SceneGrok: Inferring Action Maps in 3D Environments

Manolis Savva Angel X. Chang

Pat Hanrahan

Matthew Fisher Matthias Niefner

Stanford University

Training through Observations

“redding a boeks

Action Map Predictions

“using a laptop”

“reading a book”

Figure 1: We predict regions in 3D scenes where actions are likely to take place. We start by scanning the geometry of real environments
using RGB-D sensors and reconstructing a dense 3D mesh (left). We then observe and track people as they interact with the captured
environments (mid-left). We use these observations to train a classifier which allows us to infer the likelihood of actions occurring in regions
of new, unobserved scenes. We call these predictions action maps and we demonstrate that we are able to deduce action maps for previously
unobserved real and virtual scenes (see mid-right and right, respectively).

Abstract

With modern computer graphics, we can generate enormous
amounts of 3D scene data. It is now possible to capture high-
quality 3D representations of large real-world environments. Large
shape and scene databases, such as the Trimble 3D Warehouse, are
publicly accessible and constantly growing. Unfortunately, while
a great amount of 3D content exists, most of it is detached from
the semantics and functionality of the objects it represents. In this
paper, we present a method to establish a correlation between the
geometry and the functionality of 3D environments. Using RGB-D
sensors, we capture dense 3D reconstructions of real-world scenes,
and observe and track people as they interact with the environment.
With these observations, we train a classifier which can transfer
interaction knowledge to unobserved 3D scenes. We predict a like-
lihood of a given action taking place over all locations in a 3D en-
vironment and refer to this representation as an action map over the
scene. We demonstrate prediction of action maps in both 3D scans
and virtual scenes. We evaluate our predictions against ground truth
annotations by people, and present an approach for characterizing
3D scenes by functional similarity using action maps.
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1 Introduction

We are increasingly able to capture and represent the world with
high-fidelity 3D content. While these geometric representations are
suitable for rendering, it is challenging to incorporate them into
compelling interactive applications since we cannot readily under-
stand the semantics that underlay our 3D representations. For ex-
ample, it is still hard to automatically generate agent behaviors in
3D environments since the agent lacks knowledge of object and re-
gion functionalities. Even simple questions such as “where can I sit
in this room?” are challenging tasks for computers [Grabner et al.
2011]. While we have access to large amounts of 3D content, the
knowledge of how to interact with 3D environments, and what hu-
mans consider to be functionally important scene parts, is missing.

We aim to learn the functionality of 3D scenes directly from obser-
vations of people in real environments by using RGB-D input data.
By observing humans interacting with objects in everyday scenes,
we can empirically learn the correlation between body poses during
actions and properties of a scene and its objects. Specifically, for
a given action such as “using a desktop PC”, our goal is to learn
a model that can take a new scene we have never observed before,
and predict whether an agent could perform that function at each
location in a new scene. We refer to this representation as an action
map which encodes the probability of specific actions taking place
in specific regions. Examples of action maps are shown in Figure 1
(right). We observe actions in the real world, and train a model to
predict action maps in new real-world and virtual environments. We
demonstrate the transfer of action maps to a scene database which
allows us to characterize the functionality of unknown scenes. We
believe that methods for understanding 3D scenes in this manner
are an important step towards bridging the semantic gap, and can
be useful in a variety of applications, including virtual agent action
scripting, scene understanding in robotics, and 3D scene retrieval.

The idea of understanding environments through potential human
actions within them is not new; much prior work has targeted this
domain [Gibson 1977; Gupta et al. 2011; Pandey and Alami 2012;
Fouhey et al. 2012; Koppula et al. 2013; Koppula and Saxena 2013;
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Jiang et al. 2013; Wei et al. 2013a]. However, to our knowledge, we
are the first to specifically target the problem of inferring functional
regions in unobserved real and virtual environments, utilizing the
underlying 3D geometry. We address the functional understanding
of unknown geometry through the observation of humans interac-
tions in real environments.

We scan a variety of real-world environments such as offices, liv-
ing rooms, and common areas, and we record human interactions in
these scenes through RGB-D tracking and human pose data [Shot-
ton et al. 2013]. We then ask people to label observed actions in
these scenes, and we train a classifier to predict the observed ac-
tions from the scene geometry. This allows us to establish a basic
functional understanding of 3D environments which we apply to
new scenes where no interactions were observed and only the raw
3D geometry is provided. As a result, we can annotate new scenes
with action maps that specify a likelihood for a given action at ev-
ery location in the scene. Even with the limitations of current 3D
scanning technology, we are able to add a basic functional under-
standing to 3D scenes, and we show results for both real and virtual
scene datasets (see Figures 1, 7, 8).

