with a hierarchy depth and use a hierarchical decom-
position of the key space (similar to that used in GLS [18]).
Let us name the single location GHT hashes a key name into
the root of that key. Now, for a given root r and a given hi-
erarchy depth d , one can compute 4d − 1 mirror images of r;
d = 0 refers to the original GHT scheme without mirrors.
For example, figure 7 shows a d = 2 decomposition, and the
mirror images of the root point (3, 3) at every level.

A node that detects an event now stores the event at the
mirror closest to its location, which is easily computable.
Thus, SR reduces the storage cost at one node for one key
with n detected events from O(

√
n) to O(

√
n/2d). GHT

must now route queries to all mirror nodes, however. It
does so recursively; first it routes a query to the root node,
then from the root node to the three level-1 mirror points.
Each of these in turn forwards the query to the three level-2
mirror points associated with them. This recursive process
continues until all mirrors are reached. Responses traverse
the same path as queries but in the reverse direction – up
the hierarchy toward the root. Thus, a single query in-
curs a routing cost of O(2d

√
n) as compared with O(

√
n)

for GHT without mirrors. For an event i with Di detected
instances and Qi queries the total message cost of stor-
ing and retrieving this event information is approximately
O(Qi2d

√
n + Di(

√
n/2d)). Thus, SR reduces the cost of

storage but increases the cost of queries. SR offers an inter-
mediate solution between the local storage canonical method,

Figure 7. Example of structured replication with a 2-level decomposition.

where storage is free but queries expensive, and GHT without
SR, where both are of moderate cost.3 We expect that SR will
be useful for frequently detected events. Note that the depth
of the hierarchy (d) can, and indeed should, be different for
different event types.4

6. Simulation results

In this section, we first evaluate the performance of our pro-
posed mechanism (section 6.1) in ns-2 simulations of rela-
tively small systems of between 50 and 200 nodes. These
simulations include detailed models of a wireless network’s
MAC and physical layer. After verifying the correct func-
tioning of GHT and measuring its performance on static net-
works, we then consider the system’s behavior in simulations
with both failing nodes and mobile nodes, to test the system
in the harsh sensornet environment.

After confirming the viability of our design, we then (sec-
tion 6.2) verify the scaling arguments from section 3.2 with
simulations of much larger-scale systems of up to 105 nodes
that, in the interest of computational tractability, do not model
radio details, node failures, or mobility.

6.1. Small-scale networks, wireless details

We implemented GHT in ns-2 [20], which supports detailed
simulation of mobile, wireless networks using IEEE 802.11
radios. In these simulations, we seek to demonstrate GHT’s
robustness on real radios and dynamic topologies, where node
failures and mobility cause changes in nodes’ neighbors, and
changes in the node closest to a key’s hashed coordinates.

By modeling the full 802.11 MAC layer and physical
layer, ns-2 allows evaluation of a system’s performance on

3 Choosing d such that 2d = √
n costs the same as local storage.

4 One might, for example, encode the hierarchy level in the event name so
that d is globally known for each event type.
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Table 1
GHT simulation parameters in ns-2 simulations.

Node density 1 node/256 m2

Radio range 40 m
GPSR beacon interval 1 s
GPSR beacon expiration 4.5 s
Planarization GG
Mobility rate 0, 0.1, 1 m/s
Number of nodes 50, 100, 150, 200
Simulation time 300 s
Query generation rate 2 qps
Query start time 42 s
Refresh interval 10 s
Event types 20
Events detected 10/type

a bandwidth-limited, contention-prone wireless medium. Our
simulations use a modified 802.11 radio with a 40-m radio
range, rather than the 250-m radio range of IEEE-compliant
hardware; this choice mirrors that made in the evaluation of
directed diffusion in [12], in the interest of using parameters
closer to those found in sensor radios. Our radio model is
realistic in its use of the 802.11 MAC protocol for floor ac-
quisition, and in its modeling of capture; these aspects reflect
the contention behavior of today’s commodity off-the-shelf
radios. However, we do not consider environmental noise or
propagation obstacles, and leave examination of their impor-
tant effects to a future implementation study.

