
KleinPAT: Optimal Mode Conflation For Time-Domain Precomputation
Of Acoustic Transfer

JUI-HSIEN WANG, Stanford University

DOUG L. JAMES, Stanford University

We propose a new modal sound synthesis method that rapidly estimates

all acoustic transfer ields of a linear modal vibration model, and greatly

reduces preprocessing costs. Instead of performing a separate frequency-

domain Helmholtz radiation analysis for each mode, our method partitions

vibration modes into chords using optimal mode conlation, then performs

a single time-domain wave simulation for each chord. We then perform

transfer deconlation on each chord’s time-domain radiation ield using a

specialized QR solver, and thereby extract the frequency-domain transfer

functions of each mode. The precomputed transfer functions are represented

for fast far-ield evaluation, e.g., using multipole expansions. In this paper,

we propose to use a single scalar-valued Far-ield Acoustic Transfer (FFAT)

cube map. We describe a GPU-accelerated vector wavesolver that achieves

high-throughput acoustic transfer computation at accuracy suicient for

sound synthesis. Our implementation, KleinPAT, can achieve hundred- to

thousand-fold speedups compared to existing Helmholtz-based transfer

solvers, thereby enabling large-scale generation of modal sound models for

audio-visual applications.

CCS Concepts: · Computing methodologies → Modeling and simulation;

Physical simulation.

Additional Key Words and Phrases: Computer animation, sound synthesis,

GPU, modal models.

ACM Reference Format:

Jui-Hsien Wang and Doug L. James. 2019. KleinPAT: Optimal Mode Conla-

tion For Time-Domain Precomputation Of Acoustic Transfer. ACM Trans.

Graph. 38, 4, Article 122 (July 2019), 12 pages. https://doi.org/10.1145/3306346.

3322976

PROLOGUE

Fritz Heinrich Klein created the irst known all-interval twelve-tone

row, the Mutterakkord (Mother chord), for his chamber-orchestra

composition Die Maschine in 1921. Mother chord (see

inset igure) is arranged so that it contains one instance

of each interval within the octave [Wikipedia 2019]. Our

KleinPAT algorithm optimally arranges diferent modal

tones of a vibrating 3D object into chords, which are then

played together by a time-domain vector wavesolver in

order to eiciently estimate all acoustic transfer ields.

All together now...

Authors’ addresses: Jui-Hsien Wang, Stanford University, jui-hsien.wang@stanford.
edu; Doug L. James, Stanford University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speciic permission and/or a
fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.
0730-0301/2019/7-ART122 $15.00
https://doi.org/10.1145/3306346.3322976

PRECOMPUTATION RUNTIME

M
O

D
E

C
O

N
F

L
A

T
IO

N

T
R

A
N

S
F

E
R

D
E

C
O

N
F

L
A

T
IO

N

VIBRATION

MODES + FREQS

TIME-DOMAIN

GPU WAVESOLVE

NEAR-FIELD

PRESSURE

ACOUSTIC

 TRANSFER MAPS

E
X

P
A

N
S

IO
N

&
 C

O
M

P
R

E
S

S
IO

N

Fig. 1. KleinPATOverview:Ourmethod can evaluate acoustic transfer for

292 modes of this plastic bunny using only 6 time-domain wave simulations

constructed by optimally conflating modes into 6 chords. The resulting

sounds fields are deconflated to estimate the 292 transfer fields, then ap-

proximated with far-field acoustic transfer (FFAT) cube maps for real-time

evaluation. This precomputed acoustic transfer (PAT) preprocess is over

2000x faster than traditional BEM-based approaches for the bunny.

1 INTRODUCTION

Physics-based modal sound synthesis is an efective and popular

method for synthesizing plausible rigid-body contact sounds in com-

puter animation and interactive virtual environments. Modal sound

models use linear vibration modes to efectively characterize the sur-

face vibrations of struck objects. The sound amplitude of each mode

is described by its acoustic transfer function, whose spatial structure

accounts for perceptually important wave efects like difraction

and radiation eiciency.

Unfortunately obtaining the acoustic transfer functions is a com-

putational drag, since it involves solving the frequency-domain

wave equation (Helmholtz equation) once for each vibration modeÐ

there can be hundreds of audible modes even for simple objects.

Precomputed Acoustic Transfer (PAT) methods were introduced to

accelerate the otherwise costly runtime evaluation of transfer by

precomputing each mode’s exterior radiation ield, and representing

it in a form optimized for real-time evaluation. However the pre-

computation of acoustic transfer is still a computational bottleneck,

even when using modern Helmholtz BEM solvers; hours to days

of transfer precomputation can be required on large computing

clusters, for objects of even small to moderate size, with higher

frequency modes being more expensive. Currently, the high cost of

ACM Trans. Graph., Vol. 38, No. 4, Article 122. Publication date: July 2019.

122:2 • J.-H. Wang et al.

transfer precomputation makes high-quality modal sound synthesis

impractical for many users and applications.

In this paper, we show how to accelerate frequency-domain trans-

fer precomputation by orders of magnitude using a novel time-

domain algorithm (see Figure 1) well-suited for GPU acceleration.

We observe that it is possible to optimally pack the vibrational modes

into several partitions for fast time-domain radiation solves, a pro-

cess we call mode conlation. We refer to each group of conlated

modes as a chord. The conlation algorithm runs in linear time, and

guarantees the resulting wave ield can be accurately decomposed

back into separate radiation ields through a process of transfer

deconlation. This decomposition is performed using a lightweight

structure-exploiting QR solver speciically designed for this purpose.

To further increase the throughput, we describe a novel GPU vector

wavesolver that attempts ine-grain load balancing by interleaving

the diferent solves. For fast runtime transfer representation, we

propose a simple scalar-valued Far-ield Acoustic Transfer (FFAT)

map that approximates transfer amplitudes at accuracy suitable

for sound rendering, and can be computed, stored, and evaluated

eiciently.

Our proposed pipeline is designed with high-throughput acous-

tic transfer precomputation in mind, and can precompute an all-

frequency modal sound model for typical 3D objects in a matter of

minutes. We observe that the approach is a hundred- to thousand-

fold faster than precomputation using modern BEM solvers, with

negligible audible diferences in the authors’ experience.

2 RELATED WORK

Modal Sound Synthesis. Realistic modal sound synthesis has been

a long-held goal in computer music, animation and HCI [Gaver

1993; Morrison and Adrien 1993; Takala and Hahn 1992; van den

Doel and Pai 1996]. Related examples include audio-domain spectral

synthesis techniques [Cook 2002; van den Doel and Pai 1996], and

audio-domain methods based on recordings that łmeasure, analyze

then synthesizež modal sounds [Pai et al. 2001; Ren et al. 2013; Serra

and Smith 1990; van den Doel et al. 2001], and physics-based sound

simulation methods based on linear modal analysis [Shabana 2012,

2013] of 3D discrete elastic models [O’Brien et al. 2002]. This work

concerns the latter category for which 3D vibration models are

available, and acoustic transfer techniques are applicable.

Precomputed Acoustic Transfer. While it is possible to display

the modal oscillator values directly as sound [Bonneel et al. 2008;

O’Brien et al. 2002; van den Doel et al. 2001; van den Doel and

Pai 1996], they lack modal amplitude variations and spatialization

efects due to acoustic wave radiation. Unfortunately simulating

the wave equation is expensive, and incompatible with real-time

sound rendering. Precomputed Acoustic Transfer methods were

introduced to solve this problem [James et al. 2006]; they allowed

frequency-domain radiation ields that satisfy the Helmholtz wave

equation to be precomputed, e.g., by standard Boundary Element

Method (BEM) solvers, then approximated by eicient representa-

tions (such as equivalent multi-point multipole (e.g., dipole) sources)

that can be evaluated for real-time rendering. Later works often used

a single-point multipole expansion with higher-order sources [Lan-

glois et al. 2014; Zheng and James 2010, 2011] that was simpler

to compute (since it avoids optimizing multipole placement). This

method can limit the reconstruction accuracy in the near ield, es-

pecially at higher frequencies where many multipole coeicients

are required for nominal accuracy, thereby increasing runtime eval-

uation costs. Even faster runtime evaluation using texture mapping

was irst addressed by Chadwick et al. [2009]; they proposed Far-

Field Acoustic Transfer Maps (FFAT Maps) as a way to use singular
1/r expansions to encode complex-valued angular radiation ields in

textures precomputed using accurate fast Helmholtz multipole meth-

ods (FastBEM solver [Liu 2009]). FFAT Maps enable constant-time

transfer evaluation, but can use hundreds of megabytes, something

we improve upon in this work by using compressed scalar-valued

amplitude maps. Various improvements have been made for modal

sound models over the years, such as better object coupling, con-

tact damping [Zheng and James 2011], compression of the modal

matrix [Langlois et al. 2014], and the use of proxy soundbanks for

non-object-speciic sound modeling [Chadwick et al. 2012a; Zheng

and James 2010]. However, the core PAT radiation precomputation

remains mostly the same; because of the Helmholtz solvers required,

it is by far the most expensive step in the pipeline.