In summary, we present a novel method for predicting action re-
gions in unobserved 3D environments:

e We introduce a model that learns from observations how to
predict possible actions over the space of 3D environments.
To do this, we leverage an unsupervised feature learning
method to obtain a geometric codebook.

e We evaluate our results by comparing our action map predic-
tions against ground truth annotations provided by people.

o We demonstrate that we can predict action maps for synthetic
3D scenes, and thus characterize their functionality. We il-
lustrate that this enables a novel form of scene retrieval by
functional similarity.

e We provide a dataset of observations of people in densely re-
constructed 3D scenes, along with action annotations.

2 Related Work

Human-centric understanding of environments has a long history
in the concept of affordances, which was introduced by Gib-
son [1977]. There is a variety of related work that has looked at
using human-object interactions to improve pose estimation, object
recognition, action classification, and other related problem in dif-
ferent communities [Fritz et al. 2006; Montesano et al. 2008; Stark
et al. 2008; Sun et al. 2010; Hermans et al. 2011; Goldfeder and
Allen 2011; Bohg et al. 2013; Koppula and Saxena 2013; Zheng
et al. 2014]. However, to the best of our knowledge, we are the first
to formulate the action map representation which aims to predict
actions over regions in 3D scenes, and to learn such a representa-
tion from observations in the real world.

To achieve this, we use observed human poses as an intermediary to
connect geometric context to actions. Our goal is orthogonal to the
task of pose prediction since we do not predict specific human poses
or adjust them for novel geometry. There exists much work on pose
prediction that could be integrated with our algorithm. For instance,
we can leverage approaches such as Kim et al. [2014]’s shape2pose,
to fit poses to 3D meshes. This work introduced the concept of
human-centric interactions to the shape analysis literature which
targets higher-level understanding of both shape collections [Mitra
et al. 2013a; Mitra et al. 2013b] and 3D scenes [Fisher et al. 2011].

Another line of work hypothesizes human poses as a latent variable
and predicts plausible poses in scenes in order to label objects, or
determine likely placements of objects [Jiang et al. 2012; Jiang et al.
2013; Jiang and Saxena 2013]. The authors demonstrate prediction

of likely positions for human poses but do not condition on different
types of human actions, and intentionally do not rely on observed
interactions in the input RGB-D data. In contrast, we directly use
observed interactions to predict action regions in full 3D scenes
making our goal orthogonal to pose prediction and object labeling.

Other approaches in computer vision aim to learn pose predictions
from RGB video stream observations [Delaitre et al. 2012] or to de-
termine affordances in new images based on inferred poses [Gupta
et al. 2011; Fouhey et al. 2012]. This line of work estimates rough
3D voxel geometry from 2D images to reason about affordances
in 3D space. However, a predefined set of poses is used which is
not learned from observations. Similarly, Grabner et al. [2011] fo-
cus on the action of “sitting” specifically and sample virtual scenes
with posed 3D human models to infer sittable objects. In contrast,
we use real-world observations of a variety of human actions.

Other research has also leveraged RGB-D data and focused on
learning human activities to classify objects and actions [Koppula
et al. 2013; Wei et al. 2013a; Wei et al. 2013b]. Typically, these ap-
proaches take advantage of temporal features that are not available
to us in static 3D scenes.

Overall, our approach is driven by the desire to add semantics to 3D
content. For instance, we would like to equip virtual agents with
the ability to automatically interact with novel 3D geometry. Our
method relies only on 3D geometric features and not on appearance
models since most existing 3D content does not have consistent
color information. Furthermore, unlike most prior work, we do not
require annotated object categories or labels on the raw geometry.

3 Overview

Our method aims to understand actions by modeling how people
interact with their 3D environments. More specifically, we model
the space of interactions between the human body and the geom-
etry of the environment in which actions take place. This allows
us to make predictions about the functionality of 3D geometry (i.e.,
where can actions take place) and the implied functional character-
istics of virtual scenes.

We first create a dataset containing 3D reconstructions of real-world
environments and pose data for human-scene interactions (Section
4). We annotate this data with action labels so that we can train
a supervised classifier for predicting actions. We then partition
scanned 3D scenes into disjoint sets of segments. Given recorded
pose data, we identify segments which are activated by skeletons
during specific actions. Using an unsupervised feature learning ap-
proach based on k-means clustering, we group activated segments
using simple geometric features (Section 6.1). The cluster centroids
span a high-dimensional space in which we embed activated seg-
ments from input observations. Using this data, we train a classifier
for each action label allowing us to establish a correlation between
pose observations and the underlying 3D geometry during that ac-
tion (Section 5.1).