In all our ns-2 simulations, there is a single querying node
placed in the upper-left corner of the simulated region. This
node represents the access point where queries enter the sen-
sor network. At the start of a simulation, all events are in-
serted into the DHT once, by sensors chosen uniformly at ran-
dom; these are the sensors that measured the inserted events.
Queries are acknowledged and retried until they succeed. At
time 42 s, to allow the DHT to stabilize, the querying node
begins generating queries at a rate of 2 qps, including both
new and retransmitted queries.

Table 1 shows the parameters we used in our ns-2 simu-
lations. We present results that are averaged over multiple
simulations; in all cases, the variances of these runs are rea-
sonable. Note that node density remains constant in our sim-
ulations; as we increase the number of nodes, we scale the
region size such that node density does not change.5

In measuring GHT’s performance, we are concerned with
the availability of the data stored to queriers, and the load
placed on nodes participating in GHT, both in communication
and storage of events. To measure availability, we propose the
metric of success rate, measured after all events have been
inserted into GHT: for a workload of queries, we compute the
mean over all queries of the fraction of events returned in each
response, divided by the total number of events known to have
been stored in the network for that key. Because insertions
and queries are both acknowledged, this measurement focuses
mainly on the ability of GHT to hold data written to it.

5 We do not investigate varying node densities in this work. Karp’s thesis
demonstrates the efficacy of perimeter-mode forwarding on both dense and
sparse networks [16].

Table 2
Performance of GHT on static networks. Results are the means of three

simulations.

Number Success Max Avg. Total Refresh
of nodes rate (%) storage storage msgs msgs

50 100% 47.2 40.7 10.2 4.4
100 100% 11.9 10.0 2.6 1.1
150 99.8% 7.2 5.9 1.6 0.72
200 100% 5.8 4.6 1.2 0.53

To measure the storage load on nodes, we examine the
maximum number of events stored at any node, to capture the
worst-case required storage; and the mean number of events
stored across all nodes in the network, to capture typical stor-
age requirements. We measure the communication load on
nodes by counting the mean number of messages forwarded
by a node in a refresh interval, and the mean number of re-
fresh messages forwarded by a node in a refresh interval;
these message counts are averaged across all nodes and re-
fresh intervals in a simulation.

Note that we do not measure the routing protocol load
placed on the network by GPSR in our simulations; we are
evaluating GHT, not the underlying routing system, as is
the practice in the evaluation of DHT systems [7,24,26,29].
GPSR generates a constant volume of routing protocol traffic
(beacons) per node, regardless of system size in nodes [16];
this load is of lower order than that generated by GHT, which
sends packets on paths of length O(

√
n). Moreover, there is

no location database like GLS [18] used with GHT, as GHT
sends no traffic to node IDs.

6.1.1. Stable and static nodes
As one would expect, on static networks, where the topology
does not change, GHT offers very nearly perfect availability
of stored events. At all network scales, essentially all queries
are answered with all events stored in the network. As the
system scales in increasing number of nodes, the unchanging
number of events are dispersed among a wider population of
nodes, and thus both the mean and maximum state require-
ments per node decrease. Similarly, dispersion reduces the
count of the mean number of forwarded refresh messages;
fewer nodes are on perimeters about a point to which a (key,
value) pair hashes, and so a smaller fraction of nodes receives
refresh messages for forwarding.

6.1.2. Static but failing nodes
We now demonstrate that GHT is robust in the presence of
node failures, despite the topology changes that result. All
the results we present in this section are for networks of 100
nodes.

