see(k)
a design study that seeks to visualize n-dimensional feature vectors in k clusters
Webzeigeist: a web design corpus, over 10K pages, over 1.6 million visual blocks.
Webzeigeist: a web design data

10K pages, over 1.6 million visual blocks.
Webzeigeist: a web design corpus, over 10K pages, over 1.6 million visual blocks.

Each visual block contains 1713 features derived from DOM attributes, CSS styles, computer vision descriptors, and semantic labels.
Webzeigeist: a web design corpus, over 10K pages, over 1.6 million visual blocks.

Each visual block contains 1713 features derived from DOM attributes, CSS styles, computer vision descriptors, and semantic labels.
Webzeigeist: a web design corpus, over 10K pages, over 1.6 million visual blocks.

Each visual block contains 1713 features derived from DOM attributes, CSS styles, computer vision descriptors, and semantic labels.

There are three types of crowdsourced semantic labels (domain, style, structure).

This project uses the page-level feature set as the design matrix.
We seek to represent/describe web design based on its trends and patterns in order to better inform design understanding. We are trying to separate the raw feature vectors of each page into different clusters of pages where clusters are grouped by different features and crowd sourced labels.
We seek to represent/describe web design based on its trends and patterns in order to better inform design understanding. We are trying to separate the raw feature vectors of each page into different clusters of pages where clusters are grouped by different features and crowd sourced labels.
We seek to represent/describe web design based on its trends and patterns in order to better inform design understanding. We are trying to separate the raw feature vectors of each page into different clusters of pages where clusters are grouped by different features and crowd sourced labels.
We seek to represent/describe web design based on its trends and patterns in order to better inform design understanding. We are trying to separate the raw feature vectors of each page into different clusters of pages where clusters are grouped by different features and crowd sourced labels.

To distinguish meaningfulness characterize each of these k groupings by enabling three levels of exploration.

Maxine Lim . Cesar Torres . Victoria Flores
see(k) showing clusters from K-means in some aggregate way; one idea: 3d shape w/ each side showing one aspect of data portrait
see(k)

1. Levels
 showing clusters from K-means in some aggregate way one idea:
 3D shape w/ each side showing one aspect of data portrait

2. Aggregate data portraits for a cluster:
 composition, color palette, label text clouds, negative space, complexity,
 and gallery/similarity line using PSNR as distance metric.
see(k)

1
showing clusters from K-means in some aggregate way one idea:
3d shape w/ each side showing one aspect of data portrait

2
aggregate data portraits for a cluster:
composition, color palette, label text clouds, negative space, complexity,
and gallery/similarity line using PSNR as distance metric

3
data portrait for an individual page
showing clusters from K-means in some aggregate way one idea:
3d shape w/ each side showing one aspect of data portrait

aggregate data portraits for a cluster:
composition, color palette, label text clouds, negative space, complexity,
and gallery/similarity line using PSNR as distance metric

data portrait for an individual page
see(k)

1. showing clusters from K-means in some aggregate way one idea: 3d shape w/ each side showing one aspect of data portrait

2. aggregate data portraits for a cluster: composition, color palette, label text clouds, negative space, complexity, and gallery/similarity line using PSNR as distance metric

3. data portrait for an individual page

Schematic

Maxine Lim . Cesar Torres . Victoria Flores
see(k) showing clusters from K-means in some aggregate way one idea: 3d shape w/ each side showing one aspect of data portrait

aggregate data portraits for a cluster: composition, color palette, label text clouds, negative space, complexity, and gallery/similarity line using PSNR as distance metric

SCHEMATIC
see(k)

showing clusters from K-means in some aggregate way one idea:
3d shape w/ each side showing one aspect of data portrait

SCHEMATIC
see(k)

METRICS
see(k)
metrics
see(k)

METRICS

color palette

text clouds

Maxine Lim . Cesar Torres . Victoria Flores
see(k)

METRICS

color palette
text clouds

negative space

Maxine Lim . Cesar Torres . Victoria Flores
see(k)

METRICS

color palette

text clouds

negative space

similarity

complexity

Maxine Lim . Cesar Torres . Victoria Flores
see(k)

METRICS

color palette

page clusters

text clouds

similarity

negative space

complexity

Maxine Lim . Cesar Torres . Victoria Flores
see(k)

METRICS

color palette composition page clusters

text clouds similarity

negative space complexity

Maxine Lim, Cesar Torres, Victoria Flores
regarding the visualization of level two aggregate cluster data portraits; additions? dealing with various types of data?

when judging a website, what characteristic do you first notice?