In order to infer action maps in unobserved environments, we pre-
dict the probability of the given action taking place at discrete po-
sitions (x, y) within the scene by sampling poses at the given po-
sitions with rotations 6;. We aggregate the probability of an action
label at every position (z,y) by accumulating the probabilities for
all rotation samples 6;. Thus, for every location we obtain the fea-
sibility of that action; we call this probability distribution the action
map over the environment (Section 7).

An overview of our algorithm is in Figure 1, starting with training
data acquisition, and ending with action map prediction.



Figure 2: From left to right: Dense 3D scan captured with an RGB-D sensor; color frame from an activity recording session taken in this
scene, partitioning of the scene into disjoint segments; skeleton tracked from the same recording, with bounding boxes of active segments
shown. An active segment is a segment within 30 cm of one of the skeleton’s joints.

4 Data Acquisition

One of the key aspects of our method is that we learn the concept of
action maps from real-world observations. To this end, we acquire
3D training data using RGB-D sensors.

We first obtain 3D reconstructions of all training scenes using a
Microsoft Kinect sensor. In order to generate corresponding 3D
meshes, we use a real-time volumetric fusion framework [NieBner
et al. 2013], which regularizes out noise from the input data; Fig-
ure 2 shows an example scan. We align all reconstructions with the
ground plane such that scans have a common up vector. Next, we
place a Kinect One sensor at a static position within the physical
environment. The sensor is used to record people as they carry out
common daily activities; i.e., actions. In the RGB-D recordings,
we capture the human poses within the 3D scene at 30Hz using the
skeleton tracking provided by the Kinect SDK [Shotton et al. 2013].
These poses contain the 3D position of 24 skeletal joints, which we
map to the coordinate frame of the reconstructed 3D scene. A typ-
ical recording session lasts four minutes and between two and four
recordings were taken per scene.

The recordings were annotated by a volunteer who indicated the
time ranges over which the subjects performed any of a pre-
specified set of actions. Multiple actions can occur at the same
time: e.g., sitting on furniture often co-occurs with using a desktop
computer. Figure 2 shows an example frame annotated as “using a
laptop” and “sitting on furniture”. Table 1 provides a complete list
of the actions that were annotated and the size of our dataset.

One key difference between this and many existing RGB-D action
datasets is that we acquire dense scans of the scene geometry for
each recording generated by hundreds of input depth frames, in-
stead of only capturing the depth information from a set of fixed
sensors. For our work, this dense geometric reconstruction is crit-
ical as it enables us to transfer action information from real obser-
vations to virtual 3D environments.

Data Processing We transform the raw geometry in the dataset
into a segment-based representation. For each 3D mesh, we over-
segment the geometry using a graph segmentation method [Felzen-
szwalb and Huttenlocher 2004] with a distance metric based on
surface normals [Karpathy et al. 2013]. An example of a gener-
ated scene segmentation is shown in Figure 2. With this overseg-
mentation, we establish a higher-level scene representation com-
posed of coarser primitive objects and parts, which is sufficient for
our purposes. In general, segmentation of reconstructed 3D scenes
is a challenging research problem beyond the focus of our con-
tributions. More sophisticated scene parsing methods (e.g., [Nan
et al. 2012]) may be useful for improved segmentation of the input
scenes.

Action Scenes  Minutes
Sit on furniture 14 54

Use a desktop computer 5 15
Read a book 10 13

Use a laptop computer 7 9

Stand on the floor 12 7

Write on a whiteboard 4 7
Watch television 4 6

Total Scenes: 14
Total Recordings: 45

Table 1: Summary of the dataset. For each action, we show the
number of scenes in the database with at least once instance of
that action and the total time spent observing this action across all
recording sessions.

For each skeleton at each time point, we collect a set of segments
in the scene within 30 cm of each skeleton joint. We refer to these
as the active segments for a joint. Figure 2 shows the skeleton and
all the active segments for the image on the left. For a given pose p,
we use [3; € p to denote the set of active segments for each joint j.

In addition to the 24 skeletal joints, we estimate a gaze vector based
on the position of the shoulder and head joints. Since a single direc-
tion would be highly unstable, we sample the hemisphere around
the estimated vector using a power-weighted cosine distribution.
For every sample, we construct a ray which we intersect with the
scene within a range of 2 m. All segments that are hit by more than
10% of the sample rays are taken to be in the set of active segments
for the gaze of the skeleton. For notational simplicity, we consider
the gaze to be an additional joint of the skeleton, with an indepen-
dent set of active segments.