Table 3 shows the performance of GHT under a failure
model where a configured fraction of nodes selected uni-
formly at random alternate between failing and restarting.
When a node fails, it loses the contents of its database; it only
reacquires its database contents upon returning to operation
and receiving refreshes from neighbors. In these results, a
node selected as unreliable remains up for a period selected
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Table 3
Performance of GHT. Stationary nodes, varied fraction of nodes alternate

between up and down states. Results are the means of eight simulations.

f Success Max Avg. Total Refresh
rate (%) storage storage msgs msgs

0 83.3% 25.4 8.8 3.2 1.6
0.2 94.2% 24.9 10.3 3.4 1.8
0.4 97.3% 22.6 10.7 3.4 1.8
0.6 98.6% 17.4 10.3 3.1 1.6
0.8 99.7% 14.0 10.1 3.1 1.5
1.0 100% 16.2 14.5 3.9 1.6

Table 4
Performance of GHT. Stationary nodes, all alternate between up and down

states of varied lengths. Results are the means of four simulations.

Up/down Success Max Avg. Total Refresh
time (s) rate (%) storage storage msgs msgs

60/30 75.1% 18.6 6.0 2.9 0.93
120/60 84.7% 29.6 9.8 3.5 1.8
240/120 94.7% 45.9 15.2 4.7 3.1
480/240 95.7% 53.2 17.5 5.3 3.7

uniformly at random in [0, 120] s, then goes down for a pe-
riod uniformly chosen in [0, 60]. We denote by f the fraction
of nodes that remain up for the entire simulation.

As one would expect, the success rate decreases as f does.
But the decrease is slight, until all nodes cycle between avail-
able and unavailable, at f = 0. The deterioration in the suc-
cess rate is caused by events that were not saved by the refresh
mechanism when the node holding them failed. Analysis of
the simulation logs reveals that the vast majority of queries
and responses reach their destination successfully in a sin-
gle transmission. Note that the maximum number of events
stored at a node decreases as more nodes become reliable,
while the mean number of events stored across all nodes in-
creases; these trends reflect the increased uniformity of the
distribution of events across nodes, as the number of simulta-
neously available nodes increases.

Table 4 shows the performance of GHT where f = 0 (that
is, where all nodes fail and restart repeatedly). Here, we vary
the periods that nodes remain up and down. For an up/down
time value of x/y, a node remains up for a period chosen uni-
formly in [0, x], and remains down for a period chosen uni-
formly in [0, y]. Simulation times for this group of simula-
tions only are not 300 s; we scale the simulation time linearly
with the up/down time; each simulation lasts five times the
length of a down time interval.

When nodes transition between up and down more fre-
quently, GHT’s ability to hold events is stressed more heavily,
as the node closest to an event’s destination position changes
more frequently. The success rate decreases very gradually
at first, but progressively more noticeably as the up/down
periods shorten. The maximum and average storage figures
in these cases reflect that events disappear from GHT when
the join optimization and refreshes fail to keep events alive
in GHT.

Table 5
Performance of GHT on mobile networks. 0.1 and 1 m/s mobility. Results
are the means of four runs for the 0.1 m/s case, and twelve runs for the 1 m/s

case.

Motion Success Max Avg. Total Refresh
rate (m/s) rate (%) storage storage msgs msgs

0.1 96.8% 18.6 10.4 19.2 1.45
1 96.3% 52.2 22.5 17.4 4.10

6.1.3. Stable but mobile nodes
Table 5 shows how GHT performs on a mobile sensor net-
work of 100 nodes. In these simulations, nodes move using
the random waypoint model [20]; that is, in discrete steps,
each to a point chosen uniformly at random, at a rate chosen
uniformly at random in (0,M) m/s, where M is the maximum
motion rate. They pause 60 s between motion steps. In these
simulations, we use a timer to cause GPSR to replanarize once
every two seconds, which costs no communication; only com-
putation within a sensor node.

Under node mobility, GHT continues to offer robust per-
sistence for stored events, as demonstrated by the 96+% suc-
cess rates in table 5. The cost of this robustness is in com-
munication – note the greater number of messages forwarded
by GHT in the mobile scenarios, vs. in the non-mobile ones.
Under mobility, GPSR’s perimeters change, and it’s possible
for a packet walking a perimeter that changes underfoot to
loop, until the packet exhausts its TTL in hops [16]. We limit
the TTL on refresh messages to ten hops in the mobile sim-
ulations; they need not all walk the intended perimeter for
refreshes to function properly, and the cost in congestion to
the network of forwarding them on far longer tours is signif-
icant. In a more general implementation of GHT, a node can
dynamically determine the appropriate TTL to use, by peri-
odically sending a refresh with a small TTL, and expanding
the TTL until the refresh returns successfully. In these results,
we elide this implementation step, and fix the TTL at ten hops
for refreshes. This value is longer than the typical perimeter
for the network density we simulate.