Recently Li et al. [2015] proposed a method to enable interactive

acoustic transfer evaluation to support interactive modal sound

parameter editingśchanging material parameters can change modal

frequencies and necessitate transfer recomputation. The runtime

speedup is achieved at the cost of additional precomputation: for

each vibrational mode, they precomputed several BEM solves at

diferent frequencies, and use these solutions to interpolate the

radiation ields when the parameters are changed. Our work is

complementary, in that we propose a fast alternative to slow per-

mode BEM solves. Given the high speed of our method, sound

models could be recomputed after object shape edits, enabling a

much larger space for sound design.

Methods for water sound synthesis have used frequency-domain

acoustic transfer functions to approximate air-domain amplitudes

of thousands of harmonic bubbles [Langlois et al. 2016; Zheng and

James 2009]. Recent work by Wang et al. [2018] showed that using

a time-domain wave solver had the beneits of computing all bubble

contributions in a single air-domain wave solve at less cost, while

preserving the transient details. In a similar vein, we exploit the fact

that many frequency-localized contributions can be evaluated, and

decoded with a single time-domain wave solve.

BEM Acoustics. Boundary Element Methods for the Helmholtz

wave equation are widely used in computational acoustics to obtain

high-accuracy solutions for radiation and scattering problems [Cis-

cowski and Brebbia 1991; von Estorf 2000; Wu 2000]. Classical

BEM populates a dense matrix and therefore has O (N 2) memory

requirements, and O (N 3) solution cost using dense matrix solvers.

To alleviate this cost, iterative solvers are used with fast approxi-

mate matrix-vector multiplication kernels, for which two popular

competing methods with quasi-linear complexity exist: the fast

multipole method (FMM), and hierarchical matrices (H -matrices).

Fast multipole methods rely on hierarchical gather/scatter opera-

tions on the Helmholtz fundamental solutions and related series

expansions [Cheng et al. 2006; Gumerov and Duraiswami 2005; Liu

2009], whereas the hierarchical matrix approach is purely algebraic

ACM Trans. Graph., Vol. 38, No. 4, Article 122. Publication date: July 2019.

KleinPAT: Optimal Mode Conflation For Time-Domain Precomputation Of Acoustic Transfer • 122:3

and computes low-rank approximations of matrix partitions (see

e.g., [Bebendorf 2008]). Exactly which one is faster and more mem-

ory eicient is problem and implementation dependent, but the

H -matrices approach with adaptive cross approximation [Beben-

dorf 2000] is known to be more parallel, and can perform faster

approximate matrix-vector multiplications than FMM-based ap-

proaches [Bebendorf and Kriemann 2005; Brunner et al. 2010]. The

latter is crucial for Krylov-subspace methods when solving large

linear systems [Golub and Loan 2013]. We therefore chose anH -

matrices-based BEM solver as a baseline comparison to analyze the

performance and accuracy of our method.

GPU Finite-Diference Time-Domain (FDTD). GPU-based time-

domain wavesolvers have been studied and used in various ap-

plications, especially for wide-bandwidth problems, for example in

computational room acoustics and musical instrument design [Bil-

bao 2009, 2011; Bilbao 2013; Bilbao and Webb 2013], head-related

transfer-function computation [Meshram et al. 2014; Prepelita et al.

2016], seismic (elastic waves) and electrodynamics (electromagnetic

waves) modeling [Komatitsch et al. 2010; Talove and Hagness 2005].

Hardware-speciic optimization techniques are available for difer-

ent types of wavesolvers, e.g. in [Mehra et al. 2012; Micikevicius

2009]. The GPU is a great target for inite-diference time-domain

(FDTD) simulations [Wang et al. 2018], and can reach real-time

performance on bandlimited signals or 2D problems [Allen and

Raghuvanshi 2015]. Inspired by many of these solvers, we design a

highly specialized acoustic transfer GPU wavesolver that utilized

new domain-speciic algorithms to achieve high-throughput, many-

mode PAT computation.

3 BACKGROUND

Background on modal sound synthesis and acoustic transfer are

available in the SIGGRAPH physically based sound course [James

et al. 2016]. We now describe notation and background required to

explain the KleinPAT method.

3.1 Modal Vibrational Model

Linear modal analysis is standard in engineering and acoustics, and

we use the same discretization and solution approaches of prior

modal sound synthesis works in graphics [Zheng and James 2010,

2011]. The resulting modal model can describe the displacement

of N surface vertices using a linear superposition ofm vibrational

mode shapes (restricted to the surface), ûi ∈ R3N , each associated

with a vibration frequency ωi = 2π fi . The surface displacement is

given by the matrix-vector multiplication

u (t) = [û1 û2 · · · ûm]q(t) = Uq(t), (1)

whereU ∈ R3N×m is the surface eigenmode matrix, and q(t) ∈ Rm
is the vector of modal coordinates qi (t) ∈ R. The dynamics of the

modal coordinates are governed bym decoupled simple harmonic

oscillators,

q̈i (t) + (α + βω2
i)q̇i (t) + ω

2
i qi (t) = ûi · f (t), (2)

where (α , β) are Rayleigh damping parameters, and f (t) is a vector

of applied surface forces. The oscillator dynamics for q(t) can be

time-stepped eiciently and stably using an IIR digital ilter [Ham-

ming 1998] in a way suitable for real-time sound synthesis. We use

the notation ûi (x) to denote the i
th mode’s surface displacement in-

terpolated atx , and, in the following, we useun,i (x) = n(x) ·ûi (x) ∈
R to denote the normal component of displacement of mode i at x .

3.2 Acoustic Transfer Function

Surface vibrations of an object O cause pressure luctuation in the

surrounding air, which radiates outwards as acoustic waves. The

acoustic transfer function characterizes this radiation eiciency.

More speciically, let Ω be the air medium containing O, and Γ be

the boundary of O. Then the acoustic pressure p caused by the

undamped, harmonically vibrating i-th mode ûi is governed by

the acoustic wave equation with the following Neumann boundary

condition dependent on the normal surface acceleration an,i :

∂2p (x , t)

∂t2
− c2∇2p (x , t) = 0, x ∈ Ω (3)

∂np (x , t) = −ρ an,i (x , t) = ρ ω2
i un,i (x) cosωi t , x ∈ Γ, (4)

where c is the speed of sound in air. The steady-state solution has

only harmonic components

p (x , t) = ci (x) cosωi t + di (x) sinωi t , (5)

=

√

c2i (x) + d
2
i (x) cos(ωi t + φi (x)) (6)

where (ci ,di) describes the pressure wave’s amplitude
√

c2i + d
2
i

and phase φi (which we ignore) at any point x , and are efectively

the acoustic transfer function. In the following, we will use the

shorthand notationpi (x) =
√

c2i (x) + d
2
i (x) for the acoustic transfer

amplitude of mode i , when it is not ambiguous.

Complex-valued form. In the literature, the acoustic transfer func-

tion for an harmonic vibration,un (x)e
iωt , is usually described using

the complex value, p̄ (x) ∈ C [James et al. 2006]. In this case, the

time-domain pressure solution (5) is given byp (x , t) = ℜ(p̄ (x)eiωt),

from which it follows that p̄ (x) ≡ c (x) − i d (x), and the amplitude

of the acoustic transfer function is the modulus, |p̄ | =
√
c2 + d2.

3.3 Runtime Sound Rendering

The runtime sound at any point x (in O’s frame of reference) is

approximated by the linear superposition of modal contributions,

sound(x , t) =

m
∑

i=1

pi (x) qi (t) (7)

where pi (x) = |p̄i (x) | is mode i’s transfer amplitude, that is used to

scale the qi (t) modal coordinate. PAT methods usually precompute

fast representations for evaluating p̄ (x), then compute its modulus,

whereas later we will approximate the transfer amplitude directly

using nonnegative representations.

4 KLEINPAT MACHINERY

We have seen that a frequency-domain wave solver can compute

a single harmonic acoustic transfer function, and so can a time-

domain wave solver. However, by linearity of the wave equation,

a time-domain wave solver can also, unlike its frequency-domain

ACM Trans. Graph., Vol. 38, No. 4, Article 122. Publication date: July 2019.

122:4 • J.-H. Wang et al.

counterpart, compute multiple conlated acoustic transfer functions
of diferent frequencies at the same time in a single run. Let us
exploit this fact.