Given the limitations of current RGB-D sensor technology, there
are many challenges in 3D reconstruction and pose tracking: sig-
nificant noise in 3D scene reconstructions, tracking failures due
to occlusions or complex kinematics, and limited body part local-
ization accuracy. All these issues lead to open research problems.
We present what is possible with current consumer technology and
show that despite these limitations, we can predict action maps for
many common actions in indoor scenarios. Progress in RGB-D sen-
sor technology will improve the robustness and quality of the results
as well as the diversity of actions that can be effectively classified.

5 Action Map Model

Our approach characterizes actions by examining the geometric
properties of objects that people interact with using different parts
of their body. For example, the activity of sitting is characterized



by the presence of a seat-like surface supporting the hips of the
person from below. Likewise, the activity of typing on a laptop is
characterized by the hand being in contact or close proximity to the
laptop’s keyboard surface.

More specifically, we would like to predict the probability that an
action is possible while an agent’s hips are located at a given (x, y)
location in 2D space. We refer to this as an action map Ma(x,y)
for a given action a and point (x, y) in a scene.

To define our model for M, (x,y), we will aggregate information
over human poses centered at this location. In Section 5.1, we will
show how we use a supervised learning approach to learn a function
for the probability P,(x,y, p) of action a being performed while a
human pose p is centered at (x, y). Our learned model takes as in-
put a set of features produces by a featurization function ¢ (defined
in Section 5.2) which computes a fixed-dimensional feature vector
from the set of active segments /3; of each joint of the pose. L is the
classifier function that has been trained from the resulting features.

Pa(z,y,p) = L(¥(Y;{B; € p}))

We compute our final action map score at a given location by inte-
grating over P, (z,y, p) for different poses p € H,:

Ma(z,y) :/EH P(p)Pa(w,y,p) ~ ) %Pa(:my,p)

peH, ¢

Here, H, represents the space of all poses corresponding to action
a, and P(p) is the probability that a human performing action a is
in pose p. We estimate the integral by sampling a set of poses H,
chosen at random from the set of all poses corresponding to that
action observed in the training set. Each randomly chosen pose is
assigned equal weight.

For each action map M,, we approximate P, (x,y,p) using the
class membership probability of a supervised classifier for action
a. A key challenge in successfully training a supervised classi-
fier lies in the choice of featurization function 1. We describe
several featurization schemes in Section 5.2, and find that a seg-
ment dictionary-based approach performs best (described in detail
in Section 6).

5.1 Supervised Classification

For the supervised learning stage, we first create a training set of
positive and negative instances for each action a that we would
like to predict. Positive instances are randomly chosen from the
interaction time ranges that were annotated with the action a. We
randomly select negative instances from any other interactions. We
select a maximum of 5000 positive and 5000 negative observation
instances for each action we learn.

Once we have created a training set, we extract for each instance all
segments in the scene that are activated by the current body pose
B; € p. The set of featurized segment vectors f for each action
is used to train a random decision forest classifier [Breiman 2001].
Random forests are an ensemble learning method for classification
that construct sets of decision trees trained on different subsets of
the available variables. We followed standard heuristics for setting
the number of random trees to 10 and the number of randomly cho-
sen features per tree to [v/k]. In our implementation, we use the
WEKA machine learning toolkit [Hall et al. 2009].

5.2 Segment Featurization

A featurization function takes an observation instance consisting
of multiple active segments interacting with the joints of a pose and

returns a fixed length feature vector. Thus, it addresses the variation
in the number of segments in training or test samples. In our case,
the variation comes from different numbers of active segments for
each joint.

Simple aggregation of the raw geometric features of segments is not
meaningful. For this reason, we use aggregate features that capture
the identity of interacting segments. We consider three featurization
functions that compute a fixed length feature vector for a given set
of active segments.

Segment Presence (¢),.s) Presence of a segment is the simplest
feature and the baseline against which we compare the other ap-
proaches. For each joint j there is a single indicator feature which
is equal to one if there is an active segment and zero otherwise. The
input is the set of all active segments {3; € p}, and the output is a
binary feature vector of length |7].