6.1.4. Discussion
As expected, GHT works well in sensornets with stable and
static nodes. But failures (and movement, in some cases) are
inevitable, and thus we are interested in the robustness of our
design against these factors. In our various robustness tests
we subject our design to very harsh environments. Our most
generous run with failing nodes uses mean cycle-times on the
order of minutes, far worse than we hope for most projected
sensornet systems. And yet, as long as the fraction of fail-
ing nodes is not overly high, or the cycle times are tens of
minutes, the system performs well. Similarly, the extent and
rate of movement in the mobile node case is significant; nodes
rest only a minute between movements, and the movements
are large excursions (half the size of the sensornet, on aver-
age), not slight adjustments. Here, too, availability remains
high.

Our GHT algorithm replicates a key–value pair at nodes in
the immediate vicinity of the home node. Localized replica-
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tion of this form is of little use if all the nodes in an area fail at
the same time (e.g., a fire destroys all nodes in a region). Re-
silience against these clustered failures could be provided by
storing each event multiple times at dispersed locations (using
multiple hash functions).

6.2. Comparative study

The detailed ns-2 simulations verify the correctness and ro-
bustness of the GHT system in a realistic wireless environ-
ment, including MAC-layer behavior, packet loss, node dy-
namics, &c. However, they were limited to system sizes on
the order of 100 nodes. We now use less detailed simulations
to compare the three canonical mechanisms – external stor-
age (ES), local storage (LS), and data-centric storage (DCS)
– in much larger systems. We built a special-purpose sim-
ulator that assumes that nodes are stable and stationary and
that packet delivery to neighboring nodes is instantaneous and
error-free. This simulator thus faithfully represents the packet
generation and forwarding behavior of the various canoni-
cal mechanisms. We use this simulator to examine the num-
ber and pattern of packet transmissions (as a measure of en-
ergy consumption) as the size and nature of the sensornet and
workload vary, to illuminate the relative performance of the
canonical data dissemination algorithms. We do not count
PRP packets in these simulations. The length of a perimeter
is purely determined by the density of the network, and we
only vary system scale in nodes, not density, in the large-scale
simulations.

We use two metrics to evaluate the performance: the to-
tal number of packets generated, and the hotspot usage, the
maximum number of packets transmitted by any single node.
We do not measure latency, as that is approximately the same
across the algorithms. Moreover, we assume that all other
factors (such as the fidelity of the data) are held fixed across
the various algorithms.

The relevant system parameters are:

• n, the number of nodes in the system;

• T , the number of event types;

• Q, the number of event types queried for;

• Di , the number of detected events of event type i.

In this section we set T = 100 and Di = 100 for all i, and
vary n and Q. We present three tests. In test #1 we hold n

fixed (n = 10000) and vary Q. In test #2 we set Q = 50 and
vary n; for reasons we gave in section 6.1, we hold the system
density fixed and increase the sensornet size as we increase n.
Test #3 uses parameters as in test #1, but employs the further
optimization of in-network aggregation. All these results are
averaged across ten different topologies, and ten runs on each
topology. In each of these tests, we show the results ES, LS,
and the following three versions of DCS:

Normal DCS (N-DCS). A query returns a separate message
for each detected event.

Summarized DCS (S-DCS). A query returns a single mes-
sage regardless of the number of detected events.

Figure 8. Total number of messages generated as Q, the number of event
types queried for, is increased. The number of nodes (n) is held fixed at

10,000 nodes.

Figure 9. The maximum number of messages sent by any single node as Q,
the number of event types queried for, is increased. The number of nodes (n)

is held fixed at 10,000 nodes.