4.1 Making Chords with Mode Conflation

Consider simulating the irstm vibration modes, ωi , i = 1 . . .m, at
the same time, like playing a chord withm frequencies or notes. By
linearity of the wave equation and acceleration dependence in the
Neumann boundary conditions, if the normal surface acceleration
an is a sum of them modes’ accelerations,

an (x , t) =

m
∑

i=1

an,i (x , t) (8)

then the pressure solution is also the sum ofm frequency compo-
nents,

p (x , t) =

m
∑

i=1

ci (x) cosωi t + di (x) sinωi t , (9)

= [cosω1t sinω1t · · · cosωmt sinωmt]

*........,

c1 (x)

d1 (x)
.
.
.

cm (x)

dm (x)

+////////-
(10)

= τ (t)T s (x), (11)

where τ (t) ∈ R2m is the vector of trigonometric basis functions, and
s (x) ∈ R2m stacks the unknown transfer coeicients, (ci (x),di (x)).

Conlate, Simulate, and then Deconlate. We refer to the packing
of modes into a single wave solve as mode conlation. Provided
that the chord’s modal frequencies are distinct, the temporal basis
functions, cosωi t and sinωi t , are all linearly independent functions
in time. Therefore the 2m coeicients {(ci ,di)}, and thus the transfer
amplitudes, pi (x) =

√

c2i + d
2
i , can be least-squares estimated from

simulated temporal samples of p (x , t) = τ (t) · s (x). We refer to this
latter process as transfer deconlation and it is addressed in ğ4.2.

Distinct Frequencies. The assumption of distinct frequencies is
not a good one since many objects have repeated frequencies, or
very similar ones in practice. These (nearly) degenerate frequencies
are common, and are associated with geometric (near) symmetries,
such as those of mirror, rotational, or cylindrical types [Langlois
et al. 2014]. Unfortunately, similar eigenfrequencies lead to similar
basis functions that are numerically ill-conditioned, and will foil
transfer deconlation. Therefore we must ensure that chords used in
mode conlation only involve frequencies that satisfy a frequency
separation condition: each pair of frequencies fi and fj in a chord
satisies | fi − fj | > ε > 0, where ε is a user-speciied gap parameter,
e.g., ε = 50Hz. In summary, this frequency gap will ensure that
least-squares transfer deconlation will be possible for the simulated
chords, and numerically well-conditioned.
We now address these two central problems: (1) transfer decon-

lation (ğ4.2), and (2) optimal mode conlation (ğ4.3).

4.2 Transfer Deconflation

Given a temporal signal sampled from a superposition of harmonics
with distinct frequencies that are known, we can estimate the am-
plitude (and phase) of the harmonics using least squares [Kay 1988].
In our problem, we want to temporally sample p (x , t) = τ (t) · s (x)
to reconstruct the amplitudes, with two additional concerns: (1) the
amplitudes must be estimated at many positions, x , and (2) repeated
periodically, e.g., after time T , in order to monitor amplitude con-
vergence while time stepping the wave equation. Fortunately, these
can be done very eiciently as follows.

Least-Squares Estimation of Amplitudes. Consider n pressure sam-
ples at x taken at uniformly spaced times, ti = t0+ i δt , i = 1, . . . ,n,
where δt is the temporal spacing, and t0 is a waiting period since the
time-stepping of the wave equation began at t = 0; in our implemen-
tation we use δt = 4∆t , and t0 = 0, where ∆t is the wavesolver’s
timestep size set to 1/(8fmax). From (11), we obtain n conditions on
the coeicients s (x),

τ (ti)
T s (x) = p (x , ti), i = 1, . . . ,n. (12)

In matrix form this becomes


τ (t1)

T

.

.

.

τ (tn)
T


s (x) =

*...,
p (x , t1)
.
.
.

p (x , tn)

+///-
⇔ As = p. (13)

This linear least-squares problem, As = p, has a unique solution if
we have enough temporal samples, n ≥ 2m, and it will be well con-
ditioned provided that the frequencies are well separatedśthe sam-
pling must also have suicient resolution to avoid aliasing, which is
achieved by construction. Observe that only p and s depend on the
position x , and not the basis matrix A. Therefore we can construct
A’s QR factorization once at cost O (nm2), and reuse it to estimate
transfer coeicients s at arbitrarily many points x . In our implemen-
tation, the initial QR factorization is performed on the CPU, and
the following periodic estimation and the least-squares solves are
performed on the GPU on-the-ly; we will explain how to choose n
in a later section.

Eicient Periodic Estimation using Basis Factorization. While time-
stepping the wave equation and sampling pressures at key positions
x , we can periodically invoke the QR solver to obtain transfer am-
plitude values, e.g., to monitor convergence. Unfortunately, these
periodic estimates have diferent basis matrices, A, and therefore
also necessitate periodic QR factorizations. Fortunately, this can be
addressed as follows.

Consider the trigometric basis matrixA and one constructed after
a period of timeT later, namedAT . Due to trigonometric properties,
these matrices are related by a rotation matrix:

AT = A



B1
B2

. . .

Bm ,


≡ AB (14)

ACM Trans. Graph., Vol. 38, No. 4, Article 122. Publication date: July 2019.

KleinPAT: Optimal Mode Conflation For Time-Domain Precomputation Of Acoustic Transfer • 122:5

where B is block diagonal and orthogonal, and Bi ∈ R2×2 are small
rotation matrices

Bi =

[
cos(ωiT) sin(ωiT)
− sin(ωiT) cos(ωiT)

]
. (15)

Therefore, given the thin QR factorization of A = Q R, the solution
to the new least-squares problem is

s = (AT)
†p = (AB)†p = BTA†p, (16)

(where ()† denotes the pseudoinverse) which amounts to back-
substitution with the original QR factorization, followed by a rota-
tion by the block-diagonal BT matrix. Therefore periodic estimates
of transfer amplitude can be performed with negligible additional
overhead, and only one QR factorization per chord is ever needed.

Adaptive Stopping Criterion. The eicient periodic transfer estima-
tion allows us to stop the simulation whenever a stopping criterion
is met, and to keep iterating if the problem is more challenging. This
adaptive strategy increases both the eiciency and the robustness of
our deconlation solver. The stopping criterion we use is the relative
ℓ2-norm of the least-square error for (13). The solver returns the
latest transfer ield after the error falls below the speciied tolerance.
In our examples, we check for convergence in non-overlapping slid-
ing windows (hop size T = n δt); our error tolerance is set to 1%.
We found that the convergence is usually fast (see Figure 2), and
thus the actual errors in our examples fall well below this tolerance.
We conirmed that the plateau for the convergence is purely due to
machine precision (see ğ7.1.2).

4.3 Mode Conflation Algorithm

We now consider how to constructK chords that simulate all modes,
but avoid closely spaced frequencies, so as to ensure that the trigono-
metric basismatrix,A, used in transfer deconlation is well-conditioned.
Furthermore, since we also want to minimize the number of time-
domain wavesolves we performśone for each chordśwe also seek
to minimize the number of chords, K .

Chord Optimization Problem. Given the frequency distribution F
(in the form of a sorted list)

F = { fi | Frequency of the ith vibrational mode}, (17)

we seek to partition F into a minimal number of K partitions
(chords), subject to the frequency separability constraint:

Separability Constraint: min
(i, j) in same chord

| fi − fj | > ε, (18)

for some ε . This parameter ε directly afects the accuracy and the
performance of the algorithm: if ε is set too low, the least-squares
problem will have a poorly conditioned Amatrix, which will lead
to inaccurate transfer amplitude estimates, but if ε is set too high,
the number of chords K needed to partition F will become large,
and result in too many wavesolves. We will discuss how to choose
ε in a later section.

2TT

Mode 1
339Hz

Mode 118
5396Hz

Mode 291
8397Hz

3T 10T

(a)

(b)

Estimation windows

||A
s

-
p

||
/

||p
||

Fig. 2. Convergence of transfer ield in time: The transfer fields of our

test objects all converge rapidly. Here T = n δt is the length and hop of the

non-overlapping sliding window. (a) The overall least-square error converges

quickly for all of our examples. (b) The estimated transfer fields for three

modes in the same 100-mode chord for the łplastic bunnyž (at the min,

median, and max mode frequencies, respectively). Even though the first

window (ending at time T) is polluted by pressure values starting at zero,

surprisingly similar estimates are obtained, e.g., the average error between

the first (T) and last (10T) windows are (0.4, 0.28, 0.09) dB for each of the

three modes.

Linear-time Algorithm for Chord Optimization. We now show that
it is possible to compute an optimal solution to the chord optimiza-
tion problem (with minimal K chords) using a linear-time algorithm.
The key observation is that this problem is an instance of a graph
coloring problem for a special type of graph called the indiference
graph. An indiference graph is an undirected graph where all ver-
tices are assigned a real number (frequency), and an edge exists
whenever two vertices are closer than a unit (ε). The coloring prob-
lem arises since any two vertices connected by an edge cannot be
assigned the same color, where here colors represent chords. See
Figure 3 for an illustration.

Fortunately, Looges and Olariu [1992] proved that a greedy color-
ing approach gives the optimal solution for indiference graphs. We
provide an outline of the greedy algorithm here for completeness:

• Initialize colors C = {}.
• Scan through the vertices using the sorted order of F .
• For each vertex v , ind c ∈ C not used by the neighbors of v ;
otherwise, color v with a new color c ′, and C = C ∪ {c ′}.