Segment-Joint Interaction Score (y,,,) We compute a score
for how likely a segment s is to be interacting with a specific joint j
for a given action a by training a binary predictor L; o(s) — [0, 1]
(as described in Section 5.1). We select the set of all segments
B; interacting with the joint as positive instances, and active seg-
ments never observed interacting {s ¢ (3;} as negative instances.
At test time, the input is the set of all active segments {3, € p}, and
the output is a feature vector of length |j| which sums the interac-
tion score for all active segments in each joint: >, L; o(s:). Here,
we make an independence assumption that the interaction likeli-
hood scores for each joint-segment pair are not correlated. This
scheme is similar to the feature compatibility measure used by Kim
et al. [2014] to predict contact likelihood between mesh surface
points and body parts.

Segment Dictionary Activation (¢4;c) Using the dictionary of
segment centroids D learned as described in Section 6, we map
observed segments to encoded feature vectors f. We follow the ap-
proach of Coates and Ng [2012] and use a simple non-linear func-
tion of the per-centroid responses DT s for the given segment 5. We
use the soft-thresholded function max (0, D”'s — ar) where we set a
to be the mean centroid response for s. Once we apply this function
to each input segment, we obtain an R* centroid response vector
which encodes that segment’s activation against each of the dictio-
nary centroids. This form of encoding is known to perform much
better than single cluster assignments or sigmoidal non-linear func-
tions [Coates and Ng 2012]. We aggregate these encoded responses
for all active segments by summation along each centroid dimen-
sion. The final aggregated centroid response f € R” is the feature
vector used by the supervised learning procedure.

6 Segment Dictionary Learning

Our segment dictionary approach is inspired by unsupervised fea-
ture learning techniques based on k-means clustering that have
been shown to be successful in image classification [Coates and
Ng 2012]. These approaches are based on encoding “codebooks”
extracted through k-means clustering on the training data — they are
simple, easy to parallelize, and have few parameters. This code-
book encoding scheme is a way to capture the variability of the in-
put data compactly in a lower-dimensionality space and avoid over-
fitting.

We first define a feature set for our segment geometry. We then ac-
cumulate all observed interactions of tracked body parts with seg-
ments in our scene. We perform k-means clustering of all active
segments in the defined feature space to obtain a set of codebook



centroids that will be used to encode particular instances of ob-
served interactions.

6.1 Segment Geometry Features

We choose a small number of physically interpretable features to
represent the segments extracted from the unstructured 3D scene
input meshes. Segment features are computed with respect to an
oriented bounding box (OBB) of the segment points. We constrain
the OBB to have one of its axes be upwards. The bounding box
dimensions are computed only with points between the 10th and
90th percentile along each dimension to provide robustness against
outliers. Specifically, we use the following geometric features:

. Vertical position of the OBB centroid above ground

. Height of the OBB: max, — min,

. Diagonal of OBB in the zy plane

. Area of OBB in the zy plane: \/A,,(OBB)

. Magnitude of the dot product of the minimum PCA vector
with the world up vector.

O N N S

These features define an R® feature vector for each segment. We
intentionally chose simple features that have direct mappings to
physical properties of the object segments and characterize their
functionality: distribution at different vertical heights, approximate
vertical size, horizontal area available for interaction, and orienta-
tion of the dominant plane with respect to the upwards vector.

6.2 Segment Clustering

To capture the variety of different object segments that people in-
teract with, we perform k-means clustering on the feature space we
defined above, and extract a set of codebook centroids which will
encode the segments in each observed interaction.

We first accumulate the set S of all active segments that have been
interacted with for more than 10 seconds. We then compute the
feature vectors 3 € R for each segment s € S and normalize them
by subtracting the mean and dividing by the standard deviation:

s = § — mean(S)/4/var(S)

We also perform a whitening step, a form of independent compo-
nent analysis also known as sphering [Hyvirinen and Oja 2000].
This reduces the cross-correlation between samples, and is known
to improve training performance for supervised learning [Coates
et al. 2011]. We do this by using the eigenvalue decomposition
of the covariance matrix of the normalized segment feature vectors
VEVT = cov(S):

s=V(S+e) Vs

where € = 0.01 is a small regularization constant to avoid numeri-
cal issues due to division by eigenvalues close to zero.

Given the set of normalized and whitened segment feature vectors,
we perform k-means clustering to obtain a set of &£ codebook seg-
ment feature vectors. We use the k-means++ initialization approach
to improve clustering quality and we run the algorithm until con-
vergence [Arthur and Vassilvitskii 2007]. Once we have obtained
a clustering, we form a dictionary matrix D € R®>** comprised of
the k cluster centroids as its columns. This dictionary can now be
used to encode any segment s into a code vector that will be used
as a feature vector for supervised learning. Examples of highly-
activated segments for a particular centroid are shown in Figure 3.