Structured Replication DCS (SR-DCS). We assume an op-
timal level of SR (as described in section 5.4) to provide a
lower bound. We assume summarization in this case.6

6.2.1. Test #1: varying Q

The results from varying Q are shown in figures 8 and 9. For
low Q, LS has low total and hotspot usage, but both quantities
increase linearly in Q, making LS a poor choice for systems
with many queries. External storage has a very high hotspot
load and a medium level of total usage, both independent
of Q. Both variants of DCS that use summarization have low
total and hotspot usage, but note that structured replication
in SR-DCS reduces the total usage significantly. The hotspot
and total usage of DCS without summarization (N-DCS) in-
creases linearly in Q, but the slope of the total usage is much
lower than that of LS (but has a higher offset). These results
suggest that for low Q all methods but ES perform reason-

6 We omit structured replication without summarization in the interest of
brevity.
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Figure 10. Total number of messages generated as n, the number of nodes, is
increased. The number of event types queried for (Q) is held fixed at 50.

Figure 11. The maximum number of messages sent by any single node as n,
the number of nodes, is increased. The number of event types queried for

(Q) is held fixed at 50.

ably well, with LS and SR-DCS being the best. For high Q,
SR-DCS is the clearly superior choice, followed by S-DCS.
If summarization is not allowed, then the choice is between
the lower hotspot usage of N-DCS and the lower total usage
of ES.

6.2.2. Test #2: varying n

The results from varying n appear in figures 10 and 11. All of
the methods have reasonably similar behavior for total usage,
but LS starts off (at low n) with the lowest value, and ends up
(at high n) with the highest value. S-DCS and SR-DCS have
the lowest hotspot usage by far, but among methods without
summarization DCS and LS have similar performance. ES
has the worst hotspot load. Thus, at all but the lowest values
of n (lower than around n = 1000) the DCS variants are the
superior choices. Recall that these simulations use Q = 50,
and so these conclusions are similar to those in test #1 above.

6.2.3. Test #3: adding in-network aggregation
We conclude our measurements by examining the effect of in-
network aggregation on the scaling of the canonical data dis-
semination methods. In-network aggregation refers to the op-

Figure 12. Total number of messages generated as Q, the number of event
types queried for, is increased. All methods use perfect in-network aggrega-

tion. The number of nodes (n) is held fixed at 10,000 nodes.

timization employed by directed diffusion (a LS data dissem-
ination method) whereby nodes merge into a single packet all
identically named events they receive in an interval for for-
warding to a sink (either the access “base station” node or
a DCS storage node).7 In all results presented thus far, no
in-network aggregation was used. Figure 12 compares the
total number of messages sent by the canonical methods in
the presence of perfect in-network aggregation, as Q varies.
Events flow up a tree rooted at some node. Perfect aggre-
gation occurs when after a single query, each internal node
of the tree waits long enough to coalesce all events that pass
through it into a single packet; it is the best-case reduction in
packet transmissions for in-network aggregation. In the case
of DCS-SR, our simulator aggregates only en route to the stor-
age nodes (GHT home nodes), and not between these nodes
and the access node. This is a limitation of our simulator, not
of DCS-SR. We observe that all mechanisms perform sim-
ilarly, with the exception of LS, which floods progressively
more non-aggregatable queries as Q increases.

These performance results are remarkably consistent with
the approximate formulae presented in section 3.2; the only
significant deviations arise in cases where the hotspot us-
age does not occur at the access point. These simulations,
while idealizing wireless link behavior, were true packet-
level simulations of these algorithms in systems as large as
n = 100, 000. The formulae of section 3.2 suggest that DCS
is particularly appropriate as system size grows and the num-
ber of events is far greater than the number returned in queries
(either because not all event types are queried for, or because
events are summarized in responses).

7. Related work

Directed diffusion [11,12] is an example of data-centric rout-
ing – routing based on the name of the data rather than on
the identity of the destination node. Unlike our proposed

7 We assume here for simplicity that all such aggregated events fit into a
single packet.
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DCS mechanism, event information in directed diffusion is
stored locally at the detecting node; as such, directed diffu-
sion is closer to the local storage (LS) model. Directed dif-
fusion also provides additional mechanisms for the reinforce-
ment of high-quality data delivery paths and for in-network
aggregation (i.e., as the data is being routed to the requester,
it may be aggregated by intermediate nodes). Directed diffu-
sion doesn’t require geographic information; it uses flooding.