ACM Trans. Graph., Vol. 38, No. 4, Article 122. Publication date: July 2019.

122:6 • J.-H. Wang et al.

Table 1. Mode/Chord Statistics: Here, F is the list of modal vibrational frequencies in Hz; ∆F is defined as the frequency diference between adjacent

modes; kL is the non-dimensional wavenumber typically used to characterize the dificulty of the Helmholtz problem ś k is the wavenumber and L is the

object size. Conflation statistics include the parameters used in our algorithm and the distribution of modes in each chord and vector solve. For large objects

(marked by *) we cannot interleave the chords due to memory constraints, and therefore the number of modes per solve is the łsamež as per chord.

Modal Model Conlation Statistics
Object material #modes range F max kL min ∆F n ε min TBP chords #modes/chord #vecsol #modes/vecsol
Plate ceramic 42 2.2kHz-14.9kHz 87.3 1.12Hz 512 50 0.59 4 [15, 15, 6, 6] 3 [15, 15, 12]
Wine glass glass 22 2.1kHz-14.8kHz 51.5 1.29Hz 512 50 0.49 3 [10, 9, 3] 3 [10, 9, 3]
Bowl wood 78 795Hz-14.7kHz 78.1 0.62Hz 512 50 0.57 3 [33, 32, 13] 3 [33, 32, 13]
Bunny plastic 292 313Hz-8.4kHz 60.0 1.86Hz 512 50 0.82 6 [100, 90, 55, 30, 13, 4] 3 [100, 94, 98]
Backhoe Bucket* iron 250 157Hz-10kHz 175.0 0.32Hz 128 270.6 1.0 13 [32, 32, 29, 29, 25, 24, 13 same

23, 19, 16, 11, 6, 3, 1]
Dragon* poly. 642 337Hz-12.0kHz 133.0 0.21Hz 512 81.2 1.0 11 [120, 115, 105, 88, 69, 11 same

49, 40, 30, 15, 7, 4]
Engine Block* steel 166 568Hz-9.9kHz 120.0 7.36Hz 128 270.6 1.0 9 [29, 27, 24, 24, 21, 19, 9 same

13, 5, 4,]

ε 2ε 3ε 4ε 5ε0

Fig. 3. Computing the minimal number of chords that satisfy the sep-

arability constraint can be done eficiently by (i) first encoding all the fre-

quencies into the indiference graph, then (ii) running the greedy coloring

algorithm, which is optimal for the indiference graph. Each of the colors

represents a diferent chord comprised of well-separated modal frequencies

in our optimal mode conflation.

This algorithm can be implemented eiciently with a stack that runs
in linear time [Looges and Olariu 1992]. Using this simple algorithm,
we observed negligible run time for computing the optimal conla-
tion when compared to the wave solves and transfer estimation. We
show the chord arrangement for our objects in Table 1.

Choosing the (de)conlation parameters using a Time-Bandwidth

Product. Although we have three major parameters in our algo-
rithm (n, δt , ε), their efects on the deconlation performance can be
characterized using a single non-dimensional product, deined as

TBP = n δt ε =
Twindow
Tbeat

, (19)

where Twindow ≡ n δt is the length of the sliding window, and
Tbeat ≡ 1/ε is the inverse of the beat frequency caused by the two
closest modal frequencies (See the inset of Figure 4). This time-
bandwidth product (TBP) directly afects the stability of the least-
square basis matrix A deined in (13). A basis with a high TBP
has better conditioning and the resulting solves are more stable,
whereas one with a low TBP (especially when lower than 1) can
cause conditioning problems (see Figure 4). Empirically, we found
that often the basis is stable enough for low TBP values, but for
challenging problems it is better to use TBP = 1. Note that schedules
with high TBPs are associated with higher computational costs
(either with higher n, which increases memory usage for the QR
solver, or with higher ε , which results in more chords to be solved
and reduce the overall throughput); for example, see the numbers
used in Table 1.

10-2 10-1 100 101

Time-Bandwidth Product

100

102

104

106

108

1010

1012

1014

1016

1018

1020

C
o

n
d

it
io

n
 n

u
m

b
e

r

worst case

random trials

Twindow
Tbeat TBP ≡

Twindow

Tbeat

Fig. 4. Time-Bandwidth Product. We show that lower TBP increases the

condition number of the least-square basis matrix on average. The experi-

ments are randomized to have 4− 50modal frequencies randomly arranged

in the basis before the condition number is computed; we performed in total

500 trials per TBP value; median, 10th, and 90th percentiles are reported

(in blue line, and red bars, respectively). For each TBP, we also perform an

analysis on the worst case scenario, where up to n/2 modes are inserted

with uniform frequency gaps (at ε). This results in the densest modal fre-

quency distribution. It is clear that for TBP < 1, the worst case scenario
can result in unstable least-square solves for all TBPs; therefore, we advise

against using values in this range without explicitly checking the rank of

the basis . In this plot, we vary TBPs by varying ε ; varying n and δt results

in qualitatively similar behaviors. (Inset image) Here TBP directly measures

the fraction of the beat (caused by two close frequencies) covered by the

sliding-window samples p in (13).

5 GPU VECTOR WAVESOLVER

We now describe a novel GPU vector wavesolver that achieves high-
throughput transfer computation. For example, this system allows
us to eiciently estimate the dense sound ield of the 292-mode
plastic bunny (from Figure 1) in under 2 minutesÐmore than 2000x
faster than a multi-threaded BEM solveÐwith accuracy suitable for

sound rendering. We irst introduce the idea of leveraging vector

wavesolves for ine-grain load balancing in ğ5.1, then detail the

deining features of our GPU wavesolver in ğ5.2.

5.1 Load Balancing Using Vector Wave Equation

Recall that given K chords, our goal now is to perform K separate

time-domain wavesolves, each with the conlated boundary con-

dition (BC) of form (8). We further observe that close frequencies

ACM Trans. Graph., Vol. 38, No. 4, Article 122. Publication date: July 2019.

KleinPAT: Optimal Mode Conflation For Time-Domain Precomputation Of Acoustic Transfer • 122:7

can occur in the high-frequency range, resulting in several chords
having similar highest frequencies, and thus similar step rates. To
utilize this property, we propose to group several of these solves
together in one run when we can (see Figure 5), and use the same
(min) step size and spatial discretization. This is mathematically
equivalent to solving the discrete vector wave equation with BCs,

∂2p (x , t)

∂t2
− c2∇2p (x , t) = 0 (20)

∂np (x , t) = −ρan (x , t). (21)

Solving the vector wave equation on the GPU has several practical
advantages over the scalar one: (1) it allows us to reuse potentially
expensive geometry rasterization and other tedious bookkeeping
overhead, such as cell index calculation, across vector components;
(2) it increases per-thread compute density; (3) it reduces kernel
launch overhead, which can be expensive; (4) it results in better
caching behavior for fetching modal matrix, which can be sparse for
a small chord. Although it is hard to isolate the gains for each factor,
we observe an overall increased throughput when this strategy is
applicable. Note that this is a software vectorization, while GPU has
hardware vectorization such as Nvidia’s Single Instruction Multiple
Threads (SIMT) execution model. Our vectorization is more of an
optimization that seeks to further balance the compute loads. Also
note that we do not want to be overly aggressive about grouping,
since it increases the memory stride, and burdens the GPU memory.
Finally note that the vectorization here only afects the overall
throughput, but not the accuracy of the solution at all, since all
components of the vector p are solved independently.

p1 p2 p3 p4

Finite-Di�erence stencil

for a compute thread

Interleaved pressure

of di�erent chords

Fig. 5. Interleaving the chords into one vector wave solve can increase

the amount of computation done by each thread, thereby increasing the

throughput. It also helps us balance the loads for smaller chords.

In light of the goal of load balancing, we introduce a simple
algorithm modiied from the SortedBalance algorithm used for
makespanminimization problems. It is a makespan problem because
we can consider each machine an instance of wavesolve, each job a
chord with conlated modes, and jobs assigned to the same machine
will be run vectorized. We irst sort the chords based on the number
of modes conlated, which is our measure of compute load, e.g., it
accounts for the higher cost of the dense matrix-vector multiplyUq
when computing the acceleration BC (8) for larger chords. We then
loop through the list in order, and assign a job to the lightest machine
if the new processing time does not exceed the maximum process time

of any machine at the time or the hardware resources. Otherwise, we
put it in a new machine. For completeness, we provide Algorithm 1
in the Appendix. The frequency distribution for two representative
cases after this load-balancing procedure is given in Figure 6.