Figure 3: We represent our mesh segments in codebook space,
which is a low-dimensional representation for embedding acti-
vated segments. Examples of highly-activated segments for one of
our learned segment centroids, indicated in red, in four different
scenes (top row: scanned 3D scenes, and bottom row: synthetic
3D scenes). We see that this centroid roughly corresponds to the
backrest of a chair.

7 Action Map Prediction

The trained classifiers for each action a can be used to predict
the likelihood of that action given a new set of activated segments
{B; € p} forapose pina3D environment. In order to retrieve acti-
vated segments within test scenes, we sample the space of the scene
with a blue noise sample-based search scheme (all results shown
use 2000 samples). We iterate over sampled points and place a ran-
domly sampled skeleton out of the observations that were annotated
with the given action a. The skeleton is translated so that the base of
the hips is at the sampled zy position. The vertical position z above
the ground remains the same as in the original observation. In ad-
dition, we evaluate several orientations ¢; at 45 degree increments;
i.e., we rotate the skeleton by 6;.

For each sample (z, v, 0;), we retrieve activated segments s € 3;
from the scene by nearest-neighbor lookup from each joint posi-
tion. The feature vector of each activated segment s is then normal-
ized, whitened, and its featurization v (s) is computed. This is the
same procedure as in the training phase described in Section 5.2.
The encoded instance is then given a likelihood for being a positive
example of an action a by the trained classifier L,. The map of
likelihood predictions M, (x,y) over the space of the scene is our
output, the action map. We visualize these predictions as heatmaps
over the scene indicating where actions are likely to take place given
the evidence of the surrounding activated geometric context.

8 Results

We first quantitatively evaluate the performance of our approach
and the three featurization functions against ground truth annota-
tions provided by people. We then present examples of action map
predictions on scanned test scenes, and on synthetic 3D scenes from
a database assembled by prior work [Fisher et al. 2012]. Finally,
we show how an approach using action maps provides a functional
similarity metric for scenes and can be used for scene retrieval.



“using a desktop PC” “standing on the floor”

Figure 4: Ground truth action map annotations provided by partic-
ipants for “using a desktop PC” (left) and “standing on the floor”
(right) for an office scene in our dataset.
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Figure 5: Precision vs recall plots for the three featurization ap-
proaches we use, computed against ground truth annotations: or-
ange: segment presence baseline 1.5, green: joint-segment score
baseline 1444, and blue: segment dictionary activation 1 g;c.

Ground Truth

Figure 6: Qualitative comparison of the “sitting on furniture”
action map prediction using the three featurization functions de-
scribed in Section 5.2, for the scene shown in the middle row of Fig-
ure 7. We compare: segment presence baseline s, joint-segment
score baseline 1,44, and segment dictionary activation 1 g;c.

8.1 Evaluation

To evaluate the performance of our approach, we compare our ac-
tion maps against ground truth annotations provided by people. We
asked three volunteers to annotate our dataset of scanned 3D envi-
ronments (see Table 1). The volunteers were provided with a 3D
view of the scanned scene they could navigate to disambiguate ob-
jects. They provided annotations as sketched out regions in a top-
down view of each scene. The study participants were instructed to
give 2D sketches of the regions where each of a list of actions could
plausibly take place for an adult, assuming the objects in the scene
remain static. Figure 4 gives example ground truth masks for one
of the scenes, and the complete prompt given to the volunteers is
provided in the supplemental materials.

Using these ground truth annotations, we compared the predictive
performance of each of the featurization schemes presented in Sec-
tion 5.2. We first establish a test set using four of the scenes in our
dataset, and train on the remaining scenes. We then compare the
output action map predictions against the annotated ground truth
2D masks. We compute averaged precision-recall curves over all
actions for each approach which we plot in Figure 5.

The simple segment presence baseline 1,5 has the lowest perfor-
mance (orange). The aggregation of segment scores 10,44 performs
better (green) and the overall performance is further improved using
the segment dictionary activation approach with £ = 100 centroids
Yaic (blue). The maximum F1 scores (harmonic mean of preci-
sion and recall) were 36.4% for the presence baseline, 45.0% for
the segment score aggregation baseline, and 52.2% for the segment
dictionary approach.

Figure 6 visualizes the behavior of the featurization functions plot-
ted in Figure 5. The presence baseline 1)y, is not able to distin-
guish between different segments and has a large proportion of false
positives. The joint-segment score baseline 1,44 can discriminate
between different geometric properties of segments but still has a
significant false positive rate. The segment dictionary activation
function v 4;. most accurately captures the ground truth annotation.
All the remaining results presented in this paper use the 4. fea-
turization function.