The Geographic Location System (GLS) used in GRID [18]
can be augmented to provide a DCS-like service. Geographic
routing delivers packets to locations, not addresses; thus, a
packet sender must be able to map a destination’s identifier
to its geographic location. GLS is a scalable location service
that performs this mapping. The location database is distrib-
uted across the nodes; each node acting as the location server
for a small number of other nodes. The crux of the problem is
that nodes must be able to find these location server without
knowing their geographic location. GLS achieves this with a
novel algorithm that uses a predefined hierarchical decompo-
sition of the geographic space into nested grids and a prede-
fined ordering of node identifiers. Thus, what GLS enables is
routing to node identifiers. Moreover, an attempt to route to
an identifier Y for which no node exists terminates at the node
with identifier closest to Y as per the predefined ordering of
identifiers. Thus, we could use GLS to provide the DHT inter-
face by hashing event names to the node address space. The
main drawback with the above approach is that supporting the
DHT interface requires the location database to be built and
maintained. While GLS provides this location database itself
as a service, GHT avoids this level of indirection and instead
maps event names directly to locations.

The SCOUT [17] location tracking system might also be
used similarly. While SCOUT uses hierarchical addressing
and routing based on landmark routing, GHT uses GPSR, a
flat routing algorithm wherein nodes are addressed with geo-
graphic coordinates.

Although GHT provides functionality equivalent to that of
Distributed Hash Tables (DHTs) like Chord and CAN [7,24,
26,29], it would be inappropriate to adopt the DHT routing
algorithms for use on sensornets. These algorithms typically
interconnect nodes in a way determined by their logical iden-
tifiers in the DHT system, which are largely independent of
their proximity in the physical network topology. On the In-
ternet the IP routing system offers connectivity between nodes
that are not topologically close. But in the energy-constrained
sensornet environment, maintaining routing among all pairs
of nodes is infeasibly expensive. And because neighbors in
the DHT logical identifier space may be topologically far
apart, each logical hop within a DHT may cost energy for
many packet transmissions. GPSR allows us to achieve the
required hash table functionality while working with only the
true physical connectivity between nodes.

8. Conclusion and future work

This paper presented the design and evaluation of GHT, a
DCS system for sensornets built on geographic routing. We

have predicted analytically and verified in simulations of net-
works of up to 100,000 nodes the cases where DCS offers re-
duced total network load and hotspot network usage as com-
pared with external storage and local storage. Our analysis
reveals that these benefits occur on sensornets comprised of
large node populations, and where many events are detected,
but not all event types are queried. GHT leverages the GPSR
geographic routing system to offer an efficient DCS service
that maintains persistence of data when nodes fail or move,
while scalably spreading the load of (key, value) pairs evenly
throughout the sensornet.

Several avenues beg further investigation. Foremost
among these is the effect of varying node density. Under
GHT, keys are uniformly hashed over the geographic space.
Hence, as nodes are distributed increasingly non-uniformly,
we expect the storage and forwarding load across nodes to
be correspondingly skewed. We are investigating the conse-
quent performance implications and developing mechanisms
that can adapt to such non-uniformity.

To avoid hashing keys to points outside the sensor-
net, GHT requires approximate knowledge of a sensornet’s
boundaries.8 Our work herein assumes foreknowledge of
these boundaries (recorded, e.g., when the network was first
deployed). An open research problem is to devise scalable
distributed algorithms to map these (possibly changing!) ge-
ographic boundaries.

Finally, GHT fundamentally requires that a node know its
own geographic position. While this assumption seems rea-
sonable for most sensornets, an open question is how (if at all)
one might achieve DCS using only approximate geographic
information, or better still, without requiring any position in-
formation at all. This question is the subject of our continuing
research.
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