2000 4000 6000 8000 10000 12000 14000 16000

0

1

2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Frequency (Hz)

0

1

2

Plate

W
a

v
e

 s
o

lv
e

 i
n

s
ta

n
c
e

W
a

v
e

 s
o

lv
e

 i
n

s
ta

n
c
e

Bunny

Fig. 6. Chords after load-balancing are solved in groups using vector

wave solves. For both the Plate and the Bunny object, we show the frequency

distribution ater running the modified sorted balance algorithm. The colors

correspond to the chords returned by the coloring algorithm.

5.2 GPU Finite-Diference Time-Domain Wavesolver

Our solver builds on the inite-diference time-domain (FDTD) dis-
cretization scheme with an absorbing boundary layer, similar to
the one recently proposed for animation sound synthesis [Wang
et al. 2018]. However, instead of aiming for a general system, we in-
stead optimize the solver for GPU programming and for the transfer
computation with a ixed object. For this purpose, we use a sim-
ple voxelized boundary discretization, and control the staircasing
boundary error by sampling iner than the Shannon-Nyquist bound;
in our results, we use at least 8 cells per shortest wavelength in any
chord.
The key to eicient GPU implementation is to reduce the mem-

ory traic while keeping all the threads busy. For example, it is
usually preferred to have more work per thread, less of-chip mem-
ory read/write operations, regular/aligned/coalesced memory ac-
cess, parallelizable workload, minimal branching instructions etc.
Learned from the previous eicient GPU wavesolvers [Allen and
Raghuvanshi 2015; Mehra et al. 2012; Micikevicius 2009], we further
the eiciency of our system by introducing several new technical
features suitable for fast transfer computation.

5.2.1 Hybrid discretization for improved PML. We use a hybrid
inite-diference discretization to ensure fast wave simulation for
the majority of the cells, and accurate grid-boundary absorption
using perfectly matched layers (PML) in order to minimize artifacts
caused by spurious wave relections that might corrupt transfer
deconlation. The inner domain, which contains the object, uses a
pressure-only collocated grid with a lightweight 7-point stencil that
is ideal for GPU SIMD/SIMT processing. For the outer domain, we
use a pressure-velocity staggered grid to support accurate split-ield
PML [Liu and Tao 1997]. The split-ield PML gives the better absorp-
tion than purely scalar pressure-only absorption models, because it
damps waves in diferent directions separately. The inner and outer
domains can be combined seamlessly and time-stepped separately.
Note that if instead we use split-ield staggered grid everywhere,
such as in [Chadwick et al. 2012b; Liu and Tao 1997], the memory
read/write operations required to update a single interior pressure

ACM Trans. Graph., Vol. 38, No. 4, Article 122. Publication date: July 2019.

122:8 • J.-H. Wang et al.

cell will increase by about 350%1, and the memory allocation will
increase by about 230%2. It is therefore beneicial to use a hybrid dis-
cretization (with only pressure values in the inner domain) despite
the added implementation complexity.

5.2.2 Compact object bitset representation. During solver initial-
ization the object is conservatively rasterized to the grid using a
standard approach [Akenine-Möller 2002]. However, this rasterized
representation will need to be accessed in various kernels to sample
boundary conditions at every time step. It is therefore beneicial to
use a compressed representation to reduce memory traic.
To this end, we design a simple multi-pass algorithm to com-

press the rasterization into a bitset representation. The compression
is fully parallel, and respects the SIMT execution model found in
modern GPUs. Consider a list of size |L| of cell indices indicating
rasterized cells. Our goal here is to compute a binary packing to
⌈|L|/ℓ⌉ strings, each of ℓ-bit length. The naive approach might be
to uniformly schedule elements of L to threads. However, due to
the SIMT nature of the GPU execution, this scheduling will cause
threads in diferent execution groups3 to potentially process the
same packed string, resulting in unnecessary communications and
serialization. Instead, we irst run a few passes to L to igure out
the ofset of each string, then schedule the processing accordingly.
These passes consist of stream compaction, vectorized search, and
adjacent diferences, all of which can be done eiciently on the GPU,
and the CUDA Thrust API provides related library support. After
we have the optimal schedule, each thread execution group can pro-
cess the binary representation independently and communication
happens only within the group, which has low latency because they
are typically scheduled on the same chip. An example of packing
rasterization results of a 8-by-8 grid to 8-bit string can be found
in Figure 7. In our implementation, we use ℓ = 32 to leverage the
32-thread CUDA warp.

10 11 12 18 19 20 26 27 28 29 34 37 38 42 43 44 45 46

1 1 1 2 2 2 3 3 3 3 4 4 4 5 5 5 5 5

00111000 00111000 00111100 00100110 00111110

1 2 3 4 5

0 3 6 10 13

3 3 4 3 5

Unique Element:

O�set Array:

Histogram:

(Stream Compaction)

(Vectorized Search)

(Adjacent Di�erence)

Warp Scheduling Precomputation Warp Workload

42

43

44

45

46

2

3

4

5

6

Mod
Reduction

Bit Shift Warp-level

00000100

00001000

00010000

00100000

01000000

00111110

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

Fig. 7. Rasterization bitmask can be computed in parallel with a simple

multi-pass algorithm. We first compute the optimal ofset for each packed

string, and schedule thread groups accordingly (green arrows). Once we

have the schedule, we can process the binary representation for each cell

index in parallel. The final reduction step happens at the thread-group level,

which avoids slow inter-group communication. łWarpž here is synonymous

with thread group.

1Using the split-ield, staggered grid to update a single pressure cell takes 15 (12R3W)
+ 16 (12R4W) = 31 global memory read/write operatons assuming the center cell value
is cached; using the pressure grid takes 9 (8R1W) memory operations.
2Split-ield PML technique damps pressure in each direction separately, therefore
required the storage of 7 scalar ields {Px , Py , Pz , Ptotal , Vx , Vy , Vz }
3Threads that have the same instruction. This group is called a warp in Nvidia’s CUDA
programming model, and consists of 32 threads on most Nvidia GPUs.

6 FAR-FIELD ACOUSTIC TRANSFER MAPS

Given the acoustic transfer function computed in a small domain
containing the object, we need a practical way to extend these solu-
tions into the acoustic far ield for sound rendering. Inspired by the
complex-valued Far-Field Acoustic Transfer (FFAT) map introduced
in Chadwick et al. [2009] to approximate p̄ (x) ∈ C, we ignore phase
(since it is discarded anyway) and directly approximate the simpler
squared transfer amplitude p2 (x) = |p̄ (x) |2, using a lightweight,
real-valued expansion. Speciically, we approximate p2 using a posi-
tive polynomial in 1/r with direction-dependent coeicients,

T (r) ≡ *.,
M̃
∑

i=1

ψi (r̂)

r i
+/-
2

≈ p2 (r), (22)

where the radial expansion is evaluated with respect to the object’s
bounding box center point, x0. The functionsψi capture the direc-
tionality of the radiating ields, and the radial expansion has the
correct asymptotic behavior as r → ∞.

x0

r2

r3

(θ, φ)

r1

The coeicientψi for a given angular direc-
tion is estimated using least-squares by taking
Ñ samples at the intersection points between
an emitted ray from x0, and concentric boxes
that aligned with our solver grid (see inset ig-
ure). The boxes are geometrically expanded
from the bounding box of the object: Ri = 1.25i

for the expansion ratio of the i-th box.We found
that M̃ = 1 and Ñ = 3 gives the most robust results and is eicient
to compute, as the least-square solve per ray only involves two
3-vector dot products and a division. In contrast, higher M̃ values
tend to overit near-ield luctuations, and give worse far-ield esti-
mates. The directional parametrization ofψi is chosen to coincide
with the largest box mesh, in order to reduce resampling issues.
Pressure values on the other two boxes are bilinearly interpolated
to the appropriate sample locations. Because of the chosen box
parametrization, the resultingψi ield can be eiciently processed,
compressed, stored, and looked up using standard image processing
library. We found that the standard JPEG compression with medium
quality setting (e.g., 65) works well with our data. The compressed 8-
bit grayscale images of the 292-mode bunny FFATmaps take up only
3MB (see Figure 8). If desired, they can be spatially downsampled
to provide more compression for lower idelity use.

Fig. 8. FFAT cube maps are a convenient image-based representation for

transfer amplitudes that exploit image compression. Maps shown are for

the plastic Bunny model for mode 0 (0.31 kHz), 5 (1.03 kHz), 10 (1.50 kHz),

50 (3.48 kHz), 100 (5.00 kHz), 150 (6.14 kHz), 200 (7.07 kHz), 250 (7.82 kHz)

(top to down, let to right)

ACM Trans. Graph., Vol. 38, No. 4, Article 122. Publication date: July 2019.