8.2 Action Map Predictions

To demonstrate prediction of action maps for novel scenes, we show
a series of results where we use scanned scenes as unobserved test
instances and train on all remaining scenes. We then predict action
maps in the test scene. We visualize the action map classification
predictions as heat maps ranging from high confidence that the ac-
tion cannot be performed (saturated blue) to high confidence that
the action can be performed (saturated red). Figure 7 shows these
results for several actions and test scenes.

In addition to testing on scanned 3D environments in the dataset
we collected, we also examine the generalization of our action map
predictions to existing synthetic 3D scenes. This is a challenging
scenario since the geometry of synthetic scenes differs significantly
compared to the scans acquired with RGB-D sensors on which we
train. However, the geometric features we use are defined pre-
dominantly on oriented bounding boxes of mesh segments acquired
through a normal-based distance metric, which can be compared
between real and virtual scenes. Figure 8 shows example predic-
tions on a few scenes from the corpus of Fisher et al. [2012].

8.3 Scene Similarity through Action Descriptors

We formulate a simple descriptor based on integrating the set of
predicted action maps over the space of each scene. This results



Test Scene “sitting on furniture” “using a desktop PC”  “writing on whiteboard” “watching TV”

Figure 7: Predictions of different action maps on three test scenes (first column). In the second column high likelihood of sitting is correctly
predicted on couches, chairs, and stools with varying geometry. Only the first scene with the desktop workstation has a high likelihood for
“using a desktop PC” in the third column. The fourth column shows predictions for “writing on a whiteboard” which are sensitive to false
positives due to segments with vertical planes similar to whiteboards. Finally, the fourth column shows action map predictions for “watching
TV’ which are high for the first scene with the chair positioned in front of the TV. The whiteboard-like segment on the left in the second
scene is deceptively similar to a TV but there are no spurious predictions for TV watching, likely due to the surrounding segments not being
arranged for watching TV.

Test Scene “using a laptop”

“sitting on furniture” “using a desktop PC” “standing on the floor”

Figure 8: Action map predictions on some synthetic 3D scenes. The leftmost column shows the input scenes. The sitting prediction for the
second scene correctly activates the chair but suffers from a high false positive rate, the “using laptop” prediction in the third column for the
third row is shifted to the right of the chair due to the uncommon placement of the laptop. We note that the predictions for “standing on the
floor” recover the free space in the scene where a person could stand without explicitly considering collisions.



Query Scene

Functionally Similar Results

Figure 9: Retrieval of functionally similar scenes. The scenes on the right are the top four most similar scenes by action map profile to the

query scene on the left.

in a feature vector of dimension |A|, the number of predicted ac-
tion maps. Our intent is to show that such a simple approach can
still retrieve functionally similar scenes. We see potential for action
map-based scene similarity as another useful dimension of compar-
ison that can be leveraged for scene indexing and retrieval.

Figure 9 demonstrates an application of action descriptors to re-
trieve functionally similar scenes given query scenes. Scenes are
ranked according to their Euclidean distance from the query scene
in the space of the |A|-dimensional action descriptors. We use the
action map set described in Table 1, trained on all our training
recordings. The first row of retrieved results supports the “using
a desktop computer” action present in the query scene, except for
the last scene which supports “watching TV”. In the second row,
all scenes support either the “using a laptop computer” or “reading
a book” action exemplified in the query scene. The third row does
not contain many meaningful results; this is because our method
is not trained on many actions that are relevant to the kitchenette
query scene. Note that unlike many existing algorithms for com-
paring scene geometry, this method does not rely upon text labels
or categories assigned to the objects in the environment in any way.

9 Limitations

Many limitations of our approach are due to noisy input of current
RGB-D sensors. Partially scanned scenes and segmentation failures
can cause errors in the predicted action maps. The noise regulariza-
tion of volumetric depth map fusion partly mitigates some of these
issues; however, three categories of failures cases remain: geomet-
ric similarity failures, obstructions, and poor signal isolation.

Geometric similarity failures. The most common failure of our
algorithm occurs when an incorrect similarity is computed between
two objects or object parts. If two similar objects are not found
to be similar in our geometric feature space, then we will not cor-
rectly transfer actions from training scenes to test scenes. Likewise,

if two dissimilar objects are found to be similar, then spurious acti-
vations can occur. The bottom row of Figure 10 shows one example
where an open book is found to be geometrically similar to a lap-
top. Consequently, this region activates as “use a laptop computer”
even though no laptop is present. Geometric similarity failures can
occur for many reasons: our 3D scans are both incomplete and con-
tain inherent noise; there is natural variation in the shape and size
of objects; and our per-segment geometric features do not perfectly
characterize the shape and material of an object. With improved
scanning quality, incorporating more sophisticated geometric fea-
tures should become viable.