KleinPAT: Optimal Mode Conflation For Time-Domain Precomputation Of Acoustic Transfer • 122:9

Table 2. Performance Statistics: We list the geometric aspects of all our models, including the bounding sphere diameter L. All timings are given in terms of

the total wall clock time for all-mode computations. The BEM solver runs on the CPU and uses all 48 possible threads, while our KleinPAT system utilizing

conflated FDTD solves runs on a single consumer-grade GPU. Precomputation for BEM involves constructing and solving the integral equations (solve); the

integrals are then evaluated at the field points for building the FFAT maps (eval); precomputation for FDTD incurs a single cost (total). Mode-averaged errors

between BEM and FDTD solutions are provided along with the overall speedup. For the large objects (marked in *), we randomly sampled at least 10% of the

modes for computing the BEM solutions. The average cost is then used to estimate the cost for computing all the modes.

Geometry BEM FDTD Comparison
Object #tri #vtx L solve eval total total error speedup
Plate 8186 4095 32cm 16.1 mins 385.0 mins 401.8 mins 0.6 mins 2.4dB 617.2x
Wine glass 20034 10019 19cm 206.8 mins 282 mins 234.7 mins 0.4 mins 2.3dB 592.6x
Bowl 32356 16180 29cm 258.7 mins 549.9 mins 808.6 mins 1.2 mins 0.86dB 676.1x
Bunny 36116 18060 39cm 2326.3 mins 1718.0 mins 4044.2 mins 1.85 mins 1.5dB 2186.8x
Backhoe Bucket* 99253 198506 96cm 31041.7 mins 19441.7 mins 50483.3 mins 27.71 mins 2.9dB 1821.9x
Dragon* 33267 66534 60cm 7383.0 mins 18018.8 mins 25401.8 mins 18.30 mins 2.1dB 1388.3x
Engine Block* 43817 88058 66cm 13916.3 mins 7829.7 mins 21746.0 mins 9.19 mins 0.64dB 2367.5s

7 RESULTS

Our KleinPAT solver is capable of delivering the full modal sound
models end-to-end in a matter of minutes for all the objects we
tested on, and reaches thousand-fold speedups compared to a mod-
ern parallel BEM solver. To make this number more concrete, we
estimated all 292 distinct radiation ields of a 40cm plastic bunny
within 2 minutes, while the BEM solver running in parallel on a
high-end desktop inished after more than 2 days and 19 hours.
There are no audible diferences the authors could detect between
the two solutions. The full performance and object statistics are
summarized in Table 2. We note that comparable precomputation
times can be found in other sound papers [Li et al. 2015; Zheng and
James 2010] with similar objects but diferent BEM solvers.
We carefully validated our solver against a trustworthy BEM

solver in several ways. First, we show that the sounds generated
by FDTD and BEM solvers are similar in static impulse tests and in
an animation sequence where there are numerous impacts on the
object. Second, we systematically analyze the error introduced by
the conlation/deconlation algorithm, by the FDTD solve, and by
the far-ield expansion model. Please see the accompanying video
for the sound results.

7.1 Implementation Details

In this section, we provide implementation details including libraries
used for the BEM solves, and computing hardware.

7.1.1 BEM solver. We use the well-maintained, open-source BEM
solver Bempp [Śmigaj et al. 2015] for all our related calculation. It is
based on the hierarchical matrix compression with Adaptive Cross
Approximation (ACA) [Bebendorf 2000] to avoid populating a dense
BEM matrix, and to speed up matrix-vector multiplications crucial
in iterative solvers. Since the BEM matrix is not symmetric, we
use the standard GMRES solver [Saad and Schultz 1986], and the
recommended error tolerance 10−6 to ensure trustworthy solutions.
Note that the BEM performance is only mildly sensitive to this toler-
ance (see Figure 9), since in many cases constructing the boundary
integrals and evaluating the far-ield solutions dominate the costs.
We also found that the default maximum rank of 30 for the ACA
approximation is insuicient and will introduce blocky artifacts,

and therefore increased it to 60 − 100 for our examples. Bempp is
CPU based and runs in parallel. Due diligence was done to ensure
fair comparisons.

10-6 10-5 10-4 10-3 10-2 10-1

300

350

400

450

500

550

600

650

T
o

ta
l
B

E
M

 s
o

lv
e

 t
im

e
 (

s
)

Plate

10-6 10-5 10-4 10-3 10-2 10-1

150

160

170

180

190

200

210

220

Bowl

10-6 10-5 10-4 10-3 10-2 10-1

GMRES error tolerance

500

600

700

800

900

1000

1100

1200

1300

T
o

ta
l
B

E
M

 s
o

lv
e

 t
im

e
 (

s
)

Bunny

10-6 10-5 10-4 10-3 10-2 10-1

GMRES error tolerance

100

150

200

250

300

350

400

450

500

Wine

Fig. 9. GMRES error tolerances: To study the efects of the GMRES error

tolerance on Bempp solve time, we ran multiple BEM solves at each of the

tolerance setings. The averaging is needed since the ACA algorithm is

randomized. Lower tolerance (e.g., 10−1) introduces higher error in the

solution, while only improving the solution time mildly compared to our

default seting at 10−6 (speedups: 1.05 for Plate, 1.29 for Bowl, 1.77 for Bunny,
and 7.37 for Wine). Blue lines go through the median data points for each

tolerance level.

7.1.2 Computing hardware and implementation details. Our com-
puting hardware for CPU is a single workstation equipped with
dual Xeon E5-2690V3 2.6GHz 12-core processors (24 physical cores
and can be hyperthreaded to run 48 threads). Our GPU hardware is
a single GeForce GTX Titan X graphics card (1.08GHz clock speed,
3072 CUDA Cores, 12GB memory). Our implementation is written
in C++ and CUDA. CUDA 9.2 is used in order to support the warp-
level intrinsics we used to compute the rasterization bitmask. All
BEM computation is done on the CPU using all hardware threads;
the wavesolver runs on the GPU, and FFAT maps are computed and
evaluated on the CPU.

7.2 Error Analysis

We evaluate the error of our method in this section. Since there are
potentially multiple sources of error, we discuss them separately.

ACM Trans. Graph., Vol. 38, No. 4, Article 122. Publication date: July 2019.

122:10 • J.-H. Wang et al.

7.2.1 Error metrics. To quantify the error in the perceived loudness,
we use the spatial average of the diference between two sound
pressure amplitudes, p (x) and p′(x), in decibels (dB),

error = avgx
�����20 log

(

p (x)

p′(x)

) ����� . (23)

Note that the just noticeable diference (JND) in amplitude for a
single tone in an A/B comparison could be on the order of 1 dB,
however it becomes much harder for people to hear that same
amplitude diference for a tone when there are many tones played
[Zwicker and Fastl 2013].

7.2.2 Mode conflation error analysis. The core idea of our paper
is to amortize the wave solve cost by conlating vibrational modes
into chords. Non-harmonic parts of the signal for a mode, such as
numerical dispersion error or transient noises, can leak into other
modes in the same chord and cause transfer estimation error. We
avoid this problem by ensuring a proper frequency separation in
each chord. We show that this strategy introduced small errors (see
Figure 10). The error is measured by comparing the conlated solves
(with many modes per solve), and single-mode solves on the per-
mode basis. We found that the error is less than 0.4dB for all modes,
and the radiation ields visually identical. We have shown the rapid
temporal convergence of deconlated transfer estimates earlier in
Figure 2.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Frequency (Hz)

0.0

0.1

0.2

0.3

0.4

A
v
e

ra
g

e
 E

rr
o

r
(d

B
)

Fig. 10. Errors introduced by the mode conlation process: For the

bunny, all the modes can be conflated into 6 chords (each with a diferent

color). The conflation/deconflation introduces error well below 0.5dB, while
making the transfer estimation 36 times faster than a per-mode FDTD solve.

7.2.3 FDTD/BEM error analysis. We compare the transfer values
estimated from the conlated FDTD solves and BEM solves on the
same mesh placed inside the FDTD grid. The mode-average error
is shown in Table 2, and is generally found to be within 1-3dB.
Although the pointwise error is not negligible, our conlated solve
captures the distinctive radiation ields well. Some representative
FFAT Maps for the ceramic Plate object are shown in Figure 11.
The resulting sounds rendered using FDTD/BEM FFAT maps have
inaudible diferences for all examples in the authors’ experience;
this is supported by the spectrogram and the waveform comparison
shown in Figure 12 for the bunny drop scene.

7.2.4 Far-field evaluation error analysis. We proposed to estimate
the far-ield transfer amplitude using a FFAT cube map based on a
positive polynomial expansion. We compared this approach to the

Top

KleinPAT KleinPATBEM BEM

Bottom

Mode 0
2.2kHz

Mode 5
3.6kHz

Mode 10
5.7kHz

Mode 20
8.9kHz

Mode 30
11.4kHz

Mode 40
14.8kHz

Fig. 11. Transfer ields of the Plate captured by our KleinPAT solver (let)

and the 617x slower BEM solver (right) exhibit very similar structure, shown

here as FFAT maps near the top/botom of the plate model.

more widely used single-point multipole expansion [Langlois et al.
2014; Li et al. 2015; Zheng and James 2010, 2011], and found that
generally our approach not only runs faster due to the O (1) cost
(for both evaluation and data fetching), but it is also more accurate
(see Table 3). One potential downside for using the FFAT cube maps
is the larger memory cost. However, we demonstrate that with the
existing image compression techniques, we are able to store the
FFAT cube maps very compactly. The 8-bit JPEG compressed at a
modest quality setting has less memory requirement than the multi-
pole model, and results in almost no audible degradation compared
to the uncompressed version in the authors’ experience. In total, the
FFAT cube map takes up no more than a few MB per object, making
it of similar memory requirement compared to high-quality visual
textures.

8 CONCLUSION

The KleinPAT solver enables rapid generation of acoustic transfer
models suitable for real-time sound rendering. Our GPU-accelerated
FDTD transfer solver can leverage mode conlation and transfer de-
conlation that outperforms traditional BEM-based transfer pipelines.

Limitations and Future Work. Our work has many limitations
and opportunities for future improvement. First, our approach has
many parameter values (e.g., n, ϵ , δt , compression settings, etc.), and
better performance and/or accuracy may be possible with further
optimization. Despite good performance on several objects, the vol-
umetric FDTDmethod is not a panacea for acoustics as it still sufers
from poor scaling at high frequencies and/or for physically large

ACM Trans. Graph., Vol. 38, No. 4, Article 122. Publication date: July 2019.

KleinPAT: Optimal Mode Conflation For Time-Domain Precomputation Of Acoustic Transfer • 122:11

KleinPAT

BEM

(a)

(b)

Fig. 12. Sound rendering comparison for the dropped bunny. We show

that sounds generated by the two algorithms have very similar spectral and

temporal characteristics. Both sounds were generated using FFAT Maps,

which have the same angular resolution and discretization. Maps for the

KleinPAT solution were generated by the procedures described in ğ6. BEM

solutions were first evaluated on the same expansion boxes; the correspond-

ing FFAT Maps for BEM were then computed and stored for fast runtime

queries. (a) shows the spectrogram for the full sequence; (b) shows the

sound waveforms following an impact event.

Table 3. Far-ield Transfer Models: We compare the multipole-based

transfer models with our FFAT cube map approach using the bunny object.

The ground truth solution is given by BEM model directly evaluated using

a Kirchhof integral at far-field pointsścentroids of 20k triangles uniformly

sampled on a sphere 10 times bigger than the bunny. The storage space is

calculated based on the minimal number of bytes necessary to evaluate a

far-field point. The storage size for the FFAT map is computed using 8-bit

JPEG compression with ł65ž quality setings. All numbers are averaged over

the number of modes.

Accuracy Performance Storage
Model err precomp eval total memory
BEM 0.0dB N/A 29.1s 29.1s 5.0MB
Multipole 5.9dB 1.99s 0.79s 2.78s 2.45KB
FFAT Map 2.8dB 0.15s 0.01s 0.16s 1.86KB

sound models that necessitate high-resolution voxel grids and in-
creased time-stepping costs. Chords with very many modesm have
an increased O (nm2) QR factorization cost, which might require
huge chords to be split in extreme cases. Conlated FDTD solves can
timestep the K modes of a chord all together, however evaluating
the Neumann acceleration BC still requires a weighted sum of K
surface mode displacements at N surface points, which has O (KN)

cost and can be expensive for small timesteps. Chords can have a

Table 4. Material parameters: Material parameters used in the study. ρ :

density; E : Young’s Modulus; ν : Poisson ratio; α and β are the Rayleigh

damping parameters. All parameters are in SI units.

Materials ρ E ν α β

Ceramic 2700 7.2E10 0.19 6 1E-7
Glass 2600 6.2E10 0.20 1 1E-7
Wood 750 1.1E10 0.25 60 2E-6
Plastic 1070 1.4E9 0.35 30 1E-6
Iron 8000 2.1E11 0.28 5 1E-7
Polycarbonate 1190 2.4E9 0.37 0.5 4E-7
Steel 7850 2.0E11 0.29 5 3E-8

wide range of frequencies, which means that the highest frequency
mode determines the inest spatial grid resolution required, and also
time-step size.

We observe that amplitude-based FFAT cube maps (with a single
map per mode) can achieve good far-ield accuracy, speed, and mem-
ory performance trade-ofs compared to traditional single-point
multipole expansions. Future work should investigate optimal per-
ceptually based tolerances for compressing FFAT cube maps. Least-
squares estimation of FFAT cube maps require a suiciently large
domain to avoid over-itting near-ield waves, especially for higher-
order FFAT map expansions.

A MODIFIED SORTED BALANCE ALGORITHM FOR
LOAD BALANCING

In this section, we list the modiied sorted balance algorithm used
for vectorize the wavesolver in Algorithm 1. For our simulations,
we use γ = 0 unless otherwise speciied.

Algorithm 1:Modiied SortedBalance

1 Function groupPartitions()

Input :Number of partition K . Sorted cardinality for each partition ti ,
where t1 ≥ t2 ≥ . . . ≥ tK . Elastic parameter γ ≥ 0.

Output : Job assignments A form machines
2 Initialize one machine M1 and add the irst job to it

3 Set T1 = t1, Tmax = t1,m = 1, and A(1) = {1}
4 for i = 2 to K do

5 Let Mj be the machine that achieves the minimum mink Tk
6 if Tj + ti > (1 + γ)Tmax then

7 Add one new machine

8 m =m + 1

9 Assign job i to this new machine Mm

10 A(m) = {i }
11 Tm = ti

12 else

13 A(j) = A(j) ∪ {i }
14 Tj = Tj + ti

15 Tmax = max(T)

16 return A

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive feedback.
Toyota Research Institute ("TRI") provided funds to assist the authors

ACM Trans. Graph., Vol. 38, No. 4, Article 122. Publication date: July 2019.

122:12 • J.-H. Wang et al.

with their research but this article solely relects the opinions and
conclusions of its authors and not TRI or any other Toyota entity.

REFERENCES
T. Akenine-Möller. 2002. Fast 3D Triangle-box Overlap Testing. Journal of Graphics

Tools 6, 1 (2002).
A. Allen and N. Raghuvanshi. 2015. Aerophones in Flatland: Interactive Wave Simula-

tion of Wind Instruments. ACM Transactions on Graphics (Proceedings of SIGGRAPH
2015) 34, 4 (Aug. 2015).

M. Bebendorf. 2000. Approximation of boundary element matrices. Numerical Mathe-
matics 86, 4 (01 Oct 2000), 565ś589. https://doi.org/10.1007/PL00005410

Mario Bebendorf. 2008. Hierarchical Matrices - A Means to Eiciently Solve Elliptic
Boundary Value Problems. In Lecture Notes in Computational Science and Engineer-
ing.

M. Bebendorf and R. Kriemann. 2005. Fast parallel solution of boundary integral
equations and related problems. Computing and Visualization in Science 8, 3 (01 Dec
2005), 121ś135. https://doi.org/10.1007/s00791-005-0001-x

S. Bilbao. 2009. Numerical Sound Synthesis: Finite Diference Schemes and Simulation in
Musical Acoustics. John Wiley and Sons.

S. Bilbao. 2011. Time domain simulation and sound synthesis for the snare drum.
Journal of the Acoustical Society of America 131, 1 (2011).

S. Bilbao. 2013. Modeling of Complex Geometries and Boundary Conditions in Fi-
nite Diference/Finite Volume Time Domain Room Acoustics Simulation. IEEE
Transactions on Audio, Speech, and Language Processing 21, 7 (July 2013), 1524ś1533.
https://doi.org/10.1109/TASL.2013.2256897

S. Bilbao and C. J. Webb. 2013. Physical modeling of timpani drums in 3D on GPGPUs.
Journal of the Audio Engineering Society 61, 10 (2013), 737ś748.

N. Bonneel, G. Drettakis, N. Tsingos, I. Viaud-Delmon, and D. James. 2008. Fast Modal
Sounds with Scalable Frequency-Domain Synthesis. ACM Transactions on Graphics
27, 3 (Aug. 2008), 24:1ś24:9.

D. Brunner, M. Junge, P. Rapp, M. Bebendorf, and L. Gaul. 2010. Comparison of the Fast
Multipole Method with Hierarchical Matrices for the Helmholtz-BEM. Computer
Modeling in Engineering & Sciences 58 (03 2010).

J. N. Chadwick, S. S. An, and D. L. James. 2009. Harmonic Shells: A Practical Nonlinear
Sound Model for Near-Rigid Thin Shells. ACM Transactions on Graphics (Aug. 2009).

J. N. Chadwick, C. Zheng, and D. L. James. 2012a. Faster Acceleration Noise for Multi-
body Animations using Precomputed Soundbanks. ACM/Eurographics Symposium
on Computer Animation (2012).