Obstructions. Many actions become difficult or impossible to
complete when obstructing objects are present. One example is
shown in the top row of Figure 10. Here, the presence of a key-
board makes the chair very uncomfortable for sitting, but our al-
gorithm still classifies this area with very high sitting activation.
This is because we do not explicitly construct negative examples to
train our classifiers. Instead, negative examples for an action are
drawn from any poses not explicitly labeled for that action. Creat-
ing explicit negative examples to exemplify scenarios which inhibit
actions should improve our ability to correctly account for the pres-
ence of interfering objects.

Poor signal isolation. For some types of actions, a large number
of segments may be activated by a pose performing this action. For
example, an agent using a desktop computer might be gazing at a
monitor and have joints near a keyboard, a mouse, a mousepad, a
desk, the floor plane, headphones, a mug, a speaker, and a notepad.
However, not all of these objects are required for using a desktop
computer. With insufficient training data, it is likely that our clas-
sifier will not correctly deduce which objects are most relevant to
an interaction, potentially resulting in both false positive and false
negative classifications. This problem is made more severe by the
fact that our skeleton part tracking is vulnerable to occlusions and
is not accurate to more than approximately 15cm.



“sitting on furniture”

Figure 10: Failure cases. Middle column: segmentation of each
scene. Right column: Visualization of the estimated action map
likelihood. Top row: our algorithm suggests high activation for
sitting despite the presence of a keyboard interfering with sitting.
Bottom row: our algorithm suggests high activation for using a
laptop, despite the fact that no laptop is nearby.

10 Discussion and Future Work

We presented a method to annotate arbitrary 3D scenes with action
maps which estimate the probability of a given action occurring at
each location in the scene. Our model for generating action maps is
trained from real-world observations on a pre-specified set of pos-
sible actions. These action maps are one step towards the broader
goal of a functional understanding of scenes and can be used to
both augment existing applications in computer graphics as well as
enable many new avenues of research.

Object-based action maps. Though we did not focus on con-
necting action observations to semantically distinct objects within
the reconstructed 3D scene, we empirically observed a strong cor-
relation of body part contact and distinct object parts. A per-body-
part decomposition of action maps is an interesting avenue for fu-
ture work which can be useful in object segmentation, categoriza-
tion and functional annotation. The functionality of objects arises
from how human body parts interact with object parts so this form
of annotation would be useful for informing virtual agent behavior.

Agent action scripts. The actions performed by real agents in-
teracting with an environment are not independent events. Creating
automated agents for 3D environments requires modeling the cor-
relation and causation underlying why agents perform actions and
in which order. For example, we might generate an “action script”
that describes how an agent interacts with a studio apartment, in-
cluding events such as “get food from fridge”, “sit on couch”, and
“switch TV channel”. When attempting to execute such a script on
an environment, the action maps presented in this paper are required
whenever the agents needs to know where to be in order to perform
an action. The action script itself might even be learned from obser-
vations of real agents using a similar training set. The ability to au-
tomatically generate autonomous agents to populate virtual worlds
has significant applications in games and films.

Action annotations. Recent work has looked at understanding
3D scenes by comparing the geometric relationships between ob-
jects [Fisher et al. 2011; Xu et al. 2014]. In these methods, scenes
are represented as graphs, objects, or collections of objects are
nodes in the graph and edges are spatial relationships between
nodes. These representations could be augmented with action anno-
tations using action maps, where some nodes represent “localized
actions” — regions in space where a given action is likely to occur.
These action nodes could be connected to other objects or actions
via edge-based relationships, enabling these methods of relating
scenes to incorporate both geometric and functional properties of
scenes.

Functional scene synthesis. To mitigate the burden of content
generation, methods have been developed to automate the synthesis
of 3D scenes [Fisher et al. 2012; Xu et al. 2013]. These methods
work by studying the spatial relationships between objects observed
in example scenes. However, there is only an indirect attempt to
make the generated scenes provide the same types of functionality
present in the input examples. By building upon these methods, we
would like to create a system that can generate scenes that better
capture both the geometric and functional aspects of the training
scenes. We might seek to generate a scene whose action maps re-
semble either the input training scene or a manually specified objec-
tive. For example, we could ask for a scene that contains 10 chairs
and supports “using a laptop computer”, “watching a television”,
and “writing on a whiteboard”, using these functional constraints
to guide the placement of the objects towards desirable locations.
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