J. N. Chadwick, C. Zheng, and D. L. James. 2012b. Precomputed Acceleration Noise
for Improved Rigid-Body Sound. ACM Transactions on Graphics (Proceedings of
SIGGRAPH 2012) 31, 4 (Aug. 2012).

H. Cheng, W. Y. Crutchield, Z. Gimbutas, L. F. Greengard, J F. Ethridge, J. Huang, V.
Rokhlin, N. Yarvin, and J. Zhao. 2006. A wideband fast multipole method for the
Helmholtz equation in three dimensions. J. Comput. Phys. 216, 1 (2006), 300ś325.

D. Ciscowski, R. and C. A Brebbia. 1991. Boundary Element methods in acoustics.
Computational Mechanics Publications and Elsevier Applied Science, Southampton.
UK.

P. R. Cook. 2002. Sound Production and Modeling. IEEE Computer Graphics & Applica-
tions 22, 4 (July/Aug. 2002), 23ś27.

W. W. Gaver. 1993. Synthesizing auditory icons. In Proceedings of the INTERACT’93 and
CHI’93 conference on Human factors in computing systems. ACM, 228ś235.

Gene H. Golub and Charles F. Van Loan. 2013. Matrix Computations (4th ed.). The
Johns Hopkins University Press.

N. A. Gumerov and R. Duraiswami. 2005. Fast Multipole Methods for the Helmholtz
Equation in Three Dimensions. Elsevier Science.

R. W. Hamming. 1998. Digital ilters. Courier Corporation.
Doug James, Changxi Zheng, Timothy Langlois, and Ravish Mehra. 2016. Physically

Based Sound for Computer Animation andVirtual Environments. InACMSIGGRAPH
2016 Courses. ACM, 22.

D. L. James, J. Barbic, and D. K. Pai. 2006. Precomputed Acoustic Transfer: Output-
sensitive, accurate sound generation for geometrically complex vibration sources.
ACM Transactions on Graphics 25, 3 (July 2006), 987ś995.

S. M. Kay. 1988. Modern Spectral Estimation: Theory and Application. Prentice Hall.
D. Komatitsch, G. Erlebacher, D. Göddeke, and D. Michéa. 2010. High-order inite-

element seismic wave propagation modeling with MPI on a large GPU cluster.
Journal of computational physics 229, 20 (2010), 7692ś7714.

T. R. Langlois, S. S. An, K. K. Jin, and D. L. James. 2014. Eigenmode Compression for
Modal Sound Models. ACM Transactions on Graphics (TOG) 33, 4, Article 40 (July
2014), 9 pages. https://doi.org/10.1145/2601097.2601177

T. R. Langlois, C. Zheng, and D. L. James. 2016. Toward Animating Water with Complex
Acoustic Bubbles. ACM Transactions on Graphics (TOG) 35, 4, Article 95 (July 2016),
13 pages. https://doi.org/10.1145/2897824.2925904

D. Li, Y. Fei, and C. Zheng. 2015. Interactive Acoustic Transfer Approximation for
Modal Sound. ACM Transactions on Graphics (TOG) 35, 1 (2015). https://doi.org/10.
1145/2820612

Q.-H. Liu and J. Tao. 1997. The perfectly matched layer for acoustic waves in absorptive
media. The Journal of the Acoustical Society of America 102, 4 (1997), 2072ś2082.

Y. J. Liu. 2009. Fast Multipole Boundary Element Method: Theory and Applications in
Engineering. Cambridge University Press, Cambridge.

P. J. Looges and S. Olariu. 1992. Optimal greedy algorithms for indiference graphs. In
Proceedings IEEE Southeastcon ’92. 144ś149 vol.1. https://doi.org/10.1109/SECON.
1992.202324

R. Mehra, N. Raghuvanshi, L. Savioja, M. C. Lin, and D. Manocha. 2012. An eicient
GPU-based time domain solver for the acoustic wave equation. Applied Acoustics
73, 2 (2012), 83 ś 94.

A. Meshram, R. Mehra, H. Yang, E. Dunn, J.-M. Frahm, and D. Manochak. 2014. P-hrtf:
Eicient personalized hrtf computation for high-idelity spatial sound. Mixed and
Augmented Reality (ISMAR), 2014 IEEE International Symposium on (2014).

P. Micikevicius. 2009. 3D Finite Diference Computation on GPUs Using CUDA. In
Proceedings of 2Nd Workshop on General Purpose Processing on Graphics Processing
Units (GPGPU-2). ACM, New York, NY, USA, 79ś84. https://doi.org/10.1145/1513895.
1513905

J. D. Morrison and J.-M. Adrien. 1993. Mosaic: A framework for modal synthesis.
Computer Music Journal 17, 1 (1993), 45ś56.

J. F. O’Brien, C. Shen, and C. M. Gatchalian. 2002. Synthesizing sounds from rigid-body
simulations. In The ACM SIGGRAPH 2002 Symposium on Computer Animation. ACM
Press, 175ś181.

D. K. Pai, K. van den Doel, D. L. James, J. Lang, J. E. Lloyd, J. L. Richmond, and S. H.
Yau. 2001. Scanning physical interaction behavior of 3D objects. In Proceedings of
the 28th annual conference on Computer graphics and interactive techniques. ACM,
87ś96.

S. Prepelita, M. Geronazzo, F. Avanzini, and L. Savioja. 2016. Inluence of voxelization
on inite diference time domain simulations of head-related transfer functions.
The Journal of the Acoustical Society of America 139, 5 (2016), 2489ś2504. https:
//doi.org/10.1121/1.4947546

Z. Ren, H. Yeh, and M. C. Lin. 2013. Example-guided physically based modal sound
synthesis. ACM Transactions on Graphics (TOG) 32, 1 (2013), 1.

Y. Saad and M. H. Schultz. 1986. GMRES: A Generalized Minimal Residual Algorithm
for Solving Nonsymmetric Linear Systems. SIAM J. Sci. Statist. Comput. 7, 3 (July
1986), 856ś869. https://doi.org/10.1137/0907058

X. Serra and J. Smith. 1990. Spectral modeling synthesis: A sound analysis/synthesis
system based on a deterministic plus stochastic decomposition. Computer Music
Journal 14, 4 (1990), 12ś24.

A. A. Shabana. 2012. Theory of Vibration: An Introduction. Springer Science & Business
Media.

A. A. Shabana. 2013. Dynamics of multibody systems. Cambridge university press.
W. Śmigaj, T. Betcke, S. Arridge, J. Phillips, and M. Schweiger. 2015. Solving Boundary

Integral Problems with BEM++. ACM Trans. Math. Software 41, 2, Article 6 (Feb.
2015), 40 pages. https://doi.org/10.1145/2590830

A. Talove and S. C. Hagness. 2005. Computational Electrodynamics: The Finite-Diference
Time-Domain Method. Artech House.

T. Takala and J. Hahn. 1992. Sound rendering. In ACM Transactions on Graphics
(Proceedings of SIGGRAPH 1992). 211ś220.

K. van den Doel, P. G. Kry, and D. K. Pai. 2001. FoleyAutomatic: Physically-based Sound
Efects for Interactive Simulation and Animation. In Proceedings of the 28th Annual
Conference on Computer Graphics and Interactive Techniques (ACM Transactions on
Graphics (Proceedings of SIGGRAPH 2001)). ACM, New York, NY, USA, 537ś544.
https://doi.org/10.1145/383259.383322

K. van den Doel and D. K. Pai. 1996. Synthesis of shape dependent sounds with physical
modeling. International Conference on Auditory Display 28 (1996).

O. von Estorf. 2000. Boundary Elements in Acoustics: Advances and Applications.
WIT Press, Southhampton, UK.

J.-H. Wang, A. Qu, T. R. Langlois, and D. L. James. 2018. Toward Wave-based Sound
Synthesis for Computer Animation. ACM Transactions on Graphics (TOG) 37, 4,
Article 109 (July 2018), 16 pages. https://doi.org/10.1145/3197517.3201318

Wikipedia. 2019. All-interval twelve-tone row. https://en.wikipedia.org/wiki/
All-interval_twelve-tone_row

T. W Wu. 2000. Boundary Element Acoustics: Fundamentals and Computer Codes.
WIT Press, Southhampton, UK.

C. Zheng and D. L. James. 2009. Harmonic Fluids. ACM Transactions on Graphics
(Proceedings of SIGGRAPH 2009) 28, 3 (Aug. 2009).

C. Zheng and D. L. James. 2010. Rigid-Body Fracture Sound with Precomputed Sound-
banks. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2010) 29, 3 (July
2010).

C. Zheng and D. L. James. 2011. Toward High-Quality Modal Contact Sound. ACM
Transactions on Graphics (Proceedings of SIGGRAPH 2011) 30, 4 (Aug. 2011).

E. Zwicker and H. Fastl. 2013. Psychoacoustics: Facts and models. Vol. 22. Springer
Science & Business Media.

ACM Trans. Graph., Vol. 38, No. 4, Article 122. Publication date: July 2